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Abstract. We investigate a non-conservative semigroup St = E[ζt] determined by a

branching process (ζt) evolving in on an open domain D ⊆ Rd. Branching occurs upon

exiting D. Between branching the particles are driven by the a Dirichlet transition kernel

pD(t, x, y). When a particle is killed at the boundary, a random number K is born at

a point in D with distribution γ. We determine the exact exponential rate of the total

mass nt = St1 ∼ exp(α∗t) as a function of K̄ = E[K] in all regimes - super/sub critical

according to the sign of K̄ − 1. We prove the Yaglom limit St/nt → ν. The qsd ν

is proportional to the resolvent of the Dirichlet kernel at a point α∗ in bijection to K̄,

spanning the real part of the resolvent set. The problem is motivated by the Bak-Sneppen

branching diffusions (BSBD) [15] and the Fleming-Viot particle models. The semigroup,

divided by its total mass, gives the hydrodynamic limit of the BSBD with branching

intensity K̄. Since ν is the asymptotic profile under equilibrium, the family of qsd ν,

indexed by K̄, provides an explicit example of self-organizing equilibrium. In addition, an

extension of the Wiener-Ikehara Tauberian Theorem for a class of non-increasing functions

is proved in the Appendix.

1. Introduction

This paper is the third in a sequence, motivated by the study of the limiting profile

of the Bak-Sneppen branching diffusions (BSBD), a particle system introduced in [15].

The second paper [16] constructs an auxiliary super-critical branching process (ζt) whose

normalized semigroup St = E[ζt], i.e. divided by its total mass, gives the hydrodynamic
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limit of the BSBD. Here, we aim to extend the construction from [16] to the subcritical

regime and analyze the behavior of the semigroup as t→∞, including its quasi-stationary

distributions, Yaglom limits and the relation to the BSBD.

Let pD(t, x, y) be the Dirichlet kernel of a diffusion on the open domain D ⊆ Rd with

smooth boundary, a process we shall call the underlying diffusion. Let γ(dx) be a probability

measure on D that does not charge the boundary (i.e. γ(D) = 1).

The process (ζt)t≥0 lives on the space of finite configurations on D. An element of the

state space can be seen as a sum of delta measures at the locations of a finite number of

particles distributed randomly in D. In time, the particles evolve independently according

to pD(t, x, y), until the first one hits the boundary ∂D. Instantaneously, that particle is

killed and a random integer number K ≥ 0 of new particles, independent of the evolution

up to that moment, is born at a point chosen with distribution γ. The new finite set of

particles starts a new episode until the next boundary hit. We note that, almost surely, no

simultaneous boundary visits occur. Under mild conditions on the semigroup, the duration

of an episode is positive, and the branching events can be ordered in strictly increasing

order with probability one. The motion continues up to either extinction at Text > 0 or

explosion at T∞ > 0, both possibly infinite. In fact, we shall prove that the number of

particles is almost surely finite at any t > 0 and thus T∞ = +∞.

For a test function φ, we write Stφ(x) = Ex[〈ζt, φ〉] and nxt = St1(x) for the total mass,

with bracket notation for the integration over D and 1(x) the constant function equal

to one. The main results are Theorems 1, 2 and 3. Theorem 1 determines the exact

asymptotic rate α∗, a number with the same sign as K̄ − 1 (determining criticality) such

that nxt ∼ eα
∗t. Theorem 2 provides explicit formulas for the semigroup and resolvents.

The precise correspondence between α∗ and K̄ is given in Proposition 1.

Theorem 3 proves the limit

lim
t→∞

Stφ(x)

St1(x)
=

∫
D
φdν (Yaglom limit) ,

and identifies the unique quasi-stationary distribution (qsd) ν as the probability measure

having density, modulo a normalizing constant, equal to 〈γ, rDα∗〉. Here the resolvent kernel

rDα of pD is integrated over γ and evaluated at the value α∗ which depends on K̄. On

the technical side, we establish a Tauberian result in Lemma 1, a generalization of the

Wiener-Ikehara Theorem when the functions involved are not necessarily increasing.
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1.1. Connection to particle systems and self-organizing equilibrium. In the BSBD,

N ≥ K ≥ 1 are positive integers, N fixed, deterministic and K possibly random. Denote

µN (t, dx) the empirical measure of N particles that evolve as follows. Inside D they move

independently according to pD(t, x, y). When a particle reaches ∂D, it is killed together

with K − 1 particles among the remaining N − 1. All the K particles killed are re-born

at a random point inside D with distribution γ(dx) and restart the motion until the next

boundary hit. The total mass is preserved and µN (t, dx) is a probability measure. We

emphasize that, as opposed to (ζt), the BSBD is conservative.

In [15], the number K = 2 is non-random, but it can equally be, for example, binomial

with arbitrary mean value. The dynamics combines the Fleming-Viot random redistribution

and the mean-field Bak-Sneppen evolutionary fitness model [4]. In such a framework, two

limits are of interest for µN (t, dx).

One, as N →∞, is a Law of Law Numbers (hydrodynamic limit) µN (t, dx)→ u(t, x)dx

which is a deterministic time-indexed process, equal to the solution of a parabolic PDE

associated to the generator L of the underlying diffusion. However, the limit u(t, x) cannot

be described by the heat equation with classical boundary conditions. It turns out that it

can be represented as the normalization (mass one) of the semigroup St = E[ζt] discussed

in this paper. This was our original motivation to study the semigroup. More precisely,

setting v(t, x) = Stφ(x), φ ∈ C(D̄), solves the heat equation with mass creation ∂tv−Lv = 0

with v(t, x) = K̄〈γ, v〉 when x ∈ ∂D, a PDE introduced in [16]. Given the total mass

nxt = St1(x), the hydrodynamic limit of the BSBD is u(t, x) = v(t, x)/nxt , u(0+, x) = φ(x)

(Theorem 2 from [15]).

The representation of the limiting profile of a particle system with constant mass via

the normalization of a non-conservative semigroup is well known for the Fleming-Viot

branching system [8, 18, 24, 12, 2]. In that case, K = 1 and the redistribution measure

is not constant, depending on the configuration. Denote SDt the semigroup generated by

pD(t, x, y). In perfect analogy with the normalization for St, here v(t, x) = SDt φ(x) and

u(t, x) = v(t, x)/nxt .

As soon as K̄ > 1, the profile cannot be a-priori described as the transition kernel of

a one particle Markov semigroup and we need to move up to a measure valued process.

In short, we need more than one particle to represent a super-critical process with mass

creation.
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The other limit is as t → ∞. In principle, µN (t, dx) → µNeq(dx) leads to the empirical

measure under equilibrium. While this limit is not explicit, heuristically, letting N → ∞
(after t→∞) leads to the qsd associated to the semigroup St. This becomes natural when

we may commute the limits, as would be the case, for instance, under a uniform rate of

convergence to equilibrium (say, a spectral gap, or a uniformly decaying variance in N as

t → ∞). This justifies the interest in the Yaglom limits limt→∞ Stφ(x)/nxt = ν, for all K̄,

as the semigroup represents the limit after N →∞ in non-equilibrium. In essence, we show

there exists a bijection between the interaction intensity K̄ and a family of quasi-stationary

distributions ν, which are macroscopic particle profiles of the BSBD in stationary state, an

example of an explicit representation of self-organizing equilibrium [3].

1.2. Conditions on the underlying diffusion. With usual notations, MF (D) designates

the finite measures on D ⊂ Rd and M1(D) the space of probability measures on D (dis-

tributions), both with the topology of convergence in distribution (weak∗ topology). Same

notations hold for a more general set than D.

