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Abstract. We solve the heat equation for a second-order linear operator L on the

bounded domain D ⊆ Rd under non-classical boundary conditions (super-critical) which

prescribe that the inward flux entering D at interior points with a given distribution γ be

equal to K̄ > 1 times the outward flux on ∂D. A weak solution to the forward equation

exists and can be represented as the the expected value of a non-conservative particle pro-

cess driven by L inside D, branching at ∂D with branching constant K̄. We provide exact

estimates on its growth rate and study the associated backward equation. Uniqueness

requires a mild condition on the density of the exit time from D of the diffusion driven by

L. In the spacial case of γ = δc, c ∈ D, we prove the existence of a strong solution. The

main application and motivation is that normalized to have total mass equal to one, the

solution is the hydrodynamic limit of the BSBD particle system from [19].

1. Introduction

Let D ⊆ Rd, d ≥ 1 a bounded domain boundary ∂D, L a second order strongly elliptic

operator L defining a diffusion on D killed at the boundary and γ ∈M1(D), a probability

measure on D with supp(γ) ⊂ D. In this paper, we focus on a non-classical boundary

problem for the heat equation determined by L where mass will be created along the

support of γ and annihilated on ∂D.

The connection between Markov processes and the solutions of parabolic equations is

well known in diffusion theory. If (BC) stands for certain boundary conditions on ∂D

(Dirichlet, Neumann, mixed, sticky), then the process (Xt) driven by L and solving the

martingale problem for test functions satisfying (BC) has a transition kernel that satisfies

the corresponding heat equation. More explicitly, given a test function φ, the semigroup

formula

Ex[φ(Xt)] =

∫
D
p(t, x, y)φ(y)dy ,
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where p(t, x, y) the density of its transition probabilities and Ex[·] is the expected value of

the process starting at X0 = x ∈ D, establishes that p(t, x, y) solves the backward equation

∂tv = Lv in the variables (t, x) and the forward equation ∂tv = L∗v in (t, y). This gives

a representation of v, the solution of a PDE in terms of a diffusion process on D. In the

Dirichlet case (v = 0 on ∂D), the diffusion is killed at the boundary. This corresponds to

the dissipative character of the equation (subcritical), where the mass decreases to zero as

t→∞.

We are interested in solving the heat equation with mass being created at a random

point chosen with distribution γ in D and dissipated on the boundary in such a way that

the total mass increases in time, leading to a super-critical regime. The equation is not

symmetric. Condition (1.2) for the backward equation is straightforward, but the forward

case is more difficult and the condition itself makes no sense except for a strong classical

solution and special γ. To fix ideas, assuming L is the half-Laplacian and mass is created

at a point c ∈ D then the boundary condition for the forward equation expresses a flux

balance (3.5), where the inward flux at c is K̄ times the outward flux at the boundary, in

addition to the usual Dirichlet boundary condition.

A strong solution may not exist except away from supp(γ). The delta function case can

be generalized relatively easily if the support is of measure zero, for example, a finite set

but also the graph of a smooth curve in D, both with a flux balance condition similar to

(3.5).

Since the proportionality constant K̄ exceeds one, v tends to infinity as t → ∞. It

turns out that the supercritical mass evolution required here cannot be represented by

a one-particle process with state space D, as opposed to the familiar dissipative case of

a one-particle killed process. Instead, it is natural to look at a measure-valued process

with varying total mass. In its turn, this can be represented by an explicit multi-particle

branching process on D (here called auxiliary process), where each particle is driven by

L. The expected value of this process will be the analogue of a Dynkin type formula

representation for v(t, x, y).

1.1. Motivation of the problem. The motivation to study this equation comes from

hydrodynamic limits. The solution v produces the natural description of the asymptotic

profile ρ(t, y) of the empirical measure of the Bak-Sneppen Branching Diffusions (BSBD),

a conservative particle system studied in [19]. Since the particle system has constant mass,

empirical measures are probability measures and their limit, assuming it exists, has total

mass one. Let v(t, y) =
∫
D v0(x)v(t, x, y)dx be the solution with mass creation starting at

v0 and nt =
∫
D v(t, y)dy its total mass. This limiting profile of the particle system turns out

to be exactly ρ(t, y) = v(t, y)/nt, the normalization of v. Additionally, lnnt is the limiting

2



value of the average number of boundary hits, or equivalently, branching events, up to time

t > 0.

Hydrodynamic limits are the result of Laws of Large Numbers whose deterministic tra-

jectories can typically be identified as weak solutions of a PDE in the space of finite mea-

sures. To close the proof, it is essential to show uniqueness. Regularity properties of the

(non-random) PDE are also important. In view of this application, and to solve a non-

conservative heat equation in and of itself, we set off to study the existence and uniqueness

of the weak solution; give sufficient conditions to be classical (a function), respectively

strong.

We start formulating the problem. As mentioned, it is naturally obtained in weak form,

i.e. satisfying an equation upon integration against a sufficiently smooth test function.

1.2. Heat equation with mass creation. The notation MF (D) designates the finite

measures on D ⊆ Rd, M1(D) the space of probability measures on D (distributions), both

with the topology of convergence in distribution.

Define the time-space set of test functions smooth up to the boundary

(t, x)→ φ(t, x) ∈ D = C1,2
b ([0, T ]× D̄;R) .(1.1)

When ∂D ∈ C2 this is equivalent to the set of C1,2
c (R × Rd;R) of smooth functions with

compact support. This space is standard in the study of martingale problems with boundary

conditions, e.g. [29].

Given a test function φ(t, ·), with t ≥ 0 fixed, we write 〈φ(t, ·),m〉 =
∫
D φ(t, y)m(dy)

for the integral against a finite measure m(dy) on D, also applicable when φ does not

depend on t. Let γ ∈ M1(D), supp(γ) ⊆ D and a constant K̄ > 1. We note that

dist(supp(D), ∂D) > 0.

For φ ∈ D, define the boundary condition

(1.2) K̄〈φ(t, ·), γ〉 = φ(t, y) , y ∈ ∂D .

Remark. To explain the bar notation, in the construction of the auxiliary process, K is

the integer valued random number of offsprings and K̄ its mean value. In the hydrodynamic

limit mentioned earlier, K is deterministic (specifically K = 2), but the derivation of the

PDE can be done in general.

Definition 1. We shall say that t → νt ∈ C([0,∞),MF (D)) is the weak solution to the

heat equation for L on D with mass creation (γ(dx), K̄) and initial value ν0 ∈ MF (D) if,

for any test function φ ∈ D satisfying the additional boundary condition (1.2), and any

t ≥ 0, the equality holds

〈φ(t, ·), νt〉 − 〈φ(0, ·), ν0〉 −
∫ t

0
〈 ∂
∂s
φ(s, ·) + Lφ(s, ·), νs〉 ds = 0 .(1.3)
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Remark. Condition (1.2) sets φ(t, ·) constant on the boundary. Any function φ(t, ·)
supported on a subset of D \ supp(γ) satisfies the equation, showing that the problem is

not vacuous.

