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Abstract. We prove a hydrodynamic limit for a system of N particles moving in an open

domain D ⊆ Rd according to a diffusion and undergoing branching when one particle

reaches the boundary. The particle at the boundary and another random particle are

eliminated and replaced with two new particles created instantaneously at a random point

with distribution γ(dx) in D. The mechanism represents a hybrid between the Fleming-

Viot branching and a mean-field version of the Bak-Sneppen fitness model where the

absorbing boundary represents the minimal configuration, seen as biologically not viable.

The limiting profile is the normalization of the solution of a heat equation with mass

creation, a PDE with non-standard boundary conditions which was studied independently

in [12]. Under stronger conditions, the limit solves a semi-linear parabolic equation of

reaction-diffusion type with a reaction term depending directly on the flux balance that

determines the mass creation. An outline of the tagged particle limit included.

1. Introduction

LetD ⊆ Rd an open domain with smooth boundary ∂D and a diffusion onD generated by

a second order, strongly elliptic differential operator L with sufficiently smooth coefficients

up to the boundary. The corresponding Dirichlet kernel determines a diffusion called the

underlying diffusion. n addition, let γ ∈ M1(D) be a probability measure on D. It is

important that γ does not charge the boundary, i.e. γ(D) = 1. These are the building

blocks of a finite particle system (3.1) constructed as follows.

1.1. The BSBD process. Let N ≥ 2 be an arbitrary but fixed positive integer. We start

with N particles, each moving independently according to L until the first, say of index i,

1 ≤ i ≤ N , hits ∂D. Instantaneously we choose particle j 6= i, 1 ≤ j ≤ N with probability
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1/(N − 1) and the two particles i and j jump at the same random point chosen with

distribution γ. We emphasize that the number of particles N does not change after jump.

The independent motion of the system is restarted afresh from the new locations of the

particles, following a new cycle, until the next particle reaches ∂D; at that point the same

mechanism redistributes the N particle system inside the domain D and continues with a

new iteration. A discussion of the consistency of the construction is given in Subsection

1.3.

In distribution, the construction is equivalent to the killing of the pair (i, j) with instan-

taneous birth at the new location. The branching approach is consistent to the birth and

death dynamics, but we prefer a finite system with simpler particle labelling, suitable when

studying the evolution and scaling of the empirical measure (3.4), the main goal of this

paper (Theorem 2). The resulting N - particle system XN
t = (XN,1

t , . . . , XN,N
t ), defined

more formally in (3.1) will be called the Bak-Sneppen branching diffusions (BSBD).

The branching/redistribution mechanism may choose an arbitrary number K > 2 of

particles, with practically no change in the proof. The case K random, as well as subcritical

can be handled with minor modifications.

1.2. Motivation and relation to other particle dynamics. The BSBD is a hybrid

between the Fleming-Viot (FV) particle system (e.g. [5, 9, 15, 6, 1]) and the Bak-Sneppen

self-organizing fitness model from [2, 3], explaining the name.

First, from the FV model we adopt the motion in between jumps and the trigger of the

branching events. Like here, independent particles move in D until one hits the absorbing

boundary (which can be regarded as a hard catalyst for branching). It is killed and jumps

to the location of one of the remaining particles (redistribution). The process continues

from the new locations until a new boundary hit.

Second, from the Bak-Sneppen dynamics we adopt the redistribution mechanism. The

original model looks at D = (0, 1) and N points in D. The one with minimum value

is chosen, together with a “neighbor”, deleted, and replaced by three (or another number

greater than two, according to some variants) independent particles with some continuous

distribution γ (e.g. uniform) in D. Absolute continuity prevents ties in choosing the

minimum.
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We pick the first particle at the boundary (a substitute for the minimum value). The

second particle (neighbor in extended sense) is randomly chosen among all others, em-

phasizing the mean field character of the BSBD. One of the most striking features of the

Bak-Sneppen model is that strong correlation between neighbors (taken as exactly label i

and i+ 1, for example) renders the asymptotic study of the distribution almost intractable

analytically, in spite of the simplicity of the problem.

In broader sense, the BSBD can also be interpreted as an evolutionary model for the

genome population. The particles undergo mutation represented by a diffusive term (Brow-

nian), selection, represented by drift (in the probabilistic, not geneticists’ sense) and re-

combination, represented by branching/redistribution at a random point ∼ γ(dx) where the

new mass is born. Genetic recombination can be seen as a repair mechanism to damaged

DNA. If artificial, it is under the effect of a catalyst, here seen as contact with the absorbing

boundary.

The main results are the hydrodynamic limits stated in Theorems 2 and 3. In a nut-

shell, as N → ∞, the FV process converges to the normalized density of the dissipative

heat equation (subcritical), whereas the BSBD converges to the normalized density of the

accretive heat equation (2.2)-(2.3) introduced in [12, 18], referred to as the heat equation

with mass creation, which is super-critical. This comparison is discussed in more detail in

Subsection 3.3.

1.3. The underlying diffusion. The underlying process is the diffusion driven by a second

order, strongly elliptic operator L given by

(1.1) Lu(x) =
1

2

∑
1≤i,j≤d

aij(x)∂2
xixju(x) +

∑
1≤j≤d

bj(x)∂xju(x) , u ∈ C∞c (Rd) ,

where a = (aij) is a symmetric d × d matrix, b = (bj) a d - dimensional vector, both

with C∞(Rd) components having bounded derivatives and there exists a0 > 0 such that

〈az, z〉 ≥ a0||z||2, z ∈ Rd (uniform ellipticity). The diffusion is killed at τD, the hitting

time of the boundary of the bounded domain D ∈ C2.

Denote the sets of test functions

D(L) (resp.Dc(L)) = {φ ∈ C2(D̄) |φ ∈ (BC) (resp. (BC)c)} ,(1.2)
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where φ ∈ (BC), (∈ (BC)c) if φ(x) vanishes (is constant) when x ∈ ∂D. The constant

boundary conditions are needed later on in Section 4 starting with eq. (4.2) and have no

bearing on the definition of the underlying diffusion. Since the coefficients are smooth and

∂D ∈ C2, this process is the unique solution to the martingale problem (L,D(L)).

Analytically, the underlying diffusion defines a strongly continuous Feller-Dynkin semi-

group in the sense of [16], Chapter III.6, that is, the transition probabilities satisfy for

φ ∈ Cb(D)

(1.3) SDt φ(x) = Ex[φ(xt)] =

∫
D
pD(t, x, dy)φ(y) ∈ C(D̄) (strong Feller property) .

Due to the smoothness of the domain and coefficients, the Dirichlet kernel is smooth up to

the boundary pD(·, ·, ·) ∈ C1,2((0,∞)× D̄ × D̄).

Since D is bounded, the hitting time τD of the boundary ∂D has a positive exponential

moment, i.e. there exits α− < 0 such that

(1.4) sup
x∈D̄

= Ex[eα−τ
D

] = cD <∞ .

The distribution function FD(t, x) of τD, when starting at x ∈ D̄ has a density fD(t, x)

for t > 0 satisfying

(1.5) Px(τD > t) = 1− FD(t, x) = SDt 1(x) =

∫ ∞
t

fD(s, x) ds .

Remark. The conditions needed to define the BSBD process can be relaxed substantially.

In fact, a strongly Feller process with a finite moment for the hitting time of the boundary

and γ not charging the boundary would be sufficient. Proposition 1 will show that the

assumptions made in this subsection are sufficient to define the BSBD dynamics as a non-

explosive Markov process. The stronger assumptions on the Dirichlet heat kernel given in

subsection 2.1 are needed to solve the PDE from Definition 1.

2. The heat equation with mass creation

The limit of the empirical measures (Theorem 2) is determined via a weak solution of a

partial differential equation with non-classical boundary conditions called the heat equation

with mass creation. Its analytic properties are proven in [12]. These results are summarized

in Theorem 1 and discussed in the Appendix. There is no overlap between the proofs in

[12] and this paper, beyond the existence, uniqueness and smoothness of the solution to
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this PDE. To distinguish from M1(D), the space of probability measures on D, the space

of finite measures is denoted by MF (D).

We shall write 〈m,ψ〉 for the integral of any bounded function ψ against a finite measure

m(dx) on D. Define the time-space set of test functions

(2.1) φ(·, ·) ∈ D = C1,2([0,∞)× D̄;R) ,

where we shall sometimes consider functions independent of time with the same notation

φ(·) ∈ C2(D̄). Alternatively, we could adopt D = C1,2
c (R × Rd), the space of smooth

functions with compact support in both (t, x) variables, without loss of generality.

Definition 1 (Heat equation with mass creation). We shall say that (νt)t≥0 ∈ C([0,∞),MF (D))

is a weak solution to the heat equation for (L,D(L)) with mass creation at γ ∈ M1(D) of

intensity K̄ > 1 and initial value ν0 ∈MF (D) if

〈νt, φ(t, ·)〉 − 〈ν0, φ(0, ·)〉 −
∫ t

0
〈νs,

∂

∂s
φ(s, ·) + Lφ(s, ·)〉 ds = 0(2.2)

for any test function φ from the class D defined in (2.1) satisfying the boundary condition

φ(t, y) = K̄〈γ, φ(t, ·)〉 ∀t > 0, ∀y ∈ ∂D .(2.3)

In case ν0 = δx the solution is denoted (νxt )t≥0.

Remark. In this paper we are only interested in K̄ = 2, corresponding to the BSBD.