For the time-space functions φ ∈ C([0,∞)× D̄;R), 〈m,ψ(t, ·)〉 for t ≥ 0 and 〈m,ψ(·)〉, or

sometimes simply 〈m,ψ〉 when there is no time variable, shall denote the integral against

a signed measure m(dx) on D.

Let p(t, x, y), t > 0, x, y ∈ Rd be the transition kernel for a diffusion (Xt)t≥0 generated by

a second-order strongly elliptic operator L with smooth coefficients with bounded deriva-

tives. Assume D is a C2 bounded domain in Rd. Put τD = inf{t > 0 |Xt ∈ Dc} for the

exit time from D of the diffusion. Under such conditions, τD <∞ a.s. and let pD(t, x, y),

t > 0 be the Dirichlet kernel defined by

(1.1) pD(t, x, y)dy = Px(Xt ∈ dy, τD > t) .

The associated semigroup is a strongly continuous Feller-Dynkin semigroup in the sense of

[25], Chapter III.6, i.e. defines a C0 (i.e. strongly continuous) semigroup on C0(D), the

space continuous functions vanishing on ∂D with the supremum norm. In addition, it has

the strong Feller property. For φ ∈ B(D) (set of bounded functions)

(1.2) SDt φ(x) =

∫
D
pD(t, x, y)φ(y) ∈ C0(D) ⊆ C(D̄) .
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The boundary ∂D can be assimilated to the cemetery state and the killed process XD
t =

Xt1(τD > t) has transition semigroup SDt and uniquely solves the martingale problem

(L,D(L)) with D(L) = {φ ∈ C2(D̄) |φ(x) = 0 , x ∈ ∂D} .
The density, respectively distribution functions fD(t, x), FD(t, x) of τD for the initial

state x ∈ D at t > 0 satisfy

(1.3) Px(τD > t) = 1− FD(t, x) =

∫ ∞
t

fD(s, x) ds .

We assume that

(1.4) fD , ∂tfD ∈ C((0,∞)× D̄;R) and fD(0+, x) = 0 .

The Laplace transform α → f̂D(α, x) = Ex[exp(−ατD)] is defined for all real α where

the integral is finite and thus for {α ∈ C | <(α) ≥ 0}. In particular we denote f̂D(α, ρ) =

〈ρ(dx), f̂D(α, x)〉 for ρ ∈M1(D), a probability measure on D.

Because D is bounded and regular τD > 0 a.s. and f̂D(+∞, x) = 0 by monotone

convergence. It will be assumed that there exists a negative exponential moment α− < 0

such that for all x ∈ D

(1.5) sup
x∈D

f̂D(α−, x) = cD < +∞ .

On <(α) > 0 and, by extension, wherever the integral converges, we define the resolvent

of the semigroup

(1.6) RDα φ(x) =

∫ ∞
0

e−αtSDt dt .

Due to the relation

(1.7)
1

α
(1− f̂D(α, x)) = RDα 1(x) ,

for 1(x) ≡ 1 it follows that the resolvent can be extended on the half-plane <(α) > α−,

equivalent to (α−,+∞) ⊆ Res(L).

We start with a basic result proven in [16].

Proposition 1 (Proposition 2 in [16]). Let γ ∈M1(D). Under the assumption (1.5) there

exists −∞ < α̃ < 0 such that the decreasing function α→ f̂D(α, γ) satisfies

(1.8) lim
α↓α̃

f̂D(α, γ) = +∞ , lim
α→∞

f̂D(α, γ) = 0 .
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The Laplace transform α→ f̂(α, γ) can be extended to a holomorphic function on <(α) > α̃.

For any K̄ > 0 there exists a unique α∗ ∈ (α̃,+∞) solving

1− K̄f̂D(α∗, γ) = 0 .(1.9)

Moreover, due to f̂D(0, γ) = 1, α∗ > 0 (α∗ < 0) for K̄ > 1 (K̄ < 1), with equality α∗ = 0

when K̄ = 1.

Remark. Theorem 1 will show that α∗ is the exponential growth rate of the total mass of

the branching process E[〈ζt, 1〉] ≤ Const · eα
∗t.

1.3. A Tauberian condition. A non-negative function f ∈ C([0,∞);R) is said to have

exponential monotonicity if there exists α+ ≥ 0 such that eα+tf(t) is non-decreasing. When

f is differentiable, it is sufficient that f ′(t) + α+f(t) ≥ 0 for all t > 0. When, in addition,

f(t) > 0 for all t ≥ 0, the condition is equivalent to having a finite lower bound for the the

logarithmic derivative.

Condition 1 (Tauberian). For every x ∈ D, the density fD(t, x) has exponential mono-

tonicity.

Such an assumption will be necessary in the application of a variant of the Wiener-Ikehara

Tauberian Theorem (see Section 6.2).

Condition 1 is non-trivial. In general, it is easier to verify for t → +∞, where series

expansions of the heat kernel are available, e.g. for Bessel processes in Proposition 2, and,

more generally, from the theory of symmetric compact operators, when applicable. In the

case of Brownian motion and regular D, a Bessel-Fourier series shows that f ′D(t)/fD(t)→
λ1, where λ1 = α̃ < 0 is the first eigenvalue. It is worth menioning a connection to the well-

known Li-Yau estimate [23], Theorem 1.2, which gives another proof of the lower bound at

t→∞.

At zero, it is enough that the distribution function Px(τD ≤ t) be convex on some small

interval. A random variable, here on [0,∞), is unimodal if its distribution function is first

convex and then concave, i.e. the density, if it exists, is first increasing, then decreasing with

only one maximum point. Thus, a sufficient condition near zero is that τD be unimodal.

However, this is not sufficient as t→∞.

It is known that one-dimensional diffusions have unimodal exit times [26]. This implies

that Bessel processes have the property, and thus, Brownian motion in a ball centered at
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the origin, in all dimensions, has it as well. Likewise, all processes with coefficients and sets

D amenable (via symmetries or other transformations) to the one-dimensional case.

Joining the observations, we obtain a sufficient condition, proven in the Appendix.

Proposition 2. For any starting point x ∈ D, the density of the exit time of d-dimensional

Brownian motion from D = B(0, r), r > 0, the ball centered at zero, has exponential

monotonicity.

1.4. Plan of the proof. In Section 2, the auxiliary branching process (ζt) is constructed.

Section 3 extends the upper bound on the number of particles from the case K ≥ 1 (Propo-

sition 3) to arbitrary K (Proposition 4) by coupling. Theorem 1 is the main result giving

the exact exponential growth rates. Section 4, with main result Proposition 6, analyzes

the probability of extinction and other aspects of the sub-critical case. Section 5 proves

exact formulas (Theorem 2) for the semigroup St and its resolvent. Theorem 3, together

with Corollaries 3 and 4 prove the Yaglom limits and give explicit formulas for the qsd as

a function of K̄. Asymptotic limits are given in strong form (5.8) under Condition 1 and

Cesaró form (5.14) under no assumptions on the monotonicity of fD(t, x). We also note

that St also provides a natural example of a continuous semigroup of bounded operators

which is not of class C0.

Finally, the Appendix (Section 6) has two parts. The first part proves Lemma 1 that

allows the use of Tauberian Theorem s (e.g. Wiener-Ikehara 4 for strong limits and Kara-

mata’s Theorem for the Cesaró limits) applied to functions that are not necessarily non-

decreasing. The second part provides a general setup, definitions and basic results (The-

orem 5) for the concepts of Yaglom limits and qsd’s in the context of a non-conservative

semigroup such as the one under consideration.