1.3. Idea of the proof. Based on the underlying diffusion L, we shall construct a branch-

ing process (ζt)t≥0 defined in (4.1). The process represents the empirical measure (sum

of delta measures) of a particle process with a finite number of individuals at all times.

These individuals move according to L in D. Branching occurs when one of them hits ∂D.

At that point, the individual is removed and K independent particles with E[K] = K̄ are

born at one random location, chosen with distribution γ(dx) concentrated on D. We note

that supp(γ) ⊆ D and some regularity on the coefficients of L imply that the individuals

have a positive lifetime and no two individuals reach the boundary at the same time, with

probability one. Between boundary hits the particles follow independent diffusions driven

by L. We then prove the representation of the solution to (1.3) νt = E[ζt], introduced in

(1.3) as well as its exponential growth bound.

Remark. The branching process is closely related to models in genome population dy-

namics. Here mutation is represented by the diffusive term (the Brownian term), selection

is represented by drift (in the probabilistic, not geneticists’ sense) and recombination is

represented by the redistribution at a random point ∼ γ(dx) where the new mass is born.

Genetic recombination can be seen as a repair to damaged DNA. If artificial, it is under

the effect of a catalyst, many times simplified as contact with a portion of the boundary.

The BSBD particle process mentioned earlier is exactly its normalization, or the statistical

relative frequency of types.

1.4. Summary of the paper. The goal is to solve the above equation. Section 2 gives

the conditions we assume on the underlying process driven by L. Section 3 states the main

results. Theorem 1 solves the heat equation with mass creation, giving its representation as

the expected value of the empirical measure of the auxiliary branching process. Theorem

2 proves some regularity properties of the solution, including being a function (having

a density) away from the support of γ. Theorem 3 studies the strong solution when L

is the half-Laplacian and γ is a delta function. Moreover, the weak boundary condition

(1.2) - imposed on test functions - becomes the flux balance condition (3.5). The auxiliary

branching process is defined in Section 4. The proofs of the main theorems in Section 3 are

done in Section 5.

4



2. Conditions on the underlying process

The underlying process is the diffusion driven by a second order, strongly elliptic operator

L with sufficiently smooth coefficients, given by

(2.1) Lu(x) =
1

2

∑
1≤i,j≤d

aij(x)∂2
xixju(x) +

∑
1≤j≤d

bj(x)∂xju(x) , u ∈ C∞c (Rd) .

Due to the requirements of this section, we assume a = (aij) is a symmetric d×d matrix, b =

(bj) a d - dimensional vector, both with C∞(Rd) components having bounded derivatives

and there exists a0 > 0 such that 〈az, z〉 ≥ a0||z||2, z ∈ Rd (uniform ellipticity). The

diffusion is killed at τD, the hitting time of the boundary of a bounded domain D ∈ C2.

The killed process solves the martingale problem for (L,D(L)), where

D(L) = {φ ∈ C(D̄) ∩ C2
b (D) |φ(y) = 0 , y ∈ ∂D}(2.2)

and its transition probabilities pD(t, x, dy) have densities (Dirichlet heat kernel)

(2.3) pD(t, x, dy) = pD(t, x, y)dy , pD(t, x, y) ∈ C1,2((0,∞)× D̄2)

and define a strongly continuous Feller-Dynkin semigroup (cf. [27], Chapter III.6)

(2.4) SDt φ(x) =

∫
D
pD(t, x, y)φ(y)dy ∈ C(D̄) , φ ∈ C(D̄) (Feller property) .

The semigroup is C0 (strongly continuous) on C0(D), the space continuous functions van-

ishing at infinity on D with the supremum norm. The boundary is identified with the point

at infinity.

The density exists and is continuous for t > 0 due to (2.3). Denote fD(t, x), FD(t, x) the

density, respectively distribution functions hitting time of the boundary τD for initial state

x ∈ D and t > 0. Then

(2.5) Px(τD > t) = 1− FD(t, x) = SDt 1(x) =

∫ ∞
t

fD(s, x) ds .

Given α ∈ R, we denote the resolvent

(2.6) RDα φ(x) =

∫ ∞
0

e−αtSDt φ(x)dt , RDα (x, dy) = rα(x, y)dy , φ ∈ C(D̄)

provided the integral converges. The Laplace transform

(2.7) α→ f̂D(α, x) = Ex[exp(−ατD)] = 1− αRα1(x) ,

after an integration by parts.

Condition 1. There exists α− < 0 such that

(2.8) sup
x∈D̄

f̂D(α−, x) = cD <∞ .

5



While (2.6) and (2.7) are always true for α > 0, the bound cD from (2.8) implies that

the semigroup SDt generated by diffusion (L,D(L)) has a spectral gap in the sense that

supx∈D̄ Rα−1(x) <∞ and then {α ∈ C | <α > α−} ⊆ Res(L).

Additional regularity will be required for uniqueness and the existence of the strong

solution, in the form of an off-diagonal bound on the Dirichlet heat kernel.

Condition 2. For all β > 0 sufficiently small and x, y ∈ D̄ with dist(x, y) ≥ β, there exists

CD(t, β) > 0, depending on t > 0 and β only and bounded on [0, T ], T > 0 such that

(2.9) |pD(t, x, y)| ≤ CD(t, β) , lim
t→0

CD(t, β) = 0 .

The last condition is more demanding, because it assumes the density of the hitting time

is smooth. It is only needed for uniqueness and the strong solution.

Condition 3. The density fD ∈ C([0,∞)× D̄)∩C1,2((0,∞)× D̄), has bounded derivatives

and is a classical solution to the heat equation ∂tfD = LfD on (0,∞)×D with initial value

f(0+, x) = 0.

2.1. Sufficient conditions. When L is in divergence form and uniformly elliptic with

Dirichlet boundary conditions, milder assumptions on D and the coefficients than those

made in this section are sufficient, e.g. Condition 1 is implied by Theorem 1.5.8. (cf.[8],

p 27) where D needs not be bounded nor C2, only strongly regular. For the bounds on

the heat kernel we refer to Theorem 4.6.9 in the same [8], also discussed in [32]. On the

other hand, stronger assumptions, like a smooth Dirichlet heat kernel pD(t, x, y) satisfying

Gaussian off diagonal bounds would imply Condition 1 and evidently 2 (see [21], also cf.