For sufficiently small δ > 0, we denote

(2.4) Dδ = {x ∈ D | dist(x, ∂D) > δ} , δ > 0 .

A separation condition between the “boundaries” involved in the jump/branching mech-

anism. We assume supp(γ) ⊂ D. Since D is open, there exists da > 0 such that

(2.5) dist(∂D, supp(γ)) ≥ da , equivalently supp(γ) ⊂ Dδ , δ < da .

where supp(q) is the topological support of the measure q(dx).

Definition 2 (Regular solution). The solution is said regular, if it has bounded total vari-

ation and has a density away from the support of γ which is locally uniformly bounded, i.e.

for any pair (t0, T ) with 0 < t0 < T < ∞ and any compact set F ⊆ D̄ \ supp(γ), there
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exists a constant C(t0, T ), possibly dependent on F such that

(2.6) sup
0≤t≤T

||mt|| <∞ and sup
t0≤t≤T

|mt(F )| ≤ C(t0, T )Leb(F ) .

2.1. The solution to the PDE. To solve eq. (2.2) with the boundary conditions (2.3),

we need the following additional assumptions, which are not necessarily minimal. On the

other hand, Theorem 1 (iv) gives sufficient conditions.

The first is an off-diagonal bound. Given β > 0, for all x, y ∈ D̄ with dist(x, y) ≥ β,

there exists CD(t, β) > 0, depending on t > 0 and β > 0 uniformly bounded on (0, T ],

T > 0 such that

(2.7) |pD(t, x, y)| ≤ CD(t, β) , lim
t→0

CD(t, β) = 0 .

The second is a smoothness property of the density of the hitting time. The density fD

must belong to C([0,∞)× D̄)∩C1,2((0,∞)× D̄), has bounded derivatives and is a classical

solution to the heat equation

(2.8) ∂tfD = LfD , (t, x) ∈ (0,∞)×D , f(0+, x) = 0 .

We note that such a condition would be satisfied for sufficiently regular boundary. Even

though technical, it is used in the proof of uniqueness of the PDE (Theorem 1 (i)), hence

is essential in the identification of the hydrodynamic limit (Theorem 2).

The following is a summary of the analytic results proved in [12] needed in the proof of

the hydrodynamic limit (Theorem 2).

Theorem 1. (Summary of main results in [12]) Assume (2.7), (2.8) and (2.5) in addition

to the conditions from Subsection 1.3. Then:

(i) (Existence and uniqueness, Theorem 1 in [12]) The heat equation with mass creation

has a unique weak regular solution (νt)t≥0 such that, if ν0 is positive, then the solution is

positive and the total mass nt = 〈νt, 1〉 satisfies 0 < nt ≤ C exp(α∗t), t > 0, where C

depends on ν0 only and α∗ > 0 is the unique solution of Eγ [eα
∗τD ] = 1/K̄ (see eq. (3.12)).

(ii) (Regularity properties, Theorem 2 in [12]) On D̄ \ supp(γ), the solution (νxt )t≥0

starting at ν0 = δx, x ∈ D, has a density νxt (dy) = vx(t, y)dy that is locally bounded, i.e.

0 ≤ vx(t, y) ≤ C(t0, T ) for any T ≥ t0 > 0 on any compact subset, where the constant

depends on the compact.
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(iii) (Backward equation, Theorem 4 in [12]) The function (t, x) → w(t, x) = 〈νxt , g〉,
g ∈ C(D̄), belongs to C([0,∞) × D̄;R) ∩ C1,2((0,∞) × D̄;R), has bounded derivatives on

bounded time intervals, and solves the equation ∂tw = Lw with initial condition w(0, x) =

g(x) and boundary conditions (2.3).

(iv) (Sufficient conditions, Proposition 1 in [12]) When L = 1
2∆, the conditions (2.7) and

(2.8) are verified.

Proof. The theorem is an immediate collection of results stated in brackets. �

They key to proving these conditions is that the solution admits the representation

〈νt, φ〉 = Eν0 [〈ζt, φ〉], for any sufficiently smooth φ and t ≥ 0, where (ζt)t≥0 is the auxiliary

super-critical branching process (ζt)t≥0 presented in the Appendix. See the remark at the

end of Subsection 3.3 and the discussion of the related particle models.

3. Main results

The BSBD process described in Subsection 1.1 can be constructed by piecing together an

countable sequence of independent processes driven by L and, independently, a countable

sequence of i.i.d. pairs of relocation random points in D with distribution γ. This con-

struction is essentially the same as for the Fleming-Viot particle system [5, 9]. Henceforth

we consider the N -particle process

(3.1) (XN
t (ω))t≥0 , XN

t (ω) = (XN,1
t (ω), . . . , XN,N

t (ω))

defined on a filtered probability space (Ω,F ,Ft, P ), ω ∈ Ω, where Ft satisfies the usual

conditions. By construction, (XN
t (ω))t≥0 is a jump-diffusion on the Skorokhod space

DN ([0,∞), DN ) of right continuous with left-side limits paths.

Denote the number of times particle i hits ∂D up to time t ≥ 0

(3.2) AN,it (ω) =

∫ t

0
1∂D(XN,i

s− ) ds

and the average number of boundary hits

ANt (ω) =
1

N − 1

N∑
i=1

AN,it (ω) ,(3.3)
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where the normalization constant (N − 1)−1 is chosen for convenience and asymptotically

consistent to the total number N of particles. These processes are naturally adapted to the

filtration Ft. We shall omit ω unless absolutely necessary.

The hydrodynamic limit from Theorem 2 is a a Law of Large Numbers for the time-

dependent empirical measure process

t −→ µNt (dy, ω) =
1

N

N∑
i=1

δ
XN,i
t (ω)

(dy) ∈ D([0,∞),M1(D)) ,(3.4)

where D([0,∞),M1(D)) denotes the Skorokhod space of probability measure - valued paths

on D. To simplify notation, the random element ω will be omitted unless absolutely

necessary.

Definition 3. Let (X, || · ||) be a Polish space. A sequence of processes (Y N
· )N≥1 supported

on the Skorokhod space D([0,∞);X) converges in probability to (Y·), locally uniformly in

time, if (Y N
· )N≥1 is a tight family and for any T > 0,

∀ε > 0 lim
N→∞

P
(

sup
t∈[0,T ]

||Y N
t − Yt|| > ε

)
= 0 .(3.5)

Definition 4. The process (µN· )N>0 converges weakly in probability to (µ·) if for any func-

tion φ ∈ C(D̄), the process t→ 〈µNt , φ(·)〉t≥0 converges in probability to t→ 〈µt, φ(·)〉t≥0 in

the sense of the Definition 3.

3.1. The general solution. Assume µ0(dx) is a non-random measure in M1(D) and the

initial condition

µN0 converges weakly in probability to µ0 as N →∞ .(3.6)

Let νt be the unique solution to the heat equation with particle creation (2.2) with

coefficient K̄ = 2, boundary conditions (2.3) and initial value ν0 = µ0. Write

µt =
νt
〈νt, 1〉

, nt = 〈νt, 1〉 with n0 = 1 and At = lnnt ,(3.7)

where the logarithm is justified by the lower bound given in Theorem 1 (i).

Theorem 2. Assume the heat equation with mass creation from Definition 1 has a unique

regular solution. Then, under the initial condition (3.6), as N → ∞, the empirical

8



measure process (3.4) converges weakly in probability to the deterministic trajectory µ· ∈
C([0,∞);M1(D)), and AN· converges in probability to A· ∈ C([0,∞);R+) from (3.7).

The trajectory t → (µt, At) is unique, because t → νt is unique and (3.7) determines νt

from the pair (µt, At). It also has all the regularity and boundary properties inherited from

Theorem 1, being absolutely continuous for t > 0 with density ρ(t, y) and continuous for

t ≥ 0 in the topology of convergence in distribution.

3.2. The strong solution. In general, the limit µ· is the normalization of a weak solution

of a parabolic equation. The boundary conditions (2.3) are expressed in weak form as well.

Let w ∈ C1(D̄ \ {c})). Define the inward flux from c the limit

(3.8) Φ(w, c) = lim
ε→0

∫
∂B(c,ε)

∇w(y) · n dS ,

where n is the outward normal to the sphere centered at c, whenever the limit exists and

is finite. We shall write Φ(w, ∂D) for the total flux of w over the boundary ∂D.

Remark. The flux is said inward because it enters the set at c; it can be considered

asymptotically equal to the opposite of the outward flux seen from the interior of the

punctured set through a small ball centered at c.

For such a function w(t, y), we say it satisfies the flux balance condition if

(3.9) Φ(w(t, ·), c) = K̄Φ(w(t, ·), ∂D) .

Theorem 3. Assume L = 1
2∆, γ(dx) = δc(dx) for some c ∈ D, K̄ = 2 and µ0(dy) =

ρ0(y)dy, ρ0 ∈ C(D̄). Let (νt)t≥0 and (µt)t≥0 be the solutions from Theorems 1, respectively

2 with common initial value µ0. Then νt has density v(t, y) and µt has density ρ(t, y) =

v(t, y)/nt, t ≥ 0, where ρ ∈ C([0,∞)×D\{c})∩C1,2((0,∞)×D\{c}) and has integral one

in the space variable for any t ≥ 0. The total mass takes the form nt = 〈v(t, ·), 1〉 = exp(At)

with At =
∫ t

0 a(ρ, s)ds and ρ(t, y) verifies the reaction-diffusion equation

(3.10) ∂tρ(t, y) =
1

2
∆ρ(t, y)− a(ρ, t)ρ(t, y) with v(0, ·) = ρ0(·)

with simultaneous Dirichlet and flux balance boundary conditions (3.9). The factor a(ρ, t)

is linear in ρ being equal to

(3.11) a(ρ, t) =
1

2
〈∆ρ(t, y), 1〉 = −1

2
Φ(ρ(t, ·), ∂D) , t > 0 .
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Remarks. 1) The boundary condition (3.9) has a simple interpretation: The flux entering

the set at the source c is double the flux exiting the set through the boundary. In addition,

v(t, y) behaves like a Green function, and has a singularity of the same type v(t, y) ∼
||y − c||2−d as y → c.