2. The branching processes Zt and ζt

This section follows closely the construction from [16], Section 4.

Let D̃ = D∪{0} be the usual compactification of D with D∪{0}, where 0 is an isolated

point for D, that will be the cemetery point.

Recall MF (D̃) denotes the space of finite measures on D̃. Ultimately, we shall construct

a process (ζt) on the space of discrete measures M0(D), a proper subspace of MF (D̃) ⊆
MF (D̃). In order to do that, we consider an infinite supply of i.i.d. processes evolving in

D̃, denoted generically by Zit , with law given by the transition kernel pD(t, x, y).
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We introduce a particle system having a finite but random number of particles Nt alive at

t ≥ 0. With the same notations as in Section 1, the number K ∼ π where π is a probability

mass function on the non-negative integers with P (K = k) = pk, k ≥ 0. Throughout the

paper K̄ = E[K] < +∞.

A single particle Z1
t is placed at a random point with initial distribution ν0(dx) at t = 0

and starts moving driven by pD(t, x, y) until it reaches ∂D, when it goes to o. At that

moment, instantaneously, a random integer number K of particles are born at a specific

point in D distributed according to γ(dx). All particles start afresh, independently, and

move in D until the first one reaches ∂D and the branching is repeated. The procedure is

continued until one of two exceptional stopping times, explosion or extinction, terminate

the process. Explosion cannot occur in our setup as will be proven in Theorem 1, but

extinction may occur when p0 > 0.

Denote by Zit , i ∈ Z+ the i-th particle born in the process. If it is born at time τ , then

we understand that t ≥ τ . Let N tot
t be the total number of individuals ever born up to

time t ≥ 0. When at time τ a number j ≥ 1 of individuals are born, their birth being

simultaneous and at the same point, their ordering is not relevant. They are simply labeled

i = N tot
τ− + l, 1 ≤ l ≤ j. By construction, the process starts and preserves a finite number

of particles during its lifetime with probability one.

Definition 1. The process of particles alive at time t ≥ 0 is

ζt =
∑
i,Zit /∈o

δZit , with Nt = 〈ζt,1D〉 , t ≥ 0 .(2.1)

Here Nt is the number of particles alive at time t ≥ 0 and N tot
t −Nt is the number of killed

particles, also equal to the number of branching events up to time t > 0. As defined in (2.1),

ζ0 = δX , X ∼ ν0(dx). In this way, we denote Eν0 [·] =
∫
D Ex[·]ν0(dx) and Ex[·] corresponds

to ν0 = δx.

The process (ζt) evolves in the space of discrete measures inside D, more precisely

M0(D) = {µ ∈MF (D) | µ =
∑
i∈I

δxi(dx), xi ∈ D , i ∈ I , I finite} ,

a subset of MF (D). We shall see M0(D) as

M0(D) = ∪∞N=1D
(N) ∪ {0}
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where 0 is the zero measure (no delta function is present) endowed with the topology of

disjoint unions. Each D(N) is the symmetric product of D (i.e. the product space factorized

by symmetries on DN ) with the product topology of D as a subset of Rd (see also [6], [19])

and the general construction of branching processes in [10] and the recent monograph [22].

This is a Lusin space because each of the spaces in the summation is a complete separable

metric (Polish) space. A net converges only if eventually all terms belong to only one

element in the sum and convergence takes place in the topology of that space. In our

construction, for finite configurations, we note that convergence in norm on D̃N implies

weak convergence of measures. We notice that (2.1) disregards, in fact, any labelling and

the original labels of Zit were important only in the construction. The same is true for the

cemetery state that is not present in the final form of (ζt).

In the construction, we assume the existence of an infinite sequence of i.i.d. processes

with the same law as Z1
t , as well as an i.i.d. sequence of copies of K. At a branching event

τ , we sample the current value k of the random number K and k i.i.d. copies of Zt are

sampled and the process re-started from τ as Zt+τ , for each particle in the union of the

particles alive and the ones newly added.

A few final remarks. The particle that was killed goes to o. We notice that, by definition,

Nt does not take into account killed particles since o /∈ D. By construction, no branching

events may occur simultaneously. The construction is thus inductive over the branching

events τ1 < τ2 < . . . < τm < . . . that can be ordered, and N tot
t < ∞, both happening

almost surely until T ∗. The process (ζt)t≥0 is Markov with state space M0(D). It shall be

adapted to a filtered probability space (Ω,F , (Ft)t≥0, P ), where the filtration satisfies the

usual conditions. We note that the law of (ζt) is a probability measure on the Skorokhod

space D([0,∞),MF (D)).

Definition 2. Denote (ζxt ) the the process with ν0 = δx as in (2.1) and if µ =
∑

i∈I δxi,

I finite, then ζµt =
∑

i∈I ζ
xi
t , where the processes (ζxit ) are independent. We note that the

points xi are not necessarily distinct, but each individual acts as an independent copy in

(ζµt ).

By construction, (ζt) is a pure branching process in the sense that, if µ1, µ2 ∈ M0(D),

then

(2.2) L(ζµ1+µ2
· ) = L(ζµ1· ) ∗ L(ζµ2· ) ,
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where L(·) denotes the probability law.

3. Asymptotics for the total number of particles

The next proposition shows that no explosion can occur and gives a sharp exponential

upper bound of Ex[Nt]. Define the stopping times Tm ∈ [0,+∞] as the first time Nt ≥ m,

m ∈ Z+. The process t → Nt is rcll (cadlag) and piecewise constant, so Tm is a stopping

time and Tm is nondecreasing in m. The stopping time T∞ = limm→∞ Tm is the time of

explosion. It will be shown that T∞ = +∞ almost surely.

First, state a result proven in [16] giving the exact upper bound for the expected number

of particles in the trivially supercritical case when K ≥ 1.

Proposition 3 (Proposition 3 in [16]). Let K be such that P (K = 0) = p0 = 0 with finite

K̄ and α∗ ≥ 0 be the solution to (1.9), which depends on γ but not on t and x. Then,

the number of particles Nt of the process (Zt) has finite expectation for any t > 0. More

precisely, there exists C(γ, K̄) > 0 such that

sup
x∈D

Ex[N(t)] ≤ C(γ, K̄)eα
∗t .(3.1)

To extend the proof of the upper bound to arbitrary K, we proceed by coupling with a

process that, path by path, will always have a larger number of particles and satisfies the

conditions of Proposition 3.

Proposition 4. For an arbitrary random integer K ≥ 0 with finite K̄, let K̃ be a random

integer with distribution defined by P (K̃ = k) = pk, if k ≥ 2 and P (K̃ = 0) = 0, respectively

P (K̃ = 1) = p0 + p1. We note that K̃ satisfies the conditions of Proposition 3. Let α̃∗ be

the solution to eq. (1.9) and C̃ denoting the constant C in (3.1), corresponding to K̃. Then

Nt ≤ Ñt a.s. and sup
x∈D

Ex[N(t)] ≤ C̃eα̃∗t .(3.2)

Remark. Theorem 1 will prove that the correct exponential growth rate is α∗, correspond-

ing to the value K̄. Proposition 4 is necessary to ensure that the total mass is finite at all

times t ≥ 0. Naturally α∗ ≤ α̃∗, so the current bound is generally not optimal.

Proof. We first remark that in the case when pk = 0 for all k ≥ 2, then 0 ≤ Nt ≤ 1

almost surely, proving that Ex[Nt] ≤ 1 is trivially bounded. In case at least one of these

probabilities is non-zero, then we proceed to Step 1.