[30] for a discussion of hypoellipticity and Gaussian bounds). It is Condition 3 that needs

more smoothness in ∂D and the coefficients. In the case of the half-Laplacian we prove

Proposition 1 below. Other weaker conditions may be imposed, by combining regularity

criteria for the Dirichlet problem ([14], Thm. 9.19) and the heat equation ([11], Thm. 6

and 7, Section 7.1).

Proposition 1. When L = 1
2∆ and ∂D is bounded of class C2, then (2.3), (2.4) and

Conditions 1, 2 and 3 are satisfied.

Proof. The Dirichlet Laplacian satisfies (2.3), (2.4) and the smoothness up to the boundary

is guaranteed by ∂D ∈ C2. As mentioned in the discussion above, the spectral gap holds

when D is bounded and L is in divergence form (cf.[8]). The upper bounds found in [32]

for the Dirichlet heat kernel prove Condition 2. It remains to prove Condition 3.

Based on [21], p. 9, Lemma 2.5. When L = 1
2∆, using that ∂D of class C2, an application

of Green’s theorem shows that for ψ(y) ≡ 1

fD(t, x) = −∂tSDt ψ(x) = −1

2
∆xS

D
t ψ(x) = −1

2
∆x

∫
D
pD(t, x, y)ψ(y)dy
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= −
∫
D

1

2
∆xp

D(t, x, y)ψ(y)dy = −
∫
D

1

2
∆yp

D(t, x, y)ψ(y)dy =

−
∫
D
pD(t, x, y)

1

2
∆yψ(y)dy +

1

2

∫
∂D

(
ψ(y′)∇pD(t, x, y′)− pD(t, x, y′)∇ψ(y′)

)
· n dσ(y′) =

1

2

∫
∂D
∇pD(t, x, y′) · ndσ(y′) .

Notice that we used ∆xp
D(t, x, y) = ∆yp

D(t, x, y) since L = L∗ and G(x, y) = G(y, x) in

this case.

We obtained

fD(t, x) =
1

2

∫
∂D
∇pD(t, x, y′) · n dσ(y′) .

Theorem 2.1 in [33] gives upper bounds for the gradient of the Dirichlet heat kernel in a

bounded domain. Using the off-diagonal estimate we derive limt→0 fD(t, x) = 0. �

We conclude this section with a consequence of Condition 1, that will be used throughout

the paper. To simplify notation, write

(2.10) f̂D(α,m) = 〈f̂D(α, x),m(dx)〉 , m ∈M1(D) .

Proposition 2. Let γ ∈ M1(D). Under the assumption (2.8) there exists −∞ < α̃ < 0

such that the decreasing function α→ f̂D(α, γ) satisfies

(2.11) lim
α↓α̃

f̂D(α, γ) = +∞ , lim
α→∞

f̂D(α, γ) = 0 .

The Laplace transform α→ f̂(α, γ) can be extended to a holomorphic function on <(α) > α̃.

For any K̄ > 0 there exists a unique α∗ ∈ (α̃,+∞) such that

1− K̄f̂D(α∗, γ) = 0 .(2.12)

Moreover, due to f̂D(0, γ) = 1, α∗ > 0 (α∗ < 0) for K̄ > 1 (K̄ < 1), with equality α∗ = 0

when K̄ = 1.

Remark. The proposition allows K̄ > 0, slightly more general than our needs for K̄ > 1.

We note that α∗ is necessarily positive in that case.

Proof. Consider γ ∈ M1(D) with supp(γ) ⊂ D. Due to (2.8) f̂D(α, γ) ≤ cD for α > α−

after integration over γ(dx). Since f̂D(α, γ) is the Laplace transform of a non-negative

random variable, α → f̂D(α, γ) is decreasing. Due to (2.8) we certainly have τD < ∞
with probability one, which proves the limit as α → ∞ by dominated convergence. The

existence of a finite α̃ follows from the monotone convergence theorem, unless f̂D(α, γ) was

finite for all α → −∞, in which case τD = 0 a.s., which is not allowed, again by (2.8). It

follows that f̂D(α, γ) sweeps through (0,+∞) and assumes every value K̄−1. The complex

extension into the half plane is standard. �
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3. Main results

Theorems 1, 2 and 3 are the main results of the paper. Their proofs will be done in

Section 5, based on the branching process constructed in Section 4.

Since supp(γ) is disconnected from ∂D by hypothesis, D(γ) = D\ supp(γ) is an open set

whose boundary includes ∂D. For a finite signed measure m, we denote |m| = m+ + m−,

the sum of the positive and negative parts and the total variation ||m||.

Definition 2. We shall say m· ∈ C([0,∞),MF (D)) is a regular solution if it is uniformly

bounded in total variation and has a bounded density in the vicinity of the boundary, both

locally uniform in time. More precisely, for any pair (t0, T ) with 0 < t0 < T <∞ and any

Borel set F ⊆ D(γ), there exists a constant C(t0, T ) such that

(3.1) sup
0≤t≤T

||mt|| <∞ and sup
t0≤t≤T

|mt(F )| ≤ C(t0, T )Leb(F ) .

Remark. A regular solution has properties pertaining to the forward equation, especially

the second inequality where we assert a weak Dirichlet boundary condition.

Theorem 1. Assume Condition 1 holds. For any initial value ν0 ∈MF (D), there exists a

weak solution ν· ∈ C([0,∞),MF (D)) of equation (1.3), where time continuity is defined in

the topology of finite measures. The solution admits the representation

(3.2) ∀φ ∈ D 〈νt, φ〉 = Eν0 [〈ζt, φ〉] , t ≥ 0 ,

where (ζt)t≥0 is the auxiliary measure-valued process (ζt)t≥0 defined in Section 4. If, in

addition, Condition 2 is satisfied, the solution is regular and when 3 holds as well, then the

regular solution is unique.

From its representation (3.2), the solution satisfies an exponential growth condition.

Corollary 1. If ν0 is a probability measure, the total mass nt = 〈νt, 1〉 of the solution with

representation (3.2) is positive, non-decreasing and there exists a constant c(ν0) depending

only on the initial value ν0 such that 0 < nt ≤ c(ν0)eα∗t, for any t ≥ 0, where α∗ is the

constant defined in Proposition 2.

Proof. Assuming Theorem 1, the proof is based on the representation

〈νt, φ〉 = Eν0 [〈ζt, φ〉] =

∫
D
Ex[Nt] ν0(dx) , t ≥ 0 ,

applied to φ(t, x) ≡ 1 ∈ D and Proposition 3 in Section 4. The last equality is from the

construction of the branching process. Finally the exponential bound comes from (4.4),

after integrating against the initial measure. The total mass nt is non-decreasing as the

expected value of a non-decreasing function. �
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When ν0 = δx, the solution is denoted νxt and if it has a density we write νxt (dy) =

vx(t, y)dy. For convenience, the regularity properties of νt are given in the next theorem.