2) The constant φ ≡ 1 does not satisfy the boundary conditions (2.3), which makes re-

lation (3.11) nontrivial. In the more general case when the two particles redistributed are

replaced by, say, a random number K with mean K̄ ≥ 2, the factor in front of the flux

becomes −(K̄ − 1)/2. Note that the 1/2 part comes from the half-Laplacian. The super-

critical nature of the underlying process is transparent here, as a(ρ, t) is strictly positive

and inversely proportional to the dissipation of mass manifested through the outward flux.

Proof. Let v(t, y) be the density of the solution in Theorem 1 (i) and (ii), with initial value

µ0. In full detail, its existence is guaranteed by Theorem 5 (Appendix) everywhere outside

supp(γ), that is, on D \ {c}, and extends continuously up to ∂D. Theorem 2 shows that

we have the normalization formula µt(dy) = ρ(t, y)dy, t > 0 and ρ(t, y) = v(t, y)/nt, with

total mass satisfying the bound 1 < nt ≤ Ceα
∗t, starting at n0 = 1 and differentiable for

t > 0 with continuous derivative. This justifies the logarithm in lnnt and the definition

of a(ρ, t) as its derivative in time. Equation (3.10) follows by elementary differentiation.

The boundary conditions are satisfied because v(t, y) satisfies them and ρ is obtained by

dividing by nt, a function of time only. To justify (3.11), we integrate the equation against

the constant function one. The second equality is a consequence of Greene’s theorem and

the condition (3.9). We formally keep K̄ for clarity in relation to (3.9)

〈∆ρ(t, y), 1〉 = Φ(ρ(t, ·), ∂D)− Φ(ρ(t, ·), c)

= −(K̄ − 1)Φ(ρ(t, ·), ∂D) = (1− 1

K̄
)Φ(ρ(t, ·), c) , where K̄ = 2 .

�

3.3. Self-organizing criticality: Comparison with the Bak-Sneppen and Fleming-

Viot models. As mentioned briefly in Subsection 1.2, the Bak-Sneppen fitness model

introduced in the seminal works [2, 3] consists in a system of N fitness columns on D = (0, 1)

and the long time behavior (ergodicity, stationary profile) are investigated. One difference

is that we look at one neighbor only, so the number of individuals branching in the BSBD

is K = 2; that is not significant qualitatively, noting that the proofs would remain almost
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identical for a fixed number of neighbors K > 2. In general, K may be random and its mean

value, the branching intensity, is denoted as K̄. To unify notation, we keep the notation K̄

for the number of particles killed upon reaching the boundary.

The second difference is the random choice of the “neighbor”. This makes our current

model mean-field, and, as such, closable. Another important difference is, of course, that

instead of a dynamic value of the “minimum”, we trigger branching only by contact with the

boundary, an absolute extreme value. Nonetheless, the most important feature of the Bak-

Sneppen model remains present: self-organizing criticality, in the sense that the relaxation

limit (as t→∞) of the macroscopic profile is equal to the quasi-stationary distribution of

the supercritical branching system described in the Appendix, Subsection 8.1, as explained

below.

Under the conditions in Subsection 1.3, denote the resolvent of the Dirichlet kernel

semigroup

RDα φ(x) =

∫ ∞
0

e−αtSDt φ(x)dt

and the Laplace transform of the exit time

f̂(α, x) = Ex[e−ατ
D

] =

∫ ∞
0

e−αtf(t, x) dt

with f(t, γ) = 〈γ, f(t, ·)〉. If τD has an exponential moment (1.4), there exists a largest

number α̃ < 0 such that f̂(α̃, γ) = +∞. Since f̂(+∞, γ) = 0 by monotone convergence,

there is an increasing bijection α∗ : (0,∞)→ (−α̃,+∞) where

(3.12) α∗ = α∗(K̄) solves 1− K̄f̂(α∗, γ) = 0 .

To fix ideas, let K be binomial with probability of success p = K̄/N .

Let νt be the solution of the heat equation with mass creation, with its representation

νt = E[ζt] and total mass nt = 〈nt, 1〉. The Yaglom limit νt/nt → νK̄ is exactly a quasi-

stationary distribution for the semigroup t→ Stφ(x) = Ex[〈ζt, φ〉] (see [13] for the detailed

derivation). With a normalization constant C > 0,

νK̄(dy) = C−1

∫
D
RDα∗(K̄)(x, dy) γ(dx) .

Then, since µt = νt/nt, for a given redistribution with intensity K̄, we obtain a limit

limt→∞ µt → νK̄ .
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Like in the Bak-Sneppen model, νK̄ is a function of K̄. We obtained a bijection between

interaction intensities and the stationary profiles; this feature is a manifestation of self-

organizing equilibrium.

There is another important feature of this correspondence, in that it produces a particle

representation of the resolvent Rα of (L,D(L)) for α ∈ R ∩Res(L).

In the FV case [5, 9, 17, 15, 6, 1] one particle is killed and resampled, so there K̄ = 1.

The hydrodynamic limit is the normalization of the solution to heat equation with Dirichlet

boundary conditions, i.e. a dissipative solution (varying in time), divided by its total mass in

order to have mass one. Before normalization, this total mass decreases with exponentially

fast at rate eλ1t, with λ1 < 0. For example, when (L,D(L)) is a Brownian Motion killed at

the boundary, λ1 is exactly the first eigenvalue for the Dirichlet Laplacian.

In the BSBD case, K̄ > 1 is the number of individuals re-sampled (here K̄ = 2). There is

no classical boundary condition ensuring a solution to the needed super-critical mass heat

equation. Yet, the hydrodynamic limit is the normalization of νt, the transition function of

a process accruing mass exponentially fast at rate eα∗t, where α∗ > 0 when K̄ > 1. This

process replaces the one-particle killed diffusion from the FV model. In [12] we construct

the necessary analytical solution as the transition function of the super-critical branching

process (ζt).

To summarize, in order to prove the hydrodynamic limit of the BSBD, a conservative

system, we need to represent its solution with a non-conservative Markov measure valued

process and then normalize to obtain mass one. We need a non-conservative process in

either models. While the dissipative case allows a representation with a single particle as

in [9, 1], the mass creation can only be modeled stochastically using a Markov semigroup

of a measure-valued process cf. Appendix, eq. (8.2).

4. Martingales and Ito formula

We prove a preliminary result on the non-explosive behavior of the system.

Proposition 1. Assume that γ ∈ M1(D). Then, with probability one, the visits to the

boundary can occur only one particle at a time. If τ1 < τ2 . . . < τn . . . is the strictly

increasing sequence of such visits and τ∗ = limn→∞ τn, then P (τ∗ = +∞) = 1.
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Remark. The condition that γ(∂D) = 0 is sufficient for non-explosiveness and thus for

the definition of the BSBD process. Later we shall require a stronger condition (2.5) needed

for the regularity of the solution of the hydrodynamic limit.

Proof. Simultaneous visits cannot occur because the hitting times of two independent parti-

cles (between boundary hits) have absolutely continuous distributions, implying that almost

surely, the times τn, n ≥ 1 can be ordered in a strictly increasing sequence. It is shown in

[10], Subsection 4.2, that as long as the underlying diffusion (L,D(L)) has a heat kernel

(density) satisfying three conditions (given below), then the process is non-explosive and

only one particle branches at a time, almost surely. The conditions are the following.

(i) A Doeblin recurrence condition on the driving process, in this case guaranteed by the

lower bound of (4.1). Due to the regularity of D, for sufficiently small δ, the set Dδ can

be taken with smooth boundary. The maximum principle will guarantee that for any time

interval 0 < t0 < T <∞ there exist positive constants c− and c+, such that

(4.1) c− ≤ pD(t, x, y) ≤ c+ , ∀t ∈ [t0, T ] , x, y ∈ D̄δ .

(ii) The lifetime τD has finite positive expectation a.s., here implied by (1.4).

(iii) The distribution γ does not charge the boundary, - as required in the hypothesis. �

Denote the set of test functions

(4.2) DN = C1,2([0,∞)× D̄N ;R) .

the class of N - dimensional time-space test functions F (t, x) continuous up to the boundary.

Denote L⊗N the direct sum of the one variable operator L, and by F ij (defined precisely

below) the configuration under F after redistribution of the particle i.

This is obtained as particle i has reached ∂D, has chosen particle j 6= i uniformly, and

both are created anew at the same random point with distribution γ(dx). Using the vector

notation X = (x1, x2, . . . , xN ),

L⊗NF (s,X) =

N∑
i=1

LxiF (s, . . . , xi, . . .)(4.3)

F ij(s,X) = 2

∫
D

∫
D

1(xi = x)1(xj = x)F (s, . . . , xi, . . . , xj . . .)γ(dx) , i 6= j(4.4)

where the identical entries are on position i and j.
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The boundary ∂D can be assimilated to the cemetery state b and a function φ ∈ (BC)c

will take constant value φ(b) on ∂D, and that constant will be zero if φ ∈ (BC).