10



Step 1. First we couple the process with a new process Z̃t having the same evolution

mechanism as Zt with the exception that the number of particles born at a boundary hit is

K̃. The processes are identical up to the first boundary hit, starting with the same number

of particles at the same locations and following the same paths driven by pD. At the first

boundary hit, if Zt draws a sample K of the number of particles to be born and K ≥ 1,

then the two processes continue to be identical until the first time K equals zero. At that

moment, Z̃t will continue with an additional particle born at location chosen with the same

distribution γ(dx). The offspring of this particle follows the dynamics using the distribution

of K̃ for the numbers of births upon each boundary hit and will be independent forever

of Zt. The rest of the process continues its evolution. This coupling will follow the same

paths for the original particles or the particles born when K 6= 0, while the other particles

of Z̃t not belonging to Zt follow independent paths from an infinite supply of diffusive paths

driven by pD on D. It is important that, path-by-path, Nt ≤ Ñt and Ñt is non decreasing

in t ≥ 0. We notice that E[K̃] = p0 + E[K]. We know that at least one of pk, k ≥ 2 is

positive, and then E[K̃] > 1.

Let α̃∗ be the solution to (1.9) corresponding to K̃. Also, write C̃ for the constant C in

(3.1) for Ñt. Then (3.1) holds for Ñt, thus it holds for Nt, which is exactly (3.2). �

Knowing that Ex[Nt] < ∞ for all t > 0, we can use the martingale theory to prove the

next proposition. The exact behavior of the extinction probabilities is given in Proposition

6.

Proposition 5. The process t → Nt is a sub - (super-), (simple) martingale with respect

to the filtration Ft, according to K̄ > 1, (< 1), (= 1), respectively. When K̄ ≤ 1 then

limt→∞Nt ≥ 0 exists a.s. and nxt ≤ 1, t ≥ 1.

Proof. We write the counting process Nt =
∑

s(Ns −Ns−) and see that due to the strong

Markov property the conditional expectation of the increment is exactly K̄−1, which proves

the claim. �

Recall that τD is the hitting time of the absorbing boundary for the underlying diffusion.

Proposition 4 showed that for any ρ ∈ M1(D), nρ(t) = 〈ρ, nxt 〉 = Eρ[Nt] ≤ C̃eα
∗t < ∞,

implying non-explosion Nρ
t < ∞ almost surely. When ρ(dz) = δx(dz), we write nρ(y) =

nx(t).

Theorem 1 is the main result in this section.
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Theorem 1. The expected value of the total number of particles at time t ≥ 0 has contin-

uous derivatives on t ∈ [0,∞) and satisfies

nx(t) = Px(τD > t) + K̄

∫ t

0
nγ(t− s) dFD(s, x) .(3.3)

Its Laplace transform

n̂x(α) =
1

α

[
1 + (K̄ − 1)

f̂D(α, x)

1− K̄f̂D(α, γ)

]
(3.4)

is meromorphic on the half-plane <(α) > α̃ with exactly one simple pole at α∗ with value

denoted B(x, K̄), where α∗ is the solution of (1.9). When K̄ = 1, then B(x, K̄) = 1 and

nx(t) ≡ 1, n̂x(α) = 1/α. When K̄ 6= 1, then

B(x, K̄) = (1− 1

K̄
)
f̂D(α∗, x)

α∗f̂ ′D(α∗, γ)
> 0 .(3.5)

Under either of the assumptions K̄ ≥ 1 or Condition 1, the asymptotic growth rate at

t→∞ is α∗,

lim
t→∞

e−α
∗tnx(t) = B(x, K̄) .(3.6)

Remarks. We recall that α̃ < 0 is the infimum of the real part of the spectrum for the

underlying diffusion. Due to (1.7), there is no actual pole at α = 0. As we have seen in

Proposition 1, In the subcritical K̄ < 1, critical K̄ = 1 and critical K̄ > 1 we have α∗ < 0,

α∗ = 0 and α∗ > 0, respectively.

Proof. Step 1. Proof of (3.3). Since T∞ = +∞ a.s., we can write the renewal equation,

also almost surely

(3.7) Nx
t = 1{t<τD} + 1{t≥τD,K≥1}

K∑
j=1

N
Zj
τD

t−τD .

Here (Zjt ) are i.i.d. processes started at a random point with distribution γ. For all j ≥ 1

E[1{t≥τD}N
Zj
τD

t−τD | τ
D = s] = nγ(t− s)

which obtains

nx(t) = Px(τD < t) +

∞∑
k=1

pkE[1{t≥τD}

k∑
j=1

N
Zj
τD

t−τD ]

= Px(τD < t) +
( ∞∑
k=1

kpk

)∫ t

0
nγ(t− s)fD(s, x) ds .
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= Px(τD < t) + K̄

∫ t

0
nγ(t− s)fD(s, x) ds ,

proving (3.3). Since nx(t), respectively nγ(t) are bounded for t ∈ [0, T ], T > 0, we obtain

that t → nx(t) is Lipschitz, so certainly continuous and non-negative. We know that

t → nγ(t) si continuous and t → fD(t, x) is C1([0,∞);R). Simple Calculus shows that

n′x(t) exists and is continuous.

Step 2. Proof of formula (3.4.) We can treat the case K̄ = 1 directly. The branch-

ing times have continuous distributions so the sequence of successive branchings is totally

ordered with no simultaneous branchings. Between branchings, the number of particles is

constant and at time zero it is one. At any such branching, the expected jump in number of

particles is zero. It follows that nx(t) ≡ 1. The Laplace formula is then trivial and matches

(3.4).

Now let K̄ 6= 1. Using the general exponential bound (3.2), we now know that the

Laplace transform of (3.3) is well defined on a set including <(α) > α̃∗ ≥ 0. On this set we

obtain ∫ ∞
0

e−αtnx(t)dt = n̂x(α) =
1

α
(1− f̂D(α, x)) + K̄n̂γ(α)f̂D(α, x) .(3.8)

Integrating over γ and doing the algebra we obtain the ratio of two holomorphic functions

n̂γ(α) =
〈γ,RDα 1〉

1− K̄f̂D(α, γ)
.(3.9)

We can plug back into the first equation to conclude the proof of the formula (3.4).

The Laplace transform (3.4) was proven to exist, due to Proposition 4, for real α > α̃∗.

At this point, it can be uniquely extended as far as the functions f̂D(α, x) and f̂D(α, γ)

are holomorphic, which is the half-plane <(α) > α̃. We show below it is a meromorphic

function with pole at α∗ < α̃∗. Because of (1.7), there is no singularity at zero.

Recall that α∗ and α̃∗ solve (1.9) for K̄, corresponding to the unmodified K, respectively

for K̃, corresponding to the coupling with the dominant K̃. The inequality α̃∗ ≥ α∗ follows

from E[K̃] ≥ E[K]. We know that α∗ > α̃. At this point it is clear that α∗ is a pole for

n̂x(α).

Step 3. Proof of (3.5). The formula is trivial if K̄ = 1. When K̄ 6= 1 we notice that

(α−α∗)n̂x(α) has a first term in 1/α that vanishes as α→ α∗ and the function α→ f̂D(α, x)
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is continuous at α∗ and has nonzero value. It remains to verify that

lim
α→α∗

1
K̄
− f̂D(α, γ)

α− α∗
= −f̂ ′D(α∗, γ) = Eγ [τDe−α

∗τD ] > 0 .

We note that (1− 1/K̄)α∗ > 0.

Step 4. Proof of the asymptotics. Again, (3.6) is trivial when K̄ = 1 with nxt ≡ 1.