Theorem 2 (Properties of the density function). Assume Conditions 1 and 2. Let D′ ⊂⊂
D(γ), F = D′∪∂D and β = dist(supp(γ), F ) > 0, where D(γ) is the same as in Definition

2.

(i) For arbitrary times 0 < t0 < T , there exists a constant C(t0, T, β) > 0 such that

sup
t∈[t0,T ],(x,y)∈D×F

vx(t, y) = C(t0, T, β) ,(3.3)

implying that it satisfies (3.1) with C(t0, T ) = C(t0, T, β). Moreover, if pD(t, x, y) = 0 when

y ∈ ∂D, then the same is true for p(t, x, y).

(ii) For any initial value ν0 ∈ M1(D) (probability measure, total variation one) the

measure in (3.2) has a density νt(dy) = v(t, y)dy, y ∈ F , t > 0 satisfying (i) with the same

constant. If, in addition, ν0(dy) = v0(y)dy, v0 ∈ C(D̄), then v ∈ C([0,∞)× F ).

3.1. The strong solution. Let w ∈ C1(D̄ \ {c})). Define the inward flux from c the limit

(3.4) Φ(w, c) = lim
ε→0

∫
∂B(c,ε)

∇w(y) · n dS ,

where n is the outward normal to the sphere centered at c, whenever the limit exists and is

finite. We also denote the usual flux of w over the boundary Φ(w, ∂D) =
∫
∂D∇w(y) ·n dS,

where n is the outward normal to ∂D.

Remark. The flux is said inward because it enters the set at c. It can be considered

asymptotically equal to the opposite of the outward flux seen from the interior of the

punctured set through a small ball centered at c.

Theorem 3. Assume the same conditions as in Theorem 2. Let L = 1
2∆, γ(dx) = δc(dx)

for some c ∈ D and ν0(dy) = v0(y)dy, v0 ∈ C(D̄). Then the solution from Theorem 1

has a density, i.e. νt(dy) = v(t, y)dy, integrable in the space variable for any t ≥ 0 with

v ∈ C([0,∞)×D \{c})∩C1,2((0,∞)×D \{c}) which is a solution of ∂tv = 1
2∆v on D \{c}

with v(t, y)|∂D = 0 satisfying the flux balance condition

(3.5) Φ(v(t, ·), c) = K̄Φ(v(t, ·), ∂D) .

Remark. The solution v(t, y) behaves like a Green function, and has a singularity of the

same type. In other words v(t, y) ∼ ||y − c||2−d as y → c.
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4. The auxiliary process ζt

Let D̃ = D ∪ {0} the usual compactification of D with D ∪ {0}, where 0 is an isolated

point for D. Here 0 will be a cemetery point. We introduce a branching process constructed

on a subspace of MF (D̃), the space of finite measures on D̃. First, we construct it as a

particle system Zt having a finite but random number of particles Nt alive at any t ≥ 0.

With the same notations as in Section 1, a single particle is placed at a random point

with initial distribution ν0(dx) at t = 0 and starts moving according to (L,D(L)) until it

reaches ∂D, when it goes to o. At that moment, instantaneously, a random integer number

K of particles are born at a specific point in D distributed according to γ(dx).

All particles start afresh, independently, and move in D until the first one dies and the

branching is repeated. The procedure is continued indefinitely. The number K is always

distributed according to π(k), k ≥ 1, where π is a probability mass function on the non-

negative integers.

Two exceptional outcomes are to be taken into account, explosion and extinction, but

none occurs in the setup of this paper (see below). It is shown below that the total mass

is finite a.s., with an exponential bound in expected value, proving that it is not explosive.

Extinction is not possible if K ≥ 1 with probability one.

Denote by Zit , i ∈ Z+ the i-th particle born in the process. If it is born at time τ , then

we understand that t ≥ τ . Let N tot
t be the total number of individuals ever born up to

time t ≥ 0. When at time τ a number j ≥ 1 of individuals are born, their birth being

simultaneous and at the same point, their ordering is not relevant. They are simply labeled

i = N tot
τ− + l, 1 ≤ l ≤ j. By construction, the process starts and preserves a finite number

of particles during its lifetime with probability one.

We introduce the process

ζt =

Ntot
t∑
i=1

δZit , with Nt = 〈ζt,1D〉 , t ≥ 0 ,(4.1)

where Nt is the number of particles alive at time t ≥ 0 and N tot
t −Nt is the number of killed

particles, which is equal to the number of branching events up to time t > 0. As defined in

(4.1), the process starts at a random point X with distribution ν0 ∈M1(D).

The process (ζt) evolves in the space of discrete measures, more precisely

M0(D̃) = {µ ∈MF (D̃) | µ =
∑
i∈I

δxi(dx), xi ∈ D̃ , i ∈ I , I finite} ,

a subset of MF (D̃). We shall consider M0(D̃) the space of finite configurations in D̃

M0(D̃) = ∪∞N=1D̃
(N) ∪ {0}
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where 0 is the zero measure (no delta function is present) endowed with the topology of

disjoint unions. Each D(N) is the symmetric product of D (i.e. the product space factorized

by symmetries on DN ) with the product topology of D as a subset of Rd (see also [5], [26]).

This is a Lusin space because each of the spaces in the summation is a complete separable

metric (Polish) space. A net converges only if eventually all terms belong to only one

element in the sum and convergence takes place in the topology of that space. In our

construction, for finite configurations, we note that convergence in norm on D̃N implies

weak convergence of measures.

Definition 3. Denote (ζxt ) the the process with ν0 = δx as in (4.1) and if µ =
∑

i∈I δxi,

I finite, then ζµt =
∑

i∈I ζ
xi
t , where the processes (ζxit ) are independent. We note that the

points xi are not necessarily distinct, but each individual acts as an independent copy in

(ζµt ).

By construction, (ζt) is a pure branching process in the sense that, if µ1, µ2 ∈ M0(D),

then

(4.2) L(ζµ1+µ2
· ) = L(ζµ1· ) ∗ L(ζµ2· ) ,

where L(·) denotes the probability law.

Finally, a technical clarification. We shall assume an infinite sequence of i.i.d. processes

with the same law as Z1
t is provided, as well as an i.i.d. sequence of copies of K. At a

branching event τ , we sample the current value k of the random number K and k i.i.d.

copies of Zt are sampled and the process re-started from τ as Zt+τ , for each particle in the

union of the particles alive and the ones newly added.