Let (AN,it )t≥0 be the number of hits of particle i to the absorbing boundary ∂D from

(3.2). Notice that XN,i
t− = b if and only if the counting process AN,it has a discontinuity,

with probability one.

The joint set of interacting processes (XN,i
t , AN,it )t≥0, for 1 ≤ i ≤ N , was defined con-

structively in Section 1, based on the strong Markov property. We note the fact that there

are no simultaneous boundary hits due to the absolute continuity of the distributions. For

a similar construction in more detail, more details, see [9].

For F ∈ DN , using the superscripts c and J designate the continuous, respectively jump

parts, we write the process XF
t = F (t,XN

t ) as a semimartingale

XF
t = XF

0 + XF,c
t + XF,J

t ,

XF,c
t =

∫ t

0
L⊗NF (s,XN

s ) ds+MF,c
t(4.5)

XF,J
t =

N∑
i=1

∫ t

0

( 1

N − 1

∑
j 6=i

F i,j(s,XN
s−)− F (s,XN

s−)
)
dAN,is +MF,J

t .(4.6)

Here the first terms on the right hand side are the finite variation part. The second terms

(MF,c
t ) and (MF,J

t ) are Ft - martingales (cf. Proposition 2). Moreover, the processes N F,c
t ,

respectively N F,J
t are also Ft - martingales, where

NF,c
t = (MF,c

t )2 −
N∑
i=1

∫ t

0
(LxiF

2 − 2〈F,LxiF 〉)(s,XN
s )ds(4.7)

N F,J
t = (MF,J

t )2 −
N∑
i=1

∫ t

0

1

N − 1

∑
j 6=i

(F i,j(s,XN
s−)− F (s,XN

s−))2 dAN,is .(4.8)

Set F (t, x) = 1
N

∑N
i=1 φ(t, xi), for φ(t, ·) ∈ Dc(L) and denote the corresponding process

Xφ
t . Then, the expressions (4.5) show that Mφ

t =Mc,φ
t +MJ,φ

t , then

Mφ
t = 〈µNt , φ(t, ·)〉 − 〈µN0 , φ(0, ·)〉 −

∫ t

0
〈µNs , Lφ(s, ·) ds(4.9)

−
∫ t

0

[
(2〈γ, φ(s, ·)〉 − φ(s, b))− 〈µNs−, φ(s, ·)〉

]
− 2

N
〈γ, φ(s, ·)〉 dANs .(4.10)
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Proposition 2. The processes (MF,c
t ) and (MF,J

t ) defined in (4.5) are Ft - martingales.

Moreover, there exists a constant C(γ), independent of t and N but dependent on the initial

limiting profile µ0, such that, for all t ≥ 0 and N ∈ Z+,

E
[ 1

N

N∑
i=1

AN,it

]
≤ 1 + C(γ)t .(4.11)

Remark. As Step 1 below shows it, it is not hard to see that the processes in the

statement are local martingales. In fact, all the processes in Proposition 2 are proper

martingales, which is equivalent to showing that E[AN,it ] <∞ for all components 1 ≤ i ≤ N
and t ≥ 0.

Proof. Step 1. The process (XN
t ) is non-explosive, as shown in Subsection 4.2 in [10].

We then know that limt→∞A
N,i
t = +∞ a.s., which implies, due to the boundedness of

all integrand terms in the martingales, that setting Tm, m ≥ 1 the first hitting time of

the positive integer m by the sum
∑N

i=1A
N,i
t , the processes (4.5), (4.7), (4.8) are local

martingales by setting t→ t ∧ Tm, in other words with localization sequence Tm.

Step 2. We prove the processes are martingales. Set F (t,X) = 1
N

∑N
i=1 φ(xi) for a

function φ ∈ (BC), 0 ≤ φ ≤ 1 with cγ = 2〈γ, φ〉 − 1 > 0. Such a function exists since γ has

integral one and φ can be taken as a smooth function approximating the indicator function

of a compact set in D. In that case, the integrand of the dANt term in (4.9) is greater or

equal to cγ . More precisely φ(s, b) = 0 and the integrand equals

cγ + 〈µNs , 1− φ(s, ·)〉 − 2

N
〈γ, φ(s, ·)〉 ≥ cγ −

2

N
≥ cγ

2
> 0

for large enough N . We obtain, almost surely,

cγ
2
ANt∧Tm ≤ −M

F
t∧Tm + F (t ∧ Tm, XN

t∧Tm)− F (0, XN
0 )−

∫ t∧Tm

0
L⊗NF (s,XN

s ) ds .(4.12)

Taking the expected value, we see that there exists a constant C(γ), independent of t and

N because it is simply a uniform bound on the function φ and its derivatives, such that

E[ANt∧Tm ] ≤ 1 + C(γ)t. Since limm→∞ Tm = +∞ a.s. we obtain by monotone convergence

the same bound for E[ANt ], proving the proposition. �
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5. Tightness

The main result of the section is Theorem 4, which show tightness for both (µN· )N>0 and

(AN· )N>0. The important part is to show the tightness for the latter, and the former will

follow by standard arguments using the generalized Ito formula.

Definition 5 (Tightness). A sequence of processes (Y N
· )N>0 on a Polish space (X, || · ||) is

C - tight if

(i) For any t ≥ 0, (Y N
t )N>0 is a tight family, and

(ii) For any T > 0, the process

∀ε > 0 lim
δ→0

lim sup
N→∞

P

(
sup

0≤s<t≤T,|t−s|<δ
||Y N

t − Y N
s || > ε

)
= 0 .(5.1)

The Polish space for ANt is R with the Euclidean distance. We prove a stronger condition

(i) by showing (5.10) in Proposition 3. For µNt we keep in mind that the time indexed process

is supported on the Skorokhod space D([0,∞);M1(D)), where M1(D) is endowed with the

weak topology of convergence in distribution and that C-tightness means that any sequential

limit belongs to C([0,∞);M1(D)). We have to prove (i) uniform boundedness for any t ≥ 0

and (ii) equicontinuity. These are implied by (5.3), which shows that any limit point is

indeed in M1(D), and not simply in M1(D̄), and then by (5.1) when Y N
t = 〈µNt , φ(t, ·)〉,

t ≥ 0, for each φ ∈ D.

We start with two lemmas. One shows that the number of particles near the absorbing

boundary remains small, uniformly in N , provided that it was small at time zero. The other

one shows that even though the particles are not independent, the duration between visits

to the absorbing boundary cannot be very short, provided the starting point is, in some

sense, distributed away from the boundary, like is the case with the point with distribution

γ(dx). Since the time of return is controllable, uniformly in N , there cannot be too many

boundary visits in a short time interval.

Denote D(γ) = D \ supp(γ). Given a sufficiently small δ > 0, the set within distance

δ from the boundary is included in D(γ). Let UNt (δ) be the number of particles within

distance δ from the absorbing boundary at time t, νN ⇒ ν denote the convergence in

distribution for a sequence (νN ) ∈M1(D).

Lemma 1. Assume µN0 converges weakly in probability to µ0 ∈ M1(D) as N → ∞. Let

T > 0 and 0 < t0 < T and F be a compact set F ⊆ D̄ \ D(γ). Then, for any g ∈ C(D̄)
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supported on F there exists a constant C(t0, T ), depending on t0, T but independent of N ,

such that,

lim sup
N→∞

sup
t∈[t0,T ]

E[〈µNt , g〉] ≤ C(t0, T )

∫
D
g(y)dy .(5.2)

As a consequence,

lim
δ→0

lim sup
N→∞

sup
t∈[t0,T ]

E[
UNt (δ)

N
] = 0 .(5.3)

Proof. Let g be a smooth function and w(t, x) = Ex[〈ζt, g〉], with the notations from The-

orem 1 (iii). For a fixed t > 0, the function w̄(s, x) = w(t − s, x), s ∈ [0, t], satisfies the

backward equation ∂sw̄+Lw̄ = 0 with terminal condition w̄(t, x) = g(x) and the boundary

conditions from (1.2), together with 2〈γ, w̄(s, ·)〉 = w̄(s, b) from (2.3).

Setting w̄ → φ in (4.9) we obtain that s → 〈µNs , w̄(s, ·)〉 is a super-martingale. Let

0 < ε < t0. The expected values at s = 0 and s = t− ε give the inequality

E[〈µNt−ε, w̄(t− ε, ·)〉] ≤ E[〈µN0 , w(t, ·)〉] = E[

∫
D
w(t, x)µN0 (dx)] = E[EµN0

[〈ζt, g〉]](5.4)

Because the variables in the process are rcll, the function w̄ is continuous, hence bounded,

we use dominated convergence to obtain

lim
ε↓0

E[〈µNt−ε, w̄(t− ε, ·)〉] = E[〈µNt , w̄(t, ·)〉] = E[〈µNt , g〉] .(5.5)

Combined with (5.4), we obtain

E[〈µNt , g〉] ≤ E[〈µN0 , w(t, ·)〉] = E[

∫
D
w(t, x)µN0 (dx)] = E[EµN0

[〈ζt, g〉]](5.6)

If g has support in a closed F ⊆ D(γ)∪∂D, the solution w(t, x) = Ex[〈ζt, g〉] has a kernel

representation equal to 〈vx(t, ·), g〉.
We recall that for t ∈ [t0, T ], t0 > 0,

EµN0
[〈ζt, g〉] =

∫
D

∫
D
vx(t, y)g(y)µN0 (dx)(5.7)

≤
(

sup
t∈[t0,T ],(x,y)∈D×F

|vx(t, y)|
)∫

D
g(y)dy ≤ C(t0, T )

∫
D
g(y)dy a.s. ,

where we used Theorem 1 (ii). Taking the supremum over t ∈ [t0, T ] in both (5.4) and then

(5.7) we obtain (5.2).
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The last assertion follows from taking a smooth approximation of the indicator function

of the complement of the compact set D̄2δ, as in (2.4), which is well defined since D has

smooth boundary. �

The underlying process with generator L is a one-particle process and its hitting time of

the boundary is τD. In the following, we shall need the same hitting time τDX for the tagged

particle process (XN,i
t )t≥0, i.e. the process with fixed label 1 ≤ i ≤ N . For simplicity, we

suppress the index i, since in Lemma 2 and in its applications the label will never change,

and it would be redundant.