Otherwise, for t → ∞, we have two cases. The case when we assume K̄ ≥ 1, Proposition

5 shows that nx(t) is non-decreasing. As such, the classical Wiener-Ikehara Tauberian

Theorem (here Theorem 4) applies.

In the case when Condition 1 is satisfied, no restriction on p0 is needed. We split (3.3)

in two. First, let δ > 0 such that α̃+ δ < α∗ ∧ 0. Then, by Markov’s inequality

(3.10) e−α
∗tPx(τD > t) ≤ f̂D(α̃+ δ, x)e−(α∗−α̃−δ)t → 0 t→ +∞ .

Second, we calculate the integral term using our Lemma 1 together with Proposition 8.

Finally, we notice that in (3.3), the first term is holomorphic at α = α∗. It follows that the

pole of n̂x(α) is the same as the pole issued from the convolution part. �

Corollary 1. With no assumption on the monotonicity of t→ fD(t, x), if K̄ > 1 then

lim
t→∞

e−α
∗t

∫ t

0
nxsds→ B(x, K̄)/α∗

and if K̄ ≤ 1, then

lim
t→∞

1

t

∫ t

0
e−α

∗snxsds→ B(x, K̄) .

Proof. The two limits are immediate consequence of Lemma 1, parts (ii) and (iii). �

4. The subcritical case

For any ρ ∈M1(D) we write

(4.1) uρ(t) = E[e−λN
ρ
t 1[0,∞)(N

ρ
t )] and vρ(t) := Pρ(Text ≤ t) ,

where uρ is finite for all λ ≥ 0 and vρ is the distribution function of the time of extinction.

We already know that Nρ
t <∞ a.s., so the indicator function in the formula is redundant,

but we use the formula for consistency. See the discussion in the Remarks subsection.

When ρ(dz) = δx(dz) uρ(t) = ux(t), vρ(t) = vx(t), noticing that uρ(t) = 〈ρ, u·(t)〉 and

vρ(t) = 〈ρ, v·(t)〉. In addition, recall ΘK(s) =
∑∞

k=0 pks
k, s ≤ 1, the generating function of

K.
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Proposition 6. The convolution formulas hold

ux(t) = e−λPx(τD > t) +

∫ t

0
ΘK(uγ(t− s))fD(s, x) ds ,(4.2)

vx(t) =

∫ t

0
ΘK(vγ(t− s))fD(s, x) ds , vx(t) = P (Nx

t = 0) ,(4.3)

where (4.3) can be obtained from (4.2) by letting λ → ∞. The probability of extinction

vext := Px(Text <∞) is the unique fixed point 0 ≤ vext ≤ 1 of ΘK

vext = ΘK(vext) , vext = lim
t→∞

vx(t)(4.4)

deriving that vext = 0 if p0 = 0, vext ∈ (0, 1) if p0 > 0 and K̄ > 1 and vext = 1 when p0 > 0

and K̄ ≤ 1.

Proof. We derive (4.2) in analogous fashion to the proof of formula (3.3). The generating

function appears because at the time τD = s (under conditioning) in the integral, the

process will instantaneously have K independent copies of itself.

To prove (4.3), we can calculate

(4.5) Px(Text > t) = Px(τD > t) +

∫ t

0
(1−ΘK(Pγ(Text ≤ t− s)))fD(s, x)ds

= 1−
∫ t

0
ΘK(Pγ(Text ≤ t− s))fD(s, x)ds

implying

(4.6) Px(Text ≤ t) =

∫ t

0
ΘK(Pγ(Text ≤ t− s))fD(s, x)ds ,

which proves the claim.

The limit λ→∞ follows by dominated convergence, after noticing that 0 ≤ uγ(t−s) ≤ 1

and fD(s) is integrable.

To check (4.4) we see that ΦK(s)− s equals p0 at s = 0 and 0 at s = 1. It is also convex.

When K̄ = Φ′K(1) > 1 the function has a nontrivial fixed point, while when K̄ ≤ 1 the

function is non-increasing so s = 1 is the only fixed point. In both cases it is unique. �

4.1. Discussion and remarks. 1) Results like (4.4) are well known in the classical theory

of branching processes. From the point of view of survival, only the branching number K

and intensity K̄ matter. This is due to the fact that E[τD] is bounded above and below

away from zero under γ. However, the semigroup of the branching process ζt is not trivial,

as we see in Theorem 3.
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2) We note that (4.1) is a moment generating function (in λ) of ω → Nx
t (ω), where ω

is the random element, for t fixed, whereas (3.4) is the Laplace transform (in α) of the

expected value t→ nxt , a deterministic function.

3) When γ is a quasi stationary distribution for the underlying process L, the process

Nγ
t is Markovian, equal to a birth and death chain in continuous time.

4) The process Nγ
t is not Markovian in general, since the holding times between branch-

ings are not exponential. However, this is a branching process where each particle branches

a after i.i.d. times τD (starting from a point Z ∼ γ).

When λ = 0 in (4.2) the trivial solution gives that Nx
t = +∞ has zero probability. The

probability of extinction vx(t) = P (Nx
t = 0) has solution equal to zero if p0 = 0. An

immediate consequence of the equation (4.3) after integrating over γ(dx) is given below.

Corollary 2. If K̄ ≤ 1, the distribution function of the time of extinction under γ is the

fixed point of

vγ = ΘK(vγ(·)) ? fD(·, γ) .(4.7)

4.2. The Bernoulli case. In general, as soon as K is supported on k > 1, Equation (4.7)

is not solvable in closed form, even in simple cases like ΘK(s) = (1 − p) + ps2, 0 < p < 1,

including for p = 1
2 .

When K ∈ {0, 1}, p0 = 1 − p, p1 = p, the generating function ΘK(s) = (1 − p) + ps

and the process is always sub-critical unless trivial. The sub-case p = 0 is the simple killed

process and p = 1 is the Brownian motion with rebirth from [17, 5]. These are the only

cases when the particle process can be cast as a one-particle Markov process with state

space D. For p ∈ (0, 1), p = K̄ < 1 and extinction occurs in finite time almost surely and

v̂γ(α) =
1− p
α

f̂D(α, γ)

1− pf̂D(α, γ)
(4.8)

and the Laplace transform of the tail Pγ(Text > t) = 1− vγ(t)

̂Pγ(Text > ·)(α) =
1

α
− v̂γ(α) =

1

α

1− f̂D(α, γ)

1− pf̂D(α, γ)
,(4.9)

with a pole at α∗. In this case α∗ < 0 In the same way as in Theorem 1 for (3.6), we apply

Lemma 1 showing that

Pγ(Text > t) ∼ eα∗t .(4.10)
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If, in addition, γ is chosen among the quasi-stationary distributions, we have τD ∼
exp(θ), then Text ∼ exp((1 − p)θ), the thinned exponential. In the Brownian motion case

θ = |α̃|, α̃ the first eigenvalue and we can obtain α∗ = (1− p)|α̃|.

5. The branching process (ζt) and its semigroup

The process (ζt) in (2.1) is now well defined for any distribution of the branching number

K. When E[K] <∞, it is not explosive, with a precise exponential bound on the expected

number of particles. In the case p0 > 0, the probability of extinction is positive, and

if in addition K̄ ≤ 1, then it is equal to one. We are now interested in the semigroup

properties induced by the Markov property structure of the process. In the first subsection

we summarize the construction given in [16].

5.1. The Semigroup. The process (ζt) in (2.1) is constructed on the state space of finite

configurations D, denoted by M0(D). This space is embedded in the Polish space MF (D).