The particle that was killed goes to o. We notice that Nt does not take into account

killed particles since o /∈ D. By construction, no branching events may occur simultaneously.

The construction is thus inductive over the branching events and N tot
t <∞, almost surely.

The process (ζt)t≥0 is Markov with state space M0(D̃). It shall be adapted to a filtered

probability space (Ω,F , (Ft)t≥0, P ), where the filtration satisfies the usual conditions. We

note that the law of (ζt) is a probability measure on the Skorokhod space D([0,∞),MF (D̃)).

For the purpose of this paper, it is sufficient to have K ≥ 1 deterministic, but in this

section we let K random with K ≥ 1 and K̄ > 1. In agreement to (2.12) we are in the

supercritical case.

4.1. Alternative construction. Finally, we point out to an alternative approach to the

construction of (ζt). Starting with the semigroup SDt of the diffusion killed at the boundary,

we construct the corresponding S̃Dt , a semigroup on M0(D̃) governing the motion, with-

out branching, of finite configurations of independent particles driven by SDt ; for a finite

collection of initial points, we run as many independent processes and simply follow the
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sum of the delta functions of their position. This semigroup is trivial in that it presents no

branching and would not be useful in itself. Following [31], Section 12.5, a perturbation of

S̃Dt , denoted S̃t, is introduced by Γ(µ, dµ′), a bounded kernel on M0(D̃) as the solution of

the integral equation

(4.3) StG(µ) = SDt G(µ) +

∫ t

0
SDt−s[

∫
M0(D̃)

SsG(µ′)Γ(µ, dµ′)] ds .

In our case Γ should incorporate the branching trigger, namely the first boundary hit of

the finite configuration, as well as the jump in measure when K particles are created. Let

FD(s, µ) be the distribution function of the minimum of the N = ||µ|| hitting times τDxi ,

provided µ =
∑N

i=1 δxj ≡ (x1, . . . , xN ). Let

Γ(µ, dµ′) = 1∂DN (µ)P
(
µ+ ζ ∈ dµ′

)
i.e. the distribution of µ+ ζ ,

where µ ∈ DN if at least one of its components is at the boundary (or equivalently, at o,

the cemetery state) and ζ is an element ζ = (Z,Z, . . . , Z) ∈ DK with Z ∼ γ. Both the

length K and the distribution of Z are random and independent. In the finite configuration

formalism, addition of delta functions corresponds to concatenation

(x1, . . . , xN ) + (z1, z2, . . . , zk) = (x1, . . . , xN , z1, . . . , zk) (modulo a permutation) .

It is important to mention that SDt here is the non-defective semigroup of the absorbed

motion, whereas we used the same notation for the semigroup of the killed process. This

matters because at branching, particles at the boundary are not removed but will remain

at o.

Relation (4.3) is then a reformulation of (4.18) at a more general level. For the purpose

this paper, which is solving a PDE, our particle system approach is preferable, because

the perturbation of the semigroup requires to adapt the soft killing in [31] with a bounded

potential to the hard killing at the boundary followed by a re-proof of existence (St is only

defined as a solution to an integral equation). Additionally, in this paper it is important to

show the solution is smooth, and that is not practical at this generality level.

4.2. Exponential bounds. The next proposition shows that no explosion can occur and

gives a sharp exponential upper bound of E[Nt]. Define the stopping times Tm ∈ [0,+∞]

as the first time Nt ≥ m, m ∈ Z+. The process t → Nt is rcll (cadlag) and piecewise

constant, so Tm is a stopping time and Tm is nondecreasing in m. The stopping time

T∞ = limm→∞ Tm is the time of explosion which is the life time of the process.

First, we prove the exact upper bound for the expected number of particles in the su-

percritical case, when p0 = 0, i.e. K ≥ 1 with probability one.

Proposition 3. If K ≥ 1, then the number of particles Nt of the process (Zt) starting with

a finite number of particles has finite expectation for any t > 0, assuming that K̄ is finite.

12



More precisely, there exists C(γ, K̄) > 0 and α∗ ≥ 0 depending only on γ and K̄ as well,

both independent of t and x, such that

sup
x∈D

Ex[N(t)] ≤ C(γ, K̄)eα
∗t .(4.4)

More precisely, α∗ is the solution to (2.12) and depends on γ, K̄ via the distribution of the

first hitting time τD.

Remark. This is a simplified version of the result from [18]. Here the branching is

always supercritical and extinction is not possible.

Proof. Given that p0 = 0, then either K̄ = E[K] > 1 if at least one of pk > 0, k ≥ 2, or

K ≡ 1 with probability one. Since in the latter case there is nothing to prove, we proceed,

without loss of generality, assuming K̄ > 1. Recall Tm is the first time Nt exceeds m

particles. Let Nx
t denote the number of particles at time t ≥ 0 of the process starting with

exactly one particle at x ∈ D and Ex[·] the expectation with respect to this initial state.

Let τD be the first boundary hit. Since p0 = 0, the process has a non-decreasing number

of particles, we have the time shift inequality holding for all ω in the sample space

(4.5) τD + Tm−1 ◦ θτD(ω) ≥ Tm(ω) , Tm(ω) ≥ Tm−1(ω) , m ≥ 2 .

We remark that this is the only reason we needed a coupling in Step 1. Moreover, if m ≥ 2

then Tm ≥ τD implying that {τD > t′} = {τD > t} when t′ = t ∧ Tm.

With t′ = t ∧ Tm, we have t′ ≤ t ∧ [(Tm−1 ◦ θτD) + τD]. And on the event {τD < t},

t′ ≤ [(t− τD) ∧ (Tm−1 ◦ θτD)] + τD .(4.6)

We now write

Ex[Nt′ ] = E[Nx
t′ ] = E[1{t′<τD} + 1{t′≥τD}

K∑
j=1

N
Zj
τD

t′−τD ](4.7)

≤ E[1{t<τD} + 1{t≥τD}

K∑
j=1

N
Zj
τD

(t−τD)∧(Tm−1◦θτD )
](4.8)

= Px(t < τD) + K̄

∫ t

0
Eγ [N(t−s)∧Tm−1

]fD(s, x) ds(4.9)

where Eγ [·] =
∫
D Ex′ [·]γ(dx′) and fD(t, x) is the density function of τD when the particle

starts at x ∈ D. On line (4.8) we used (4.6) and on line (4.9) we used the strong Markov

property and the independence of K from the past of the process.

Let am(t) = Eγ [Nt∧Tm ], m ≥ 0, t ≥ 0. By integrating Ex[Nt′ ] over γ(dx) we have

am(t) ≤
∫
D
Px(t < τD) γ(dx) + K̄

∫ t

0
am−1(t− s)fD(s, γ) ds(4.10)
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where fD(t, γ) =
∫
D fD(t, x′)γ(dx′). The unknown expected values satisfy the bounds

0 ≤ am(t) ≤ m.