Lemma 2. Assume supp(q) ⊂ D for a probability measure q(dx), hence a lower bound

(2.5) holds for some da > 0. We recall that the coefficients of L are continuous up to the

boundary, hence bounded.

Let 1 ≤ i ≤ N be a fixed index of one of the particles. We assume the N - component

vector process XN
t starts at a finite stopping time τ from a configuration with marginal dis-

tribution of particle i equal to q(dx) ∈M1(D). Then there exists a constant c(q), dependent

only on q(dx) only, and a fortiori independent of N , such that, for any η > 0

PXN
τ

(τDX ≤ τ + η) ≤ c(q)η .(5.8)

Remarks. 1) Inequality (5.8) is valid pointwise, holding simply due to the distribution

γ(dx) of the tagged particle.

2) This lemma will be applied twice, once for τ = 0 and q equal to the distribution

of XN,i
0 , in order to prove tightness for the tagged particle, and another time with τ a

time when XN,i
τ− ∈ ∂D and q = γ. In the second case it will be essential that q(dx), and

consequently c(q), do not depend on τ , N or the index i.

3) Lemma 2 is the only place in the hydrodynamic limit where we use that supp(γ) ⊂ D,

more precisely that the topological support of the redistribution measure is at a positive

distance from the absorbing boundary. The condition is needed otherwise for the existence

and uniqueness of the macroscopic solution of the PDE.

Proof. We construct a coupling between two processes, one without jumps, and then use a

small ball estimate based on Doob’s maximal inequality.

Step 1. Let ψ ∈ C2(D̄,R) be a test function with the properties

1) 0 ≤ ψ(x) ≤ 1,
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2) ψ(x) = 1 on supp(γ) and ψ(x) = 0 if and only if x ∈ ∂D,

3) There exists 0 < δ < da
2 ∧ 1, such that ψ(x) = dist(x, ∂D) on D \Dδ.

Define yt = ψ(XN,i
t ), t ≥ τ . Notice that by construction, at any τ ′, a jump time of XN,i

t ,

yt jumps yτ ′ − yτ ′− ≥ 0, a non-negative jump. This is because the values on the support

of γ, where it jumps, are guaranteed to equal the maximum value of ψ over the full set

D̄. We notice that (yt) ∈ [0, 1] is a semi-martingale, adapted to (Ft∧τ ), driven by the full

process (XN
t ), not just the particle i, due to the jumps it undergoes at times when XN,i

t

is chosen randomly by another particle hitting the absorbing boundary, in addition to its

own jumps triggered by hitting the absorbing boundary. This process will be coupled with

a new process denoted (zt)t≥τ , with the same initial value, driven by the same equations

between jumps, only with all jumps suppressed. Then

0 ≤ zt ≤ yt ≤ 1 a.s.

and (zt)t≥τ is an Ito process dzt = αtdt+ βtdwt, with coefficients given by

dzt = Lψ(XN,i
t )dt+ (∇ψ)(XN,i

t ) · [σ(s,XN,i
t )dwt] , z0 = y0 = ψ(XN,i

τ ) ,

if the underlying diffusion is given by Lφ =
∑
bk∂kφ + 1

2

∑
(σ∗σ)kl∂klφ and Bt is the d -

dimensional Brownian motion used in the construction of (XN
t ). We can see that the times

to hit zero are ordered a.s. for the three processes τ0
z ≤ τ0

y ≤ τDX , where τDX is the hitting

time of the absorbing boundary by the process XN,i
t .

In the next estimate we use he boundedness of the coefficients of the operator L. Let

α0 ≥ 0 and β0 ≥ 0 be bounds for the coefficients

(5.9) α0 = sup
x∈D
|Lψ(x)| , β2

0 = sup
x∈D
||σ∗σ|| ||D2ψ(x)||

where the norms are the sum of the maximum of all elements of a matrix/vector, depending

on ψ and its derivatives, and L.

It remains to evaluate, for an initial value XN,i
τ as prescribed in the lemma, the sequence

of upper bounds

P (τDX ≤ τ + η|XN,i
τ ) ≤ P (τ0

z ≤ τ + η|XN,i
τ ) ≤ P ( inf

t∈[τ,τ+η]
zt ≤ 1− da|zτ = 1)

≤ P ( sup
t∈[τ,τ+η]

|zt − 1| ≥ da|zτ = 1)
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≤ P ( sup
t∈[τ,τ+η]

|
∫ t

τ
βsdws| ≥ da − α0η) ≤

(
β0

da − α0η

)2

η ≤ 4β2
0

d2
a

η

as soon as 0 < η < β0
2α0 . Taking c(q) = 2α0

β0 ∨
4β2

0
d2a

we conclude the proof. �

We move on to prove the tightness for both the empirical measure and the number of

boundary hits. Additionally, we shall prove that for each fixed index i, AN,it is tight.

Naturally AN,it (ω), 1 ≤ i ≤ N and their average ANt (ω), ω ∈ Ω, are random variables for

all t ∈ [0,∞) and we omitted the sample space element ω to simplify notation. If (5.10)-

(5.11) are satisfied, then a limit point (At(ω))t≥0 is a stochastic process with almost surely

continuous paths. We can also verify that in this particular case, it is non-decreasing.

Proposition 3. Assume µN0 ⇒ µ0 and µ0 ∈ M1(D). Then, for any arbitrary but fixed

T > 0,

lim sup
N→∞

E[ANT ] < +∞(5.10)

lim
η→0

lim sup
N→∞

sup
t∈[0,T ]

P (ANt+η −ANt > ε) = 0 .(5.11)

Remarks. 1) Evaluating (5.11) is based on the argument from line (5.13), which is a form

of Wald’s theorem for non-iid random variables (τDX )i, i ≥ 1, the waiting times between

visits to the absorbing boundary. Independence is replaced by the condition in Lemma 2

and the strong Markov property.

2) Condition (5.11) is stronger than Aldous’s criterion. It says cf. [14] that (AN· ) is C

- tight in the Skorokhod space, i.e. tight and that any limit point is continuous in time.

Alternatively, if tightness is shown in the Skorokhod space, we recall that the maximum

jump size JT (ω(·)) of a path in D is a continuous functional in the Skorokhod J1 - norm

(not the same as the notation used below for the first jump). Since the jumps of AN· are at

most of size 1/N , it follows that a limit point A· is continuous. This approach would prove

immediately that µ·(dx) is also continuous in time.

Proof. Let t ∈ [0, T ], η > 0 and J1 < J2 < . . . be the ordered jump times after t. Then

AN,it+η −A
N,i
t = [1 +mγ(J1, t+ η)]1{J1≤t+η} ,(5.12)

with mγ(s, t) denoting the number of episodes when Xi
· travels from the redistribution

point with distribution γ to the absorbing boundary, observed in the time interval (s, t],
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0 ≤ s ≤ t. Recall that τD is the hitting time of the boundary at x = 0 by the underlying

diffusion process. Applying the Markov property, we can start at the vector configuration

XN
t .

E[AN,it+η −A
N,i
t ] =

∞∑
k=1

P (AN,it+η −A
N,i
t ≥ k)

≤ E[PXN
t

(τDX ≤ η)] +

∞∑
k=1

E[PXN
J1

(mγ(J1, t+ η) ≥ k)] .

Notice that {XN,i
J1
∼ γ} has probability one. We condition on this event in order to

emphasize the label i that undergoes a jump. The general term of the infinite sum can be

bounded

(5.13) PXN
J1

(mc(J1, t+ η) ≥ k |XN,i
J1
∼ γ) ≤ PXN

J1

((τDX )1 + . . . (τDX )k ≤ η |XN,i
J1
∼ γ)

≤ PXN
J1

( max
1≤l≤k

(τDX )l ≤ η |XN,i
J1
∼ γ) ≤ PXN

J1

((τDX )k ≤ η | Ak−1)PXN
J1

(Ak−1) .

where Ak−1 = {max1≤l≤k−1(τDX )l ≤ η}. In our count, J2 − J1 = (τDX )1, ending with the

k-th episode between jumps Jk+1 − Jk = (τDX )k. Taking the expectation under the initial

condition XN
t and using the strong Markov property recursively, we get the further bound

(5.14) EXN
t

[Πk
l=1PXN

Jl

((τDX )l ≤ η)] ≤ [c(γ)η]k ,

This is due to the fact that XN,i
Jl

, l ≥ 1 starts with distribution γ, which allows using Lemma

2 recursively. Summarizing (5.13)-(5.14) we see that independently of the configuration XN
t ,

(5.15) PXN
t

(mc(J1, t+ η) ≥ k) ≤ [c(γ)η]k , k ≥ 1 .