Define the space of test functions as continuous, bounded functions F ∈ Cb(MF (D)) of the

form

(5.1) µ ∈MF (D)→ F (µ) = ϕ(〈µ, φ1〉, . . . , 〈µ, φl〉) , l ∈ N

where (φi)1≤i≤l ∈ Cb(D) and ϕ ∈ Cb(Rd). A class with smooth components φi, e.g.

belonging to C∞c (D) of such test functions is sufficient to determine the law of the process

(2.1) as the solution to the martingale problem, see [11].

Due to Proposition 3 we can extend ϕ to polynomial growth functions (and more). In

fact, we shall be only interested in the functionals µ→ F (µ) = 〈µ, φ〉, for some test function

φ, in other words a linear functional, when ϕ(u) = u and l = 1. In that sense we refer to

the restriction of the semigroup as the marginal transition semigroup, formally defined in

(5.3), as already mentioned in Subsection 1.4.

For a test function F and µ =
∑N

i=1 δxi ∈M0(D), N positive integer (with the convention

that we represented the space of finite configurations as sums of delta functions) we define

the semigroup on M0(D)

µ→ St(F )(µ) = Eµ[F (ζt)] =
N∑
i=1

E[F (ζxit )] =
N∑
i=1

Exi [F (ζt)](5.2)

= 〈µ,E·[F (ζt)]〉 =

∫
D
Ex[F (ζt)]µ(dx) .
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The relation is a consequence of the construction of the process. Particles independent

at time s ≥ 0 remain independent forever. The only dependence is through the ancestry

tree. Particles distributed deterministically at time t = 0 are independent.

Definition 3. For φ ∈ Cb(D), we define S0φ = φ and for t > 0

Stφ(x) := Ex[〈ζt, φ〉] , x ∈ D .(5.3)

We now show that St is a continuous semigroup in the sense of (6.2) in the Appendix.

Theorem 2 is an extension of Proposition 4 in [16]. Recall that SDt is the semigroup with

transition kernel pD(t, x, y) defined in (1.2).

Theorem 2. The mapping (5.3) defines a continuous (but not strongly continuous, in

general) semigroup on Cb(D) with Stφ ∈ C(D̄) ⊆ Cb(D), t > 0 satisfying

Stφ(x) = SDt φ(x) + K̄

∫ t

0
〈γ, St−sφ〉 dFD(s, x) , lim

x→∂D
Stφ(x) = K̄〈γ, Stφ〉 .(5.4)

The semigroup has resolvent Rαφ(x) =
∫∞

0 e−αtStφ(x) dt

Rαφ(x) = RDα φ(x) +
K̄f̂D(α, x)

1− K̄f̂D(α, γ)
〈γ,RDα φ〉 , <(α) > α∗ ,(5.5)

where α∗ is defined in (1.9).

Remarks.

1) Boundedness. The result is based on a renewal equation essentially the same as (3.3),

which is the special case of (5.3) when φ(x) ≡ 1(x). In this case we write St1(x) =

Ex[ 〈 ζt,1 〉]. The proof is done in Proposition 4, [16]. In short

(5.6) |Stφ(x)| = |Ex[ 〈 ζt, φ 〉| ≤ ||φ||St1(x) = ||φ|| sup
x∈D̄

E[Nx
t ] = ||φ|| sup

x∈D̄
nxt ≤ C̃eα̃

∗t ,

showing that St is a bounded operator.

2) St is point-wise continuous but not a C0 semigroup. The semigroup St is not strongly

continuous, because the limit limt→0 |Stφ(x) − φ(x)| = 0 is not uniform in x ∈ D̄. As

x→ ∂D, the limit approaches K̄〈γ, φ〉 6= 0, in general.

3) Boundary conditions. In [16], the forward and backward equations satisfied by the

kernel of the semigroup are investigated from an analytic point of view (solution of a

parabolic PDE). The second relation from (5.4) is a boundary condition (BC) that defines
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the solution (t, x)→ v(t, x), v(0+, x) = φ(x) of ∂tv = Lv, where L is the same operator as

the generator of the semigroup (SDt ), only with new domain given by (BC).

4) The resolvent. Formula (5.5) is immediately obtained by integration against e−αt over

time. Its extension to <(α) > α∗ is valid because all functions involved are holomorphic on

the half-plane since α∗ > α̃ by construction.

Proof. Semigroup property. The semigroup property is simply the Chapman-Kolmogorov

relation for (ζt), which is standard in the theory of Markov processes. The proof follows

closely Proposition 4, [16].

When G is linear, i.e. G(µ) = 〈φ, µ〉, φ ∈ Cb(D). We can apply the Markov property to

(ζt) to have

St+sφ(x) = Ex[〈ζt+s, φ〉] = Ex[Ex[〈ζt+s, φ〉 | ζs]] = Ex[〈Eζs [〈ζt, φ〉]](5.7)

= Ex[〈ζs, E·[〈ζt, φ〉]〉] = Ex[〈ζs, Stφ(·)〉]

= Ex[Ss(Stφ(·))] = SsStφ(x) .

Continuity at the boundary of x → Stφ(x). When x ∈ D, the strong Feller property of

SDt and the regularity of x → fD(s, x) (1.4) show that x → Stφ(x) is continuous on D.

For the next step, it is convenient to write dFD(s, x) = fD(s, x)ds in the integrand of the

convolution formula. For x → ∂D we use convergence in distribution for FD(s, x) since

we know that τD has distribution delta at time zero. The value of the limit is equal to

K̄〈γ, Stφ〉.
The resolvent. The resolvent formula is proven in Proposition 4, [16] and is almost

identical to Step 2 of Theorem 1 in this paper. �

5.2. Quasi-stationarity. Quasi stationarity and Yaglom limits are defined in the Ap-

pendix, eq. (6.5), generalizing in a natural form the classical concepts for a dissipative

semigroup St. Instead of St1 < 1, we now consider a non-conservative semigroup where

St1 6= 1, including both the super-critical St1→∞ and sub-critical evolution St1→ 0.

Theorem 3. Assume Condition 1 is satisfied. Then, for any x ∈ D, φ ∈ Cb(D), the strong

Yaglom limit (6.7) exists

(5.8) lim
t→∞

Stφ(x)

St1(x)
= 〈ν, φ〉
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and ν ∈M1(D) is equal to

ν(dx) = C(α∗)

∫
D
γ(dx′)RDα∗(x

′, dx) , C(α∗)−1 = 〈γ,RDα∗1〉(5.9)

and α∗ > α̃ solves (3.6). When K̄ 6= 1, we can write C(α∗) = α∗/(1− 1
K̄

) and when K̄ = 1

α∗ = 0 and ν is proportional to the Green function.

Proof. Step 1. The pole at α∗. Formula (5.5) for the resolvent of the semigroup St can be

extended to a meromorphic function on <(α) > α̃ with one simple pole at α = α∗. First,

we calculate the value of the pole

lim
α→α∗

(α− α∗)Rαφ(x) = lim
α↓α∗

(α− α∗)RDα φ(x)(5.10)

+ K̄ lim
α↓α∗

[ (α− α∗)
1− K̄f̂D(α, γ)

]
lim
α↓α∗

[
f̂D(α, x)〈γ,RDα φ〉

]
(5.11)

= B(x, K̄)

[
〈γ,RDα∗φ〉
〈γ,RDα∗1〉

]
.(5.12)

Here (α − α∗)RDα φ(x) → 0 as α → α∗. The last line is due to the identity (1.7) 1 −
α〈γ,RDα 1〉 = f̂D(α, γ) and the fact that 1− K̄f̂D(α∗, γ) = 0.