Applying Gronwall’s lemma we obtain an exponential bound for am(t) by taking ad-

vantage of am−1(t) ≤ am(t). We can be more precise. The Laplace transform ĝ(α) =∫∞
0 e−αsg(s)ds, for an integrable function g : [0,∞) → R, applied to the inequality, shows

that

âm(α) ≤ 1

α
(1− f̂D(α, γ)) + K̄âm−1(α)f̂D(α, γ)(4.11)

A simple estimate is to bound further line (4.9) using Tm−1 ≤ Tm and the monotonicity

of Nt to obtain âm−1(α) ≤ âm(α).

For any α > α∗ we have

âm(α) ≤ 1

α

( 1− f̂D(α, γ)

1− K̄f̂D(α, γ)

)
(4.12)

We note that 1− K̄f̂D(α, γ) has a simple zero at α∗. Because α∗ ∈ R, to be a multiple

zero would imply that f̂ ′D(α∗, γ) = 0. But that means Eγ [τDe−α
∗τD ] = 0, leading to τD = 0

γ - almost surely, a contradiction with supp(γ) ⊂ D.

Notice that t→ am(t) is non-decreasing and non-negative. The Wiener - Ikehara Taube-

rian theorem (cf. [24] Theorem 4.2 p. 124) proves that there exists a constant C1 > 0

(obtained from the pole at α∗), dependent of γ but independent of m and t such that

limt→∞ e
−α∗tam(t, γ) ≤ C1, which implies that for a constant C depending only on γ

am(t, γ) ≤ Ceα∗t .(4.13)

Letting m → ∞ and the monotonicity of âm in m, we obtain the same inequality uni-

formly in m. Plugging into (4.9) we obtain

Ex[Nt∧Tm ] ≤ Px(t < τD) + CK̄

∫ t

0
eα
∗(t−s)fD(s, x) ds

Note that Tm goes to infinity as m→∞, so monotone convergence shows that the bound

is uniform in m, which proves Ex[Nt] < ∞ and a fortiori the claim that Nt is finite. To

estimate its growth rate we factor out et and then we bound the integral all by itself by

letting t→∞, which will give the Laplace transform of fD at α∗. Then

Ex[Nt] ≤ Px(t < τD) + CK̄eα
∗tf̂D(α∗, x) ≤ 1 + CK̄eα

∗t .(4.14)

This proves the claim that, uniformly in x ∈ D, there exists a constant depending only on

γ and K̃, inequality (4.4) is true. �
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4.3. The semigroup. In order to describe the evolution of the branching process (ζt)

we only need to define a semigroup on M0(D). As we shall see in a moment with the

introduction of (4.17), it is still important to work with general test functions on MF (D).

Define the continuous, bounded functions F ∈ Cb(MF (D)) of the form

(4.15) µ ∈MF (D)→ F (µ) = ϕ(〈µ, φ1〉, . . . , 〈µ, φl〉) , l ∈ N

where (φi)1≤i≤l are test functions in T and ϕ ∈ Cb(Rd). A class with smooth components

including C∞c (D) of such test functions is sufficient to determine the law of the process

(4.1) as the solution to the martingale problem, see [10] p. 176. Due to Proposition 3

we can extend ϕ to polynomial growth functions; in fact, to functions with some positive

exponential moment.

For a test function F and µ =
∑N

i=1 δxi ∈M0(D), N positive integer (with the convention

that we represented the space of finite configurations as sums of delta functions) we define

the semigroup on M0(D)

St(F )(µ) = Eµ[F (ζt)] = E[F (ζµt )] =

N∑
i=1

E[F (ζxit )] =

N∑
i=1

Exi [F (ζt)](4.16)

= 〈E·[F (ζt)], µ〉 =

∫
D
Ex[F (ζt)]µ(dx) .

The relation is a consequence of the construction of the process. Particles independent

at time s ≥ 0 remain independent forever. The only dependence is through the ancestry

tree. Particles distributed deterministically at time t = 0 are independent.

We shall be only interested in the functionals µ→ F (µ) = 〈µ, φ〉, for some test function

φ, in other words a linear functional, when ϕ(u) = u and l = 1. In that sense we refer to

the restriction of the semigroup as the marginal transition semigroup, formally defined in

(4.17), as already mentioned in Subsection 1.4.

Now consider a mapping defined for φ ∈ Cb(D),

(4.17) t→ Stφ(x) := Ex[ 〈φ, ζt 〉 ] (= StF (δx)) .

Remark. The marginal semigroup will be denoted by simple upper case St, as opposed

to St for the semigroup of the process seen on M0(D).

In the following RDα (α) =
∫∞

0 e−αtSDt dt is the resolvent of the semigroup (SDt )t≥ defined

in (2.4) and the same notation, without superscript D, designates the resolvent of (St)t≥0.

Proposition 4. The mapping (4.17) defines a continuous (but not necessarily strongly

continuous) semigroup on C(D̄) satisfying for φ ∈ C(D̄)

Stφ(x) = SDt φ(x) + K̄

∫ t

0

∫
D
St−sφ(x′)γ(dx′)dFD(s, x) ,(4.18)
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with resolvent

Rαφ(x) = RDα φ(x) +
K̄f̂D(α, x)

1− K̄f̂D(α, γ)
γRDα φ , <(α) > α∗ ,(4.19)

where α∗ is defined in (2.12).

Remark.

Step 1 - Relations (4.18) and (4.19). The derivation of (4.18) follows the same reasoning

as (4.7)-(4.9):

Ex[φ(ζt)] = Ex[φ(ζt)1τD>t] + Ex[φ(ζt)1τD≤t] = SDt φ(x) + Ex[Ex[φ(ζt)1τD≤t | FτD ]]

= SDt φ(x) + Ex[

K∑
j=1

E
Zj
τD

[φ(ζt−τD)1T−τD≥0]]

= SDt φ(x) + K̄

∫ t

0

∫
D
St−sφ(x′)γ(dx′)dFD(s, x),

where we use that the processes in the summation are iid and the number K of offsprings

is independent of FτD .

Since φ is bounded, |Stφ(t, x)| ≤ ||φ||Ex[Nt], which is O(eα
∗t) cf. (4.4). Since all func-

tions present in (4.18) are exponentially bounded, we integrate against e−αt to obtain the

Laplace transform (in time) for α > α∗, i.e. the resolvent. The integral term in (4.18) is

a convolution in the time variable, and due to (2.5), we proved that the relation between

resolvents of the semigroups is

Rαφ(x) = RDα φ(x) + K̄(γRαφ)f̂D(α, x) .(4.20)

To obtain (4.19) we integrate to the left hand side (i.e. in the variable x) the measure γ on

both sides, then

γRαφ = γRDα φ+ K̄(γRαφ)f̂D(α, γ) ,(4.21)

recalling the notation (2.10). Solving

γRαφ =
γRDα φ

1− K̄f̂D(α, γ)
,(4.22)

and plugging back in (4.20) we establish (4.19).