We obtained

E[AN,it+η −A
N,i
t ] ≤ E[PXi

t
(τD ≤ η)] +

c(γ)η

1− c(γ)η
.(5.16)

After summation and division by N − 1,

E[ANt+η −ANt ] ≤ 1

N − 1

N∑
i=1

E[PXi
t
(τD ≤ η)] + (

N

N − 1
)

c(γ)η

1− c(γ)η
(5.17)
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To prove (5.10) we pick η = [2c(γ)]−1. Then we put back to back at most [Tη ]+1 intervals

of length η to see that

E[ANT ] ≤ 2(
N

N − 1
)([
T

η
] + 1) ≤ 8c(γ)T .(5.18)

We now turn to (5.11). Let δ > 0 be an arbitrary number not exceeding da/2. Working

on the first term

1

N

N∑
i=1

E[PXi
t
(τD ≤ η)](5.19)

≤

 sup
dist(XN,i

t ,∂D)≥ δ
2

PXN
t

(τDX ≤ η)

E[1−
Ut(

δ
2)

N
] + E[

Ut(
δ
2)

N
]

≤ c(δ)η + E[
Ut(

δ
2)

N
] ,

where c(δ) refers to the constant corresponding to an initial value away from the absorbing

boundary at least by δ.

To finalize the proof, we turn to (5.11). Let 0 < η0 < η, momentarily fixed. We split the

interval [0, T ], to calculate

sup
t∈[0,η0]

E[AN,it+η −A
N,i
t ] ≤ E[AN,i2η0

−AN,i0 ] = E[AN,i2η0
](5.20)

≤ 1

N − 1

N∑
i=1

E[PXi
0
(τD ≤ 2η0)] + (

N

N − 1
)

c(γ)(2η0)

1− c(γ)(2η0)

and

sup
t∈[η0,T ]

E[AN,it+η −A
N,i
t ] ≤ sup

t∈[η0,T ]

(
1

N − 1

N∑
i=1

E[PXi
t
(τD ≤ η)]

)
+ (

N

N − 1
)

c(γ)η

1− c(γ)η

(5.21)

The first term on the right-hand side of these inequalities is reduced to a bound on the

number of particles within δ > 0, for (5.20), respectively δ′ > 0 for (5.21), as we did in
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(5.19). Taking ηc(γ) < 1
2 and N ≥ 2, we obtain

sup
t∈[0,T ]

E[AN,it+η −A
N,i
t ] ≤ sup

t∈[0,η0]
E[AN,it+η −A

N,i
t ] + sup

t∈[η0,T ]
E[AN,it+η −A

N,i
t ](5.22)

≤ [4c(γ) + 2c(δ′)](2η0) + 2E[
U0( δ

′

2 )

N
] ,

+ [4c(γ) + 2c(δ)]η + 2 sup
t∈[η0,T ]

E[
Ut(

δ
2)

N
] .

Lemma 1 (5.3) concludes the proof, by having the limits over N → ∞, η → 0, δ → 0,

η0 → 0, and finally δ′ → 0, in this order. �

In fact, we can prove more than (5.10).

Proposition 4. For any T > 0, β > 0

M(β, T ) = lim sup
N→∞

E[eβA
N
T ] <∞ .(5.23)

Proof. From Hölder’s inequality we see that it is sufficient to prove the exponential bound

for each tagged particle, where i ≤ N is fixed, i.e.

Mi(β, T ) = lim sup
N→∞

E[eβA
N,i
T ] <∞ .(5.24)

Let η > 0 be such that η < (c(γ)eβ)−1. Assume, for a moment, that there exists a number

M̄(β, η) > 0, independent of N , such that for any t ≥ 0, independently of XN
t ,

EXN
t

[eβA
N,i
η ] ≤ M̄(β, η) .(5.25)

The uniformity in the initial condition is inherited from (5.15), which, in its turn, comes

from Lemma 2.

The Markov property shows that

E[eβA
N,i
T ] = E[E[eβ(AN,iT −A

N,i
T−η) | FT−η]eβA

N,i
T−η ]

= E[EXN
T−η

[eβA
N,i
η ]eβA

N,i
T−η ] ≤ M̄(β, η)

[T
η

]+1
<∞ ,

an upper bound independent of N , proving that Mi(β, T ) <∞. It remains to show (5.25).

Recall that (5.15) holds uniformly in the initial state XN
t . Since

PXN
t

(
AN,iη >

ln s

β

)
≤ (c(γ)η)

[ ln s
β

] ≤ (c(γ)η)
ln s
β
−1 ≤ (c(γ)η)−1sβ

−1 ln(c(γ)η)
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that

EXN
t

[eβA
N,i
η ] =

∫ ∞
1

PXN
t

(
AN,iη >

ln s

β

)
ds ≤ (c(γ)η)−1

∫ ∞
1

s
−β−1 ln( 1

c(γ)η
)
ds < +∞ ,

due to the choice of η. �

Theorem 4. Under the same conditions of Theorem 2, the pair (µN· , A
N
· )N>1 is C - tight

on D([0,∞),M1(D)× R+), i.e. is tight and the limit is continuous in time.

Proof. We can apply (4.9) for φ(s, ·) ∈ Dc(L) for two times s = t, s = t′ in [0, T ] with

0 < t′ − t < η. There exist constants K(c, φ), K(J, φ), independent of t, N such that

the squares of the martingales are bounded by N−1K(c, φ)T for the continuous part and

N−1K(J, φ)ANT for the jump part. In similar fashion, the integrands of dt and dANt parts

are bounded by K(c, φ)η, respectively K(J, φ)(ANt′ − ANt ). Due to Proposition 3, part (ii)

of Definition 5 is satisfied. To obtain (i) we turn to (5.3) for g a smooth approximation of

the indicator function of the complement of a compact set in D. The bound we need to

prove is pointwise in t. For any t > 0 we note that (5.3) is valid for any 0 < t0 < T . It is

only the uniform bound that may not hold all the way to t0 = 0, but that is not necessary

for condition (i) of tightness. At t = 0 the tightness comes from the initial condition (3.6)

because µ0 charges D and not the boundary. The C - tightness is true because conditions

(i), (ii) in Proposition 3 imply that any limit point has continuous paths almost surely. �

6. The Rescaled Process and identification of the limit

Define the pair (νN· , n
N
· ), obtained by the transformation

(6.1) νNt = eA
N
t µNt , nNt = eA

N
t , t ≥ 0 .

Proposition 5. For any T > 0 and any φ ∈ D satisfying the boundary condition (2.3), the

transformed process (νNt )t≥0 satisfies

(6.2) lim
N→∞

E
[

sup
0≤t≤T

∣∣∣〈νNt , φ(t, ·)〉 − 〈νN0 , φ(0, ·)〉 −
∫ t

0
〈νNs , Lφ(s, ·)〉 ds

∣∣∣] = 0 .

Proof. According to [14], let Y(t) = (Y1(t), · · · , Ym(t)) be an m−dimensional semimartin-

gale and G a smooth function on Rm. Denote

∆̃Y (t) =
∑

0≤s≤t

(
Y (s)− Y (s−)

)
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and 〈(Yk)c, (Yl)c〉(s) the cross variation of the continuous martingale parts of Yk(t) and

Yl(t). Then we have:

G(Y(t))− F (Y(0)) =
m∑
l=1

∫ t

0
∂lG(Y(s−))dYl(s)(6.3)

+
1

2

m∑
k, l=1

∫ t

0
∂klG(Y(s−))d〈(Yk)c, (Yl)c〉(s)

+
∑

0≤s≤t

[
G(Y(s))−G(Y(s−))−

m∑
k=1

∂kG(Y(s−))∆̃Yk(s)
]
.

Now fix N and let φ ∈ D satisfying the boundary condition (2.3). Then apply the Ito

Formula above with m = 2 and Y(t) = (Y1(t), Y2(t)) = (ANt , 〈µNt , φ(t, ·)〉). The function

G we are going to use is defined as G(Y1, Y2) = eY1Y2, for the purpose of eliminating dANt

term. Denoting νNt = G(Y1(t), Y2(t)), we want to prove (6.2).

Notice that the pure jump part subtracted in the third line of (6.3) can be omitted if

we replace dXl(s) in the first line by the continuous part only. Since ANt is a pure jump

process (the average of counting measures), with the notations from (4.9), the generalized

Ito formula gives

〈φ(x), νNt 〉 − 〈φ(x), νN0 〉 =

∫ t

0
eA

N
s dXφ,c

s + ∆̃(〈νNt , φ(s, ·)〉) .

Since ∫ t

0
eA

N
s dXφ,c

s =

∫ t

0
eA

N
s 〈µNs , Lφ(s, ·)〉ds+

∫ t

0
eA

N
s dMφ,c

s ,

the expression to be evaluated form (6.2) can be written

νNt , φ(t, ·)〉 − 〈νN0 , φ(0, ·)〉 −
∫ t

0
〈νNs , Lφ(s, ·)〉 ds(6.4)

=

∫ t

0
eA

N
s dMφ,c

s + ∆̃(〈νNt , φ(s, ·)〉) .(6.5)

To evaluate the pure jump part we write

∆̃(〈νNt , φ(s, ·)〉) =
∑

0≤s≤t

[
G
(
ANs− + ∆ANs , Xφ,J

s− + ∆Xφ,J
s

)
−G

(
ANs−,X

φ,J
s−

)]
.