Step 2. The limit of e−α
∗tStφ(x). The proof follows nearly identically Step 4 of the

proof of Theorem 1. First, we show directly that limt→∞ e
−α∗tSDt φ(x) = 0. The bound

|e−α∗tSDt φ(x)| ≤ ||φ||e−α∗tPx(τD > t) proves the limit because of (3.10).

A Tauberian theorem is needed, in the form of Lemma 1 followed by Proposition 8. First,

without loss of generality we assume φ ≥ 0, otherwise φ = φ+ − φ− by decomposing in

positive and negative parts. The limit is linear in φ via the factor 〈γ,RDα∗φ〉 so we obtain

the exact limit as a difference of the two functions φ±.

We want to ensure that t →
∫
D Stφ(x′)γ(dx′) in the convolution from (5.4) is non-

negative (which we explained) and that there exists α+ ≥ 0 such that t → eα+tfD(t, x) is

non-negative and non-decreasing. The second condition is in the hypothesis (Condition 1).

These prove the limit equals the value of the pole at α∗

lim
t→∞

e−α
∗tStφ(x) = B(x, K̄)

[
〈γ,RDα∗φ〉
〈γ,RDα∗1〉

]
.(5.13)

We already know that e−α
∗tSt1(x) → B(x, K̄) > 0 from (3.6) in Theorem 1. Since

B(x, K̄) > 0 we divide the two and obtain (6.7). �
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In the absence of Condition 1, a slightly weaker result is available. This is the usual

Cesaró limit Tauberian theorem. It is important to mention that no assumption except

K̄ <∞ is necessary.

Corollary 3. Let ν be the qsd from (5.9). With no assumption on the monotonicity of

t→ fD(t, x), for any Cb(D)

if K̄ > 1 lim
t→∞

∫ t
0 Ssφ(x)ds∫ t

0 n
x
sds

= 〈ν, φ〉 and(5.14)

if K̄ ≤ 1 lim
t→∞

∫ t
0 e
−α∗sSsφ(x)ds∫ t
0 e
−α∗snxsds

= 〈ν, φ〉 .

Proof. We split, as in the proof of Theorem 3, φ = φ+ − φ−, and apply Lemma 1 (ii) for

the first limit, respectively (iii), for the second limit. Corollary 1 calculates the same limit

for nxt . The ratio of the two limits proves (5.14). �

The last result is more general as shown in Theorem 5, Part 2). We include the direct

calculations as well as the identification of the eigenvalue.

Corollary 4. Under the same conditions as in Theorem 2, the probability measure ν from

(5.9) is a left-side eigenfunction of the resolvent Rα with eigenvalue (α − α∗)−1. If, in

addition, the Yaglom limit (5.8) holds, then ν is the left-side eigenfunction of St, t > 0 with

eigenvalue eα
∗t.

Proof. We start with the resolvent. Recall that C(α∗)−1 = 〈γ,RDα∗1〉. We want to show

νRα = (α− α∗)−1ν, and more explicitly

〈γ,RDα∗Rαφ〉 = (α− α∗)−1〈γ,RDα∗φ〉 , α > α∗ .(5.15)
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To see this, first we calculate, in view of (5.5) and (1.7)

〈γ,RDα∗ f̂D(α, ·)〉 = 〈γ,RDα∗1〉 −
α

α− α∗
〈γ, (RDα∗1−RDα 1)〉 (resolvent identity)

(5.16)

= 〈γ, 1

α∗
(1− f̂D(α∗, ·))〉 − α

α− α∗
〈γ,
( 1

α∗
(1− f̂D(α∗, ·))− 1

α
(1− f̂D(α, ·))

)
〉(5.17)

= C(α∗)−1 − 1

α− α∗
(
αC(α∗)−1 − (1− f̂D(α, γ))

)
(5.18)

=
1

α− α∗
(
− (1− 1

K̄
) + (1− f̂D(α, γ))

)
(5.19)

=
1

K̄(α− α∗)

(
1− K̄f̂D(α, γ)

)
.(5.20)

Using the resolvent identity once more for the first term of (5.5), after simplification, we

proved (5.15).

Choosing φ = 1 we obtain νRα1 = (α − α∗)−1 so λ = νSt1 = eα
∗t. Since any strong

Yaglom limit is a qsd (Theorem 5), we obtained that λ is the exact eigenvalue for St. �

6. Appendix

In this section we present some technical results and give some background on quasi-

stationary distributions and Yaglom limits.

6.1. Exponential monotonicity. The first section explores when exponential monotonic-

ity - Condition 1 - is satisfied.

Proposition 7. Let f ∈ C([0,∞);R) be positive with continuous derivative on (0,∞) and

non-decreasing on some interval (0, t0], t0 > 0. If lim inft→∞ f
′(t)/f(t) > −∞ , then f has

exponential monotonicity.

Proof. At t → ∞, there exist M1 > −∞ and t1 > 0 such that if t ≥ t1, then f ′(t)
f(t) ≥ −M1.

If t1 > t0 we take M0 the maximum between zero and supt∈[t0,t1]

∣∣∣f ′(t)f(t)

∣∣∣. Finally, let α+ =

M0 ∨M1 > −∞, then ∀t > 0, f ′(t)
f(t) ≥ −α+ and eα+tf(t) is non-decreasing. �

Proof of Proposition 2. For the distribution of τD, being unimodal means that the den-

sity fD(t, x) has a non-negative derivative on some (0, t0]. It is known that one-dimensional

general diffusions have unimodal exit times ([26] - Rösler 1980, Annals of Prob), also more

recently [20]. This takes care of the condition at t→ 0.
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For t → ∞, we use the formulas in Serafin [27]. More generally, this proof can be

extended to other operators in higher dimensions using the classical theory of compact

operators. The Dirichlet Laplacian on the unit ball gives a Bessel-Fourier series expansion

for FD(t) with eigenvalues λn = − j2µ,n
2 where j2

µ,n in decreasing order, with 0 > λ1 > λ2,

where λ1 is simple.

The values λn are given by the n-th nonzero roots of Jµ, µ = d
2−1, Jµ the Bessel function

of first type. The exact form of the series implies limt→∞ e
−λ1tfD(t, x) is positive as well

as limt→∞ e
−λ1t∂tfD(t, x) is finite negative and thus we obtain

lim
t→∞

∂tfD(t, x)

fD(t, x)
= λ1 < 0 .

This implies the conditions of Proposition 7 are satisfied and Condition 1 is proven. �

6.2. Conditions for the Tauberian Theorem. We shall use the Wiener-Ikehara The-

orem for the density a(t) of a Lebesgue-Stieltjes measure A(t) =
∫ t

0 a(s)ds on the positive

axis ([7], Theorem I-W, p.5). For a more general version, see [21] , Theorem 4.2 p. 124.

Theorem 4 (Wiener-Ikehara). Suppose that the function F has the following properties:

(i) For <(α) > 1, F (α) =
∫∞

0 e−αta(t)dt, where a(t) is a non-decreasing function with

a(0) ≥ 0.

(ii) For <(α) > 1, α 6= 1, F (α) = G(α)+ 1
α−1 , where G(α) is continuous on the half-plane

<(α) ≥ 1.

Then e−ta(t)→ 1 as t→∞.

The next lemma will explain how we apply the Wiener-Ikehara theorem for the density

a(t) when it is not non-decreasing. The key ingredient is the exponential monotonicity

property from Condition 1. When a(t) is just non-negative, the Karamata Tauberian

Theorem provides a limit at t → ∞ in the Cesaró limit sense. This is used in the next

lemma, part (iii).