The relation is valid for α > α∗. Note that

f̂D(α, x) = 1− αRDα 1(x) ,(4.23)

where 1(x) is the constant function equal to one. In addition, {α ∈ C|<(α) > α̃} ⊆ Res(L)

and all functions in formula (4.19) are meromorphic on Res(L). Since α̃ < α∗, this shows

that the denominator in formula (4.19) has a pole at α∗.
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Step 2 - Semigroup property. When G is linear, i.e. G(µ) = 〈φ, µ〉, φ ∈ Cb(D̄). We

need to ensure that x→ St(δx) is continuous for all t > 0. This is a consequence of (4.18).

The first term is continuous by hypothesis, whereas the second is continuous by dominated

convergence. Notice, as a technical point, that the Markov property was applied in the

derivation of (4.18) in Part 1 to the particle process Z1
t . At this point we can apply the

Markov property to (ζt) to have

St+sφ(x) = Ex[〈φ, ζt+s〉] = Ex[Ex[〈φ, ζt+s〉 | ζs]] = Ex[〈Eζs [〈φ, ζt〉]](4.24)

= Ex[〈E·[〈φ, ζt〉], ζs〉] = Ex[〈Stφ(·), ζs〉]

= Ex[Ss(Stφ(·))] = SsStφ(x) .

Step 3 - Continuity of the semigroup (but not strong continuity). We write |Stφ(x) −
φ(x)| ≤ (I) + (II) where (I) = |SDt φ(x) − φ(x)| and the integral term (II) has a bound

based on (4.4) in Proposition 3

(II) ≤ ||φ||
∫ t

0
C(γ, K̄)eα

∗(t−s)dFD(s, x) ≤ ||φ||C(γ, K̄)eα
∗t Px(τD ≤ t) .

The first term in (4.18) is strongly continuous and so (I) vanishes as t → 0. The second

term vanishes as well, only for each fixed x ∈ D. The convergence is not uniform, in general.

�

Based on the explicit formulas from Proposition 4, we can show the next regularity result.

Theorem 4. Under the same conditions as in Theorem 2, the function w(t, x) = Stφ(x)

belongs to C([0,∞)× D̄) ∩ C1,2((0,∞)×D), is bounded for t ∈ [0, T ], T > 0 and satisfies

the heat equation ∂tw = Lw with boundary condition (1.2) and initial value w(0, x) = φ(x).

Proof. According to Proposition 4, for a fixed φ ∈ D, t → Stφ(x) is continuous. We re-

apply (4.18) we obtain the function is of class C1 for t > 0. To see that, the first term

satisfies the condition by hypothesis, and the second term is a time integral of a continuous

function. The derivatives in x appear only from SDt f(x) or f(t, x), so the regularity in x

inherited from the heat kernel pD(t, x, y) assumed in (2.3) is preserved.

The heat equation is linear; since the first term of (4.18) satisfies it, we have to prove

that

U(t, x) =

∫ t

0
a(t− s)fD(s, x)ds , a(t) =

∫
D
Stφ(x′)γ(dx′)

satisfies the heat equation as well. All functions involved are C1 in t and C2 in x. First we

write U(t, x) =
∫ t

0 a(s)fD(t− s, x)ds and differentiate

∂tU(t, x) = a(t)fD(0+, x) +

∫ t

0
a(s)∂tfD(t− s, x)ds =

∫ t

0
a(s)LfD(t− s, x)ds = LU(t, x)
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due to Condition 3. Using the formula for the semigroup (4.18) we can check that (t, x)→
Stφ(t, x) ∈ D and satisfies the boundary condition (1.2) for all t > 0. Since the semigroup

is continuous cf. Proposition 4, w satisfies the initial value by letting t→ 0. �

Corollary 2. Under the same conditions as Theorem 1, for any t0 > 0, the function

wt0(t, x) = w(t0 + t, x) belongs to D and satisfies the boundary conditions (1.2).

Proof. The C1,1 regularity away from t = 0 was proved in Theorem 4. On [t0, T ]×D, the

function w(t, x) is the sum of SDt φ(x) and the integral term in (4.18). By assumption, the

density fD(t, x) ∈ C1,2
b ([t0,∞)×D. This concludes the proof. �

5. Proofs of the main theorems

The proof is organized in two steps. The first step is to show that the (possibly) particular

solution (νt)t≥0, obtained as expected value of the measure-valued process (ζt)t≥0 by the

representation (3.2), has all the properties of the solution in Theorems 1 and 2, except

uniqueness, which will be proven at the end, in step two.

Without loss of generality we can assume that ν0 ∈M1(D) (is a probability distribution).

For a test function φ, we put

〈φ(t, ·), νt〉 := Eν0 [〈ζt, φ(t, ·)〉] = Eν0 [

Nt∑
j=1

φ(t, Zjt )] .(5.1)

Based on the estimate on Nt from Proposition 3, νt has finite total mass. It belongs to

MF (D) simply because it is the expected value of a finite random measure.

5.1. Proof of Theorem 1: Existence. Part 1 - existence of a finite measure-valued

solution. Let φ ∈ D such that φ(t, ·) satisfies (1.2) for t ≥ 0. We need to check that

(〈ζt, φ(t, ·)〉)t≥0 is a martingale with respect to (Ft)t≥0.

Calculating the jump at a boundary hit τ by particle i, we obtain

〈ζτ , φ(τ, ·)〉 − 〈ζτ−, φ(τ−, ·)〉 = φ(τ, Z ′) + φ(τ, Z ′′)− φ(τ, Zi(τ−)) ,

where Z ′, Z ′′ are independent random variables with respect to Fτ− with distribution γ.

Note that φ(t−, y) = φ(t, y) so the left-hand side limit in time was dropped. The conditional

expectation of this jump, given Fτ−, vanishes, i.e.