Taylor’s formula evaluates the jump

G(A+ ∆A,X + ∆X)−G(A,X) = eAX∆A+ eA∆X +
1

2

[
eA
′
X′(

1

N
)2 + 2eA

′
(

1

N
)(∆X)

]
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with A = ANs−, A′ an intermediate point between A and A + 1
N , and X = Xφ,J

s− , X′ an

intermediate point between X and X + ∆X. Notice that ∆ANs = 1/N if there is a jump

and zero otherwise, while |∆Xφ,J
s | ≤ 4||φ||/N and |X| ≤ ||φ||. This implies that there exists

a constant C1 independent of N , tsuch that the last two terms in brackets are uniformly

bounded by N−2C1‖φ‖ exp(ANs ). Summing up over all jumps we obtain a term of order at

most
C1‖φ‖
N

ANt exp(ANt ) ,

where a factor of 1/N was absorbed into ANs .

At this point we emphasize that φ satisfies the boundary condition (2.3). Formula (4.5)

in the context of the empirical measure, appearing in (4.9), shows the pure jump part equals

∆Xφ,J
s =

[(
2〈γ, φ(s, ·)〉 − φ(s, b)−Xφ,J

s−

)
− 2

N
〈γ, φ(s, ·)〉

]
∆ANs + ∆Mφ,J

s .

The linear part

eAX∆A+ eA∆X = eA
N
s−Xφ,J

s− ∆ANs + eA
N
s−∆Xφ,J

s

equals

− 2

N
〈γ, φ(s, ·)〉eANs ∆ANs + eA

N
s ∆Mφ,J

s

showing that

(6.6) |∆̃(〈νNt , φ(t, ·)〉)| ≤ 2‖φ‖
N

∫ t

0
eA

N
s−dANs +

∣∣∣ ∫ t

0
eA

N
s−dMφ,J

s

∣∣∣+
C1‖φ‖
N

ANt e
ANt .

To evaluate the supremum over 0 ≤ s ≤ t of the martingale part (now sub-martingale due

to the absolute value) we use (4.8) with the observation that all jumps are of size at most

4‖φ‖N−1; in the quadratic variation they are squared and summed up over i = 1 . . . N ,

yielding a term of order N−1. More precisely, employing Doob’s L2 maximal inequality we

have

E
[

sup
0≤s≤T

∣∣∣ ∫ T

0
eA

N
s−dMφ,J

s

∣∣∣2] ≤ C2‖φ‖2

N
E
[ ∫ T

0
e2ANs−dANs

]
.

Let C3(T ) = E[ANT e
2ANT ], the largest integral appearing in the three terms of the right hand

side of (6.6). It is finite due to Proposition 4. We proved that the jump part (6.6) satisfies

(6.7)

E
[

sup
0≤s≤T

|∆̃(〈νNt , φ(t, ·)〉)|
]
≤ ‖φ‖√

N

(
2C3(T )√

N
+
√
C2C3(T ) +

C1C3(T )√
N

)
≤ C4(T, φ)√

N
.
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The last bound depends explicitly only on φ and N . Finally, it is easy to check that the

quadratic variation of the continuous martingale is bounded above by C5·T sup ‖∇φ‖√
N

, where

the constant depends on the coefficients of the operator L.

We have proven that, in absolute value, the right hand side of (6.4) satisfies a uniform

bound of the form C6(T,φ)√
N

, with the constant depending only on T , L, and the suprema of

φ and its derivatives. By letting N →∞ we conclude the proof. �

Proposition 6. The pair (νN· , n
N
· ) defined in (6.1) is C - tight and νN· has hydrodynamic

limit, in the sense of Definition 4, equal to the solution ν· to (2.2)-(2.3) and nN· converges

in probability to the total mass n·.

Proof. Tightness. The exponentials expβANt , 0 ≤ t ≤ T , β > 0 will remain bounded in

expectation due to Proposition 4. All possible integrands in (6.4), including in the quadratic

variations of the martingales, are dominated by constant multiples of expANT or ANT expANT ,

both bounded above by exp 2ANT . Then, the tightness of the pair (µN· , A
N
· ) (Theorem 4)

implies tightness of the transformed variables (6.1).

Identification of the limit using the Portmanteau theorem. Denote a generic element of

D([0,∞),MF (D)) by σ. Given any φ ∈ D satisfying (2.3), using the notation σs ∈MF (D)

for the value at time s ∈ [0,∞), define the functional Φ : D([0,∞),MF (D))→ R

Φ(σ·) := sup
t∈[0,T ]

∣∣∣〈σt, φ(t, ·)〉 − 〈σ0, φ(0, ·)〉 −
∫ t

0
〈σs,

∂

∂s
φ(s, ·) + Lφ(s, ·)〉 ds

∣∣∣ .(6.8)

For arbitrary M > 0 define ΦM (σ·) = Φ(σ·)∧M . Now ΦM is bounded and continuous. We

practically follow steps 2-4 of Proposition 2 in [9].

We are now ready to apply Portmanteau theorem. Equation (6.2) established in Propo-

sition 5 shows that

lim
N→∞

E[ΦM (νN· )] = 0 .(6.9)

Let (ν◦· , n
◦
· ) be a limit point of the tight pair of transformed processes. To simplify nota-

tion, we use the same index N for the subsequence converging to the limit point. Since

(νN· , n
N
· ) ⇒ (ν◦· , n

◦
· ) and ΦM is continuous and bounded, we obtain that E[ΦM (ν◦· )] = 0.

The monotone convergence theorem for M →∞ proves

E[Φ(ν◦· )] = 0 and then Φ(ν◦· ) = 0 a.s.(6.10)
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It is sufficient to remark that, being C - tight, the limit is continuous in time. It follows

that we can pick a set of measure zero, common to all T > 0.

It is important to recall that φ was chosen to satisfy the boundary condition (2.3). As

a consequence, ν◦t solves the heat equation with mass creation (2.2). Moreover, the proof

of tightness and specifically (5.3) in Lemma 1 show that ν◦· is regular. By uniqueness

(Theorem 1), ν◦· = ν· almost surely.

We move on to nN· . According to the first part of this proof, the tightness is inherited

from Theorem 4 which proves that any limit point, and thus ν·, is an element of MF (D),

i.e. has all its mass concentrated on D (more is true, as we said, since ν· is regular). This

and the fact D is bounded, allows us to use an arbitrary test function φ ∈ C(D̄) to write

the bounded continuous functional on D([0,∞),MF (D))

Ψ(σ·) := sup
t∈[0,T ]

∣∣∣〈σt, φ(·)〉 − 〈νt, φ(·)〉
∣∣∣ ,(6.11)

where we note that ν· is the deterministic solution and σ· is the variable. Write ψM = Ψ∧M ,

M > 0 and repeating the reasoning on ΦM we obtain that

lim
N→∞

E[ΨM (νN· )] = E[ΨM (ν·)] = 0 .

Adopting φ(x) = 1 we obtain the same for nN· = expAN· and nt = expAt. Then

ΨM (n◦· ) = 0 and letting M → ∞ once again n◦· = n· almost surely. This concludes the

identification of the limit.

We still need to prove convergence as in (3.5), Definition 3. Notice that Ψ(νN· ) ≤
[eA

N
T + eAT ]‖φ‖, using the supremum norm of φ.

E[Ψ(νN· )] ≤ E[Ψ(νN· ), ANT ≤ L] + E[eA
N
T + eAT ]‖φ‖, ANT > L] .

The second term is bounded above by

e−L‖φ‖eATE[e2ANT ] ≤ e−L‖φ‖eATM(2, T ) .

based on (5.23) with β = 2. Adopting M = [eL + eAT ]‖φ‖, the first term is bounded by

E[ΨM (νN· )]. Letting N →∞ and then L→∞ we obtained limN→∞E[Ψ(νN· )] = 0, which

immediately implies weak convergence in probability (3.5) for νN· . Putting φ ≡ 1, the same

is shown for AN· , completing the proof. �
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6.1. Proof of Theorem 2. At this point we have to reverse the transformation from

Proposition 6. We notice that trivially both nNt ≥ 1 and nt ≥ 1 and such have a lower

bound away from zero. Setting Y N
t = AN = lnnNt , with its limit lnnt = At, since x→ lnx

is uniformly Lipschitz on x ∈ [1,∞), weak convergence in probability (3.5) for AN· is implied

by the same for nN· .

On the other hand we see that if H(a, b) = e−ab then the mean value theorem gives

|〈µNt , φ〉 − 〈µt, φ〉| = |H(ANt , 〈νNt , φ〉)−H(At, 〈νt, φ〉| ≤ |ANt −At|+ |〈νNt , φ〉 − 〈νt, φ〉| ,

which implies (3.5) is satisfied for Y N
t = 〈µNt , φ〉 and its limit Yt = 〈µt, φ〉. �

7. Sketch of the tagged particle limit

The material proved in Sections 5 and 6 allows to develop the scaling limit of the tagged

particle. We do not prove the result here, leaving it to an upcoming paper. However, we

formally identify the limit in Subsection 7.2. The technical steps are outlined in a result

we obtained in [11].

Fix the particle tag i and consider N ≥ i or simply take i = 1. We are interested in

proving

(7.1) XN
· ⇒ X·

and identifying the limit Xt as a stochastic process indexed by t ≥ 0. These results require

both convergence in distribution of µN0 ⇒ µ0 and XN,1
0 ⇒ X1

0 .

7.1. Tightness. To prove the tightness of each individual particle’s number of visits to the

absorbing boundary (AN,it ), which is well defined for N ≥ i, but of course is not continuous,

even in the limit, we turn to the tightness criterion for processes in the Skorokhod space.