Lemma 1. Let α1 < α∗ be two real numbers and g : [0,∞)→ [0,∞) a continuous function

with g(0) ≥ 0 such that its Laplace transform ĝ(α) =
∫∞

0 e−αtg(t)dt is holomorphic on the

half-plane {α|<(α) > α1, α 6= α∗} and has a pole at α∗ equal to q. Denote G(t) =
∫ t

0 g(s)ds.

(i) If there exists α+ > 0 such that t → eα+tg(t) is non-decreasing (g is exponentially

monotone), then limt→∞ e
−α∗tg(t) = q.

(ii) If α∗ > 0, then limt→∞ e
−α∗t ∫ t

0 g(s)ds = q/α∗ and

23



(iii) If α∗ ≤ 0, then limt→∞ t
−1
∫ t

0 e
−α∗sg(s)ds = q.

Remark. Independently from our work, a more general variant of part (i) of the Lemma,

appears in a recent preprint ([14], Theorem 2). We note that (ii) is not true when α∗ ≤ 0.

On the other hand, if α∗ > 0, the limit in (ii) implies the limit in (iii), so the statements

cannot be improved with the same assumptions.

Proof. Part (i). For A,B real and B > 0, denote

gA,B(t) =
1

B
e
A
B
tg(

t

B
) with Laplace transform ĝA,B(α) = ĝ(Bα−A) .

We choose A > max{−α1, α+} and then B = α∗ +A > 0 such that

1 =
α∗ +A

B
>
α1 +A

B
> 0 .

Since A ≥ α+, gA,B(t) is non-decreasing and ĝA,B(α) is holomorphic except the pole at

α = 1 in the half-space <(α) > 1− (α∗−α1)/B which includes <(α) = 1. Calculating that

q̃ = q
B is the pole of ĝA,B(α) at α = 1, we verified that the new function gA,B(t) satisfies

the conditions of Wiener-Ikehara Theorem 4.

Then limt→∞ e
−tgA,B(t) = q̃, which is equivalent to the limit in Part (i).

Part (ii). Unless g ≡ 0, the Laplace transform of
∫ t

0 g(s)ds will have a pole at α = 0.

Adopt α1 := 0, α∗ remaining the same in Part (i), this time applied to the integral, which

is non-decreasing. This obtains the limit.

Part (iii). Part (i) cannot be applied even after a shift as done in the proof of Part (i).

The function t→ e−α
∗tg(t) is non-negative and its Laplace transform exists for real α > 0.

At α → 0+, the transform has a limit. The Karamata Tauberian Theorem [21], Theorem

8.1) implies the exact limit at (iii). �

Proposition 8. Let h, f : [0,∞)→ R be continuous non-negative and there exists α+ ≥ 0

such that t→ eα+tf(t) is non-decreasing. Then

(6.1) t→ eα+t(h ? f)(t) = eα+t

∫ t

0
h(s)f(t− s)ds

is non-decreasing.

Proof. Step 1. We prove that the result is true for α+ = 0. Pick t′ > t ≥ 0. Then

(h ? f)(t′)− (h ? f)(t) =

∫ t′

t
h(s)f(t′ − s)ds+

∫ t

0
h(s)[f(t′ − s)− f(t− s)]ds ≥ 0 .
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Step 2. It is sufficient to write (6.1)

eα+t(h ? f)(t) = eα+t

∫ t

0
h(s)f(t− s)ds =

∫ t

0
[eα+sh(s)][eα+(t−s)f(t− s)]ds

and then apply Step 1 to eα+th(t) and eα+tf(t). �

6.3. Yaglom limits and quasi-invariant distributions. For D ⊆ Rd a bounded do-

main, we shall consider (St)t≥0 will be a continuous semigroup of bounded operators on the

space Cb(D) with the supremum norm, denoted by || · ||, i.e. ∀φ ∈ Cb(D)

(i) ∀ t ≥ 0 , Stφ ∈ Cb(D) and S0φ = φ(6.2)

(ii) ∀ t, t′ ≥ 0 , St+t′φ = StSt′φ

(iii) ∀x ∈ D , t→ Stφ(x) is continuous .

Define the resolvent

α→ Rαφ(x) =

∫ ∞
0

e−αtStφ(x) dt(6.3)

for α ∈ C such that the integral exists. We shall assume that there exists α1 < 0 such that

∀α > α1 sup
x∈D

∫ ∞
0

e−αtSt1(x) dt < +∞ .(6.4)

A stronger condition is that there exist α′ ≥ 0, C > 0 such that ||St|| ≤ Ceα
′t. This is

the case of the semigroup (5.3) in this paper with α′ := α∗ ∨ 0.

In view of (6.4), the resolvent is holomorphic on <(α) > α1.

When ν ∈ M1(D) ⊂ MF (D) is positive, then 〈ν, St1〉 > 0. A probability measure

ν ∈M1(D) is said a quasi-stationary distribution (qsd) for the semigroup St if

〈ν, Stφ〉
〈ν, St1〉

= 〈ν, φ〉 , ∀ t ≥ 0 .(6.5)

In the context of this paper, the process we study the the semigroup t→ Ex[ 〈 ζt, φ 〉 ] =

Stφ(x) formally defined in (5.3). Theorem 3 proves it satisfies the definition (5.2).

Then, the definition (6.5) of a qsd ν reads explicitly as

Eν [

Nt∑
i=1

φ(Zit)] = Eν [Nt] · 〈ν, φ〉 , ∀ t ≥ 0 .(6.6)
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A probability measure ν ∈M1(D)D is said a Yaglom limit for the semigroup St if there

exists a probability measure ν ′ such that, for all φ ∈ Cb(D)

lim
t→∞

〈ν ′, Stφ〉
〈ν ′, St1〉

= 〈ν, φ〉 .(6.7)

In that case we say ν ′ is in the domain of attraction of ν. If a Yaglom limit has domain of

attraction all delta functions, or equivalently, any probability measure ν ′ on D, it is said a

strong Yaglom limit.

Theorem 5 is straightforward and well known for dissipative semigroups. See the mono-

graph [9] and [13] for the relation between qsd and eigenfunctions.

Theorem 5. Assume (St) has the properties (6.2). Then

1) If ν is a qsd, then the expected value of the total mass 〈ν, St1〉 is exponential;

2) The qsd ν is a left side eigenfunction of the semigroup, as well as of the resolvents;

3) Any strong Yaglom limit ν is a qsd and is in its own domain of attraction. A strong

Yaglom limit, if it exists, is unique.

Proof. 1) Using φ = Ssψ and ψ(x) = 1(x) we obtain that t→ νSt1 = nνt is continuous and

satisfies nνt+t′ = nνt n
ν
t′ , hence is an exponential function. In case the semigroup is dissipative

||St|| ≤ 1, the time to extinction is exponentially distributed.

2) For the semigroup, it is due to the definition, and for the resolvent we obtain the

relation directly by integration.

3) Let t, t′ positive. Then, applying the definition (6.7) with St′φ in place of φ,

lim
t→∞

〈ν ′, StSt′φ〉
〈ν ′, St1〉

= 〈ν, St′φ〉 .(6.8)

〈ν ′, StSt′φ〉
〈ν ′, St1〉

=
〈ν ′, St+t′φ〉
〈ν ′, St+t′1〉

· 〈ν
′, StSt′1〉
〈ν ′, St1〉

.(6.9)

Let t → ∞. The first factor converges to 〈ν, φ〉 as t + t′ → ∞ and the second factor uses

(6.7) with St′1 in place of φ, to converge to 〈ν, St′1〉. The equality of the two limits shows

that ν is a qsd. �
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