K

∫
D
φ(τ, y)γ(dy)− φ(τ, Zi(τ−)) = 0 , Zi(τ−) ∈ ∂D

as long as φ satisfies the boundary condition (1.2). The test function is bounded with

smooth bounded derivatives, implying by a standard application of the optional sampling

theorem that the functional is a continuous martingale between boundary hits. Taking the

expected value obtains (1.3), since νt is defined as the expected value of ζt by (5.1).
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Part 2: Time continuity. Using (4.17) we see that, as a function of time, the deterministic

process νt, t ≥ 0, is in the Skorokhod space of right continuous with left limit paths. From

(4.18), applied to φ(x)→ φ(t, x), we have that 〈φ(t, ·), νt〉 = Stφ(t, x) is the sum of a known

continuous part given by SDt and a time integral of a bounded function. This shows that

t → 〈φ(t, ·), νt〉 is continuous. We note that this was shown for a fixed φ. If the mapping

t→ 〈νt, φ〉 is continuous, then t→ νt is continuous in the topology of finite measures.

5.2. Proof of Theorem 2. Claim (i). Since D′ ⊂⊂ D(γ) we see that dist(supp(γ), F ) =

β > 0. Consider φ non-negative in formula (4.18) with supp(φ) ⊆ F . Integrate over γ in

the variable x to obtain

(5.2) u(t, φ) = uD(t, φ) + K̄

∫ t

0
u(t− s, φ)fD(s, γ) ds

with u(t, φ) and uD(t, φ) denoting
∫
D Stφ(x)γ(dx), respectively the same integral for the

semigroup SDt ; at the same time, we simplified notation for f(t, γ) =
∫
D fD(t, x)γ(dx).

Notice that sups∈[0,∞] f(s, γ) = C(fD, γ) <∞. Gronwall’s inequality proves that

u(t, φ) ≤ uD(t, φ)eK̄C(fD,γ)t = .

The inequality is true for any φ. The right-hand side in the equation above integrates an

absolutely continuous function y → pD(t, x, y) against φ. By re-inserting into (5.2) and

then removing φ, we obtain that St is absolutely continuous in y with density satisfying

the bound

(5.3) 0 ≤
∫
D
p(t, x, y)γ(dx) ≤ eK̄C(f,γ)t

∫
D
pD(t, x, y)γ(dx) .

This proves that the original equation (4.18), the semigroup kernel has a density in the

variable y

(5.4) p(t, x, y) = pD(t, x, y) + K̄

∫ t

0

∫
D
p(t− s, x′, y)γ(dx′)fD(s, x) ds

≤ pD(t, x, y) + K̄

∫ t

0
eK̄C(fD,γ)(t−s)

∫
D
pD(t− s, x′, y)γ(dx′)fD(s, x) ds

≤ pD(t, x, y) + K̄eK̄C(fD,γ)t

∫ t

0

∫
D
pD(t− s, x′, y)γ(dx′)fD(s, x) ds

≤ pD(t, x, y) + K̄eK̄C(fD,γ)t

∫ t

0
CD(t− s, β)fD(s, x)ds

≤ pD(t, x, y) + K̄eK̄C(fD,γ)t
(

sup
t∈[0,T ]

CD(t, β)
)
Px(τD < t) .
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For the last two lines we recall that β = dist(supp(γ), ∂F ) and used the off-diagonal

bound pD(t− s, x, y) ≤ CD(t− s, β) postulated in Condition 2, eq. (2.9). Set

(5.5) C(t0, T, β) := sup
t∈[t0,T ],x,y∈D̄

pD(t, x, y) + K̄eK̄C(fD,γ)t
(

sup
t∈[0,T ]

CD(t, β)
)
.

concluding the first part of claim (i), on the density bound.

To prove the claim about the density vanishing at the boundary ∂D, we first note that

(5.3) is valid for y ∈ F . Dominated convergence in the time integral from the third line of

(5.4) implies the claim. Dominated convergence is guaranteed by the off-diagonal bound

(2.9), i.e. pD(t− s, x, y) ≤ CD(t− s, β), independent of y.

Claim (ii). Integrating (5.4) against the initial distribution ν0(x) we obtain v(t, y). The

bound is not larger than ||ν0||C(t0, T, β), where ||ν0|| is the total variation. Continuity

for pD(t, x, y), the first term in (5.4), is given by assumption (2.3) for t > 0. Integrating

against the continuous initial density v0 makes this term continuous at t = 0. Another

factor that becomes a continuous is fD(s, v0) =
∫
D fD(s, x)v0(x)dx. Time continuity of the

second term, a time integral, is guaranteed because the integrand is bounded (again we use

the off-diagonal bound). To prove continuity in y we have to re-do the argument based on

Gronwall’s lemma from the proof of claim (i). Fix y0 ∈ F . Integrate (5.4) against γ in

the variable x and subtract the values at y and y0. With the absolute value we obtain the

inequality (5.2) where u(t, φ) is replaced by u(t, y, y0) = |
∫
D |p(t, x, y) − p(t, x, y0)| γ(dx)

and uD(t, y, y0) the analogue quantity for the kernel pD(t, x, y). Following the steps from

the proof of claim (i) we obtain an inequality corresponding to line three of (5.4); after

integrating against the initial density v0 this reads

0 ≤ |v(t, y)− v(t, y0)| = |p(t, v0, y)− p(t, v0, y0)| ≤ |pD(t, v0, y)− pD(t, v0, y0)|

+K̄eK̄C(fD,γ)t

∫ t

0
|pD(t− s, γ, y)− pD(t− s, γ, y0)|fD(s, γ) ds .

Once again, dominated convergence and the off-diagonal bound (2.9) from Condition 2

show that y → y0 implies the claim (ii).

5.3. Proof of Theorem 1: Regularity. The proof of Theorem 2 only requires Conditions

?? and 2. Under these conditions we prove the solution is regular, as stated in Theorem 1.

Recall the constant obtained in (5.5). The bounds involved are obtained for D(γ) =

D \ supp(γ). By setting C(t0, T ) = C(t0, T, β) we see that νxt is a regular solution in the

sense of (3.1).

5.4. Proof of Theorem 1: Uniqueness. Recall that when ν0 = δx, the solution is

denoted vx(t, y) for t > 0. We shall use the time reversal in the semigroup, or equivalently

the backward equation.
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Fix T > 0 and g ∈ Cb(D̄). Using νxt (dy) from (5.1) we set

w(t, x) = 〈νxt , g〉 =

∫
D
g(y)νxt (dy) = Stg(x) .

We point out that this is the point where Condition 3 is used. According to Theorem 4

this function satisfies ∂tw = Lw. The function w also verifies the boundary conditions (1.2).

It is also continuous as t → 0 with value ν0(dy) = g(y)dy. Define φ(t, x) := w(T − t, x),

t ∈ [0, T ]. For any sufficiently small ε > 0, φ is a test function in D on the time interval

[0, T − ε] and satisfies the boundary conditions (1.2).

Let mt(dx) be a weak solution satisfying (1.3). Then

〈φ(t, ·),mt〉 = 〈φ(0, ·