Proposition 7. Let i ∈ N fixed and assume XN,i
0 ⇒ Xi

0 with P (Xi
0 ∈ dx) ∈M1(D). Then,

(AN,it ) is tight, verifying, for any T > 0

sup
N≥1

E[AN,iT ] < +∞(7.2)

lim
η→0

lim sup
N→∞

sup
t∈[0,T ]

P (w′AN,i(η) > ε) = 0 .(7.3)

Proof. Being a counting process, it follows that the only way the modulus of continuity

w′
AN,i

(η) in the Skorokhod J1 - topology would exceed ε > 0 is that it is at least one. More
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precisely, the union of the hitting times and the initial t = 0 must contain at least two

elements within distance η. Otherwise, we can always optimize the partition of mesh η as

to include that times and in that case w′
AN,i

(η) = 0. Then, either

(i) there are at least two hits to the boundary in [t, t+ η], or

(ii) there is exactly one hit, but within η from t = 0.

In case (i), the particle is redistributed, meaning that {τDX ≤ η} is a sub-event, fitting

the exact conditions of Lemma 2 with q(dx) = γ(dx).

In case (ii) {τDX ≤ η} is a sub-event as well. We split

P (τDX ≤ η) = E[PXN
0

(τDX ≤ η , dist(X
N,i
0 , ∂D) ≥ δ)]

+E[PXN
0

(τDX ≤ η , dist(X
N,i
0 , ∂D) ≥ δ)] ≤ c(δ)η + P (dist(XN,i

0 , ∂D) < δ) ,

because the first term in the upper bound fits the exact conditions of Lemma 2 as, for

example, it was applied in (5.19), while the second term will be vanishing due to the

continuity theorem and the assumption that the initial point converges in distribution to a

value that does not charge ∂D. �

Using Propositions 3 and 7 we write the differential equation for the test function corre-

sponding to the tagged particle, i.e. of the form F (X) = φ(X1), φ ∈ C2(D̄). All integrands

are bounded, and the integrators in time are either the Lebesgue measure dt or one of the

counting measures ANt or AN,1t . It follows that (XN,1)N>1 is tight. Moreover, it satisfies

the following martingale problem, defining a Markov process which is time inhomogeneous.

We know from Theorem 4 that AN· converges in probability to the deterministic, con-

tinuous, increasing function A·. From Theorem 1 we know that the total mass defines an

absolutely continuous measure dAt = atdt. This measure induces a non-homogeneous Pois-

son measure α(t) with jumps at times A−1(θ), where θ are the jumps of a Poisson process of

intensity one. By construction, this process can be independent from a countable sequence

of mutually independent diffusions (L,D(L)), which will serve as building blocks between

jumps.

7.2. The law of the tagged particle. The tagged particle process (X1
t )t≥0 starts at X1

0 .

It moves according to the diffusion (L,D(L)) until the minimum of either the first arrival in

α(t) or the first hitting time of the absorbing boundary. At such times, it instantaneously

redistributes to a random point with distribution γ(dx) and continue until the next jump
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time, dictated by the minimum described above. The process is well defined because no

two jumps are simultaneous, and visits to the boundary are sufficiently far apart due to the

tightness argument on AN,1· ⇒ A1
· . The limit A1

· is the number of visits to the absorbing

boundary by the tagged particle (X1
t )t≥0, but its total average number of jumps is α(t) +

A1(t).

8. Appendix

Theorem 2, the main result of this paper, uses a partial differential equations result

summarized in Theorem 1, which is proven in detail in [12].

The existence of the weak solution (νt)t≥0 of Definition 1, eq. (2.2)-(2.3) is based on

the construction of the auxiliary branching process (ζt) and relation (8.2). In short, when

ν0 = δx, x ∈ D, the branching process is well defined and equals the expected value of the

measure valued process starting with one particle νxt = Ex[ζt], t ≥ 0.

8.1. The auxiliary processes Zt and ζt. In this section, we outline the construction of

a particle system Zt having a random total number of particles Nt. This is a counting

process resulting from branching upon reaching the boundary of the domain. In that sense,

our dynamics, including the conservative process (XN
t ) given in (3.1), is intimately related

to super-critical branching. See the comments in Subsection 3.3. This states that the

expected value of the empirical measure, seen as finite measure-valued random trajectory,

is the solution to (2.2)-(2.3). The formal construction, definition, and proof of the regularity

properties of this process, as well as related questions to its evolution semigroup, are done

in [12].

At t = 0, a single particle is placed at a random point with distribution m0(dx) ∈
M1(D). The particle, starts moving according to (L,D(L)), until it reaches ∂D, when it

dies. Instantaneously, two particles are born at the same random point in D chosen with

distribution γ. All particles start afresh and continue an independent motion in D until

the first one dies and the branching is repeated. We note that particles depend on each

other only through ancestry, and not through their motion.

We shall make the convention that a particle hitting the absorbing boundary jumps,

instead of being killed upon contact, which makes particle labelling easier. Then each

particle has a Markovian motion once it is born, namely the Brownian motion with rebirth

introduced in [7], also studied in [8, 4]. Under (1.4), the particle system is well defined,
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having a constant number of particles between branchings. The branching times for a

strictly increasing sequence, since they never coincide; all with probability one. We assume

it is defined on a filtered probability space, and built constructively, up to the limit of the

strictly increasing sequence of branching times, denoted by τ∗, a stopping time in [0,+∞].

The model can be easily generalized to have a random number K of offspring created at

the recombination point, including a smaller number than one, leading to the possibility

of dissipation of mass (e.g. K may be Poisson distributed), but we shall only consider a

number of exactly K = 2 for our purpose of representing the solution of (2.2)-(2.3).

The first particle is denoted Z1
t , the second Z2

t , and so on. Let the number of particles

at time t be denoted Nt, which, only in this special case, coincides with the number of

branchings - a feature that while convenient, is not essential to the construction.

In principle, τ∗ could be finite with positive probability, in which case the system is said

explosive. In [12] it is shown that this is not the case. Corollary 1 to Theorem 1 in [12]

(here Theorem 1 (i)) gives the exact bound ||νt|| ≤ ||ν0||eα∗t for the total variation of the

solution present in the regularity condition (2.6), where α = α∗ > 0 solves (3.12). This

implies that Nt has exponential moments up to the critical value α∗ > 0.

Denote the empirical measure

ζt =

Nt∑
i=1

δZt .(8.1)

This is a finite measure-valued Markov process, i.e. living on D([0,∞),MF (D)). In the

technical construction, the state space is not the whole MF (D), but a strict subset denoted

M0(D), the space of discrete measures on D. This aspect is not important in the present

paper. For a detailed construction we point to [12].

Based on the exponential estimate on Nt we define the expected value νxt (dx) of the

empirical measure of the process (Zt)t≥0 starting with one particle at x. Technically, we

should denote this initial point by the non-random delta measure δx, for consistency with

the measure valued setup. We can see that x → νxt (dx) is continuous in the topology of

weak convergence and then the second integral in (8.2) is well defined.
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For a bounded test function φ and a probability measure ν0(dx) = v0(x)dx ∈M1(D), we

put

〈νxt , φ(t, ·)〉 := Ex[

Nt∑
j=1

φ(t, Zjt )] , νv0t =

∫
D
v0(x)νxt dx .(8.2)

Then, by uniqueness, the function νv0t is the stochastic representation of the weak solution

νt of the heat equation with particle creation at γ(dx) satisfying (2.2)-(2.3). The solution

has the regularity properties of Theorem 1. Moreover, if the total mass is nt = 〈νt, 1〉, then

nt > 0 for all t ≥ 0 and if ν0 ∈ M1(D) then nt > 1 for t > 0, as well as differentiable with

continuous derivative. This justifies the definition lnnt =
∫ t

0 asds.

8.2. The strong solution. In terms of analytic properties, a strong solution exists only

outside the support of γ. In that case we can formulate the boundary conditions for the

density, i.e. the forward equation, in terms of the flux balance. The second main result in

this paper, Theorem 3, is based on the following result.

Theorem 5 (Theorem 3 in [12]). Let L = 1
2∆, γ(dx) = δc(dx) for some c ∈ D and

ν0(dy) = v0(y)dy, v0 ∈ C(D̄). Then the solution from Theorem 1 has a density, i.e.

νt(dy) = v(t, y)dy, integrable in the space variable for any t ≥ 0 with v ∈ C([0,∞) × D \
{c})∩C1,2((0,∞)×D\{c}) which is a solution of ∂tv = 1

2∆v on D\{c} with v(t, y)|∂D = 0

satisfying the flux balance condition (3.9).

We conclude with a simple example in the one dimensional case. Let D = (0, 1), ∂D =

{0, 1}, γ = δc, c ∈ (0, 1) and L = 1
2
d2

dy2
with ν0(dx) = v0(x)dx. Then L = L∗, νt(dy) =

v(t, y)dy with v(0+, ·) = v0(·) and v has continuous time derivative. In addition, one can

verify directly that for any t > 0, v is smooth in (0, c) ∪ (c, 1) and satisfies the boundary

conditions

∀t > 0 v(t, c−) = v(t, c+) , v(t, 0) = v(t, 1) = 0(8.3)

(v′(t, c+)− v′(t, c−)) + 2v′(0) = 0 .

A similar case (with reflection at x = 1) is studied in [18] with some additional considera-

tions on the quasi-invariant measure.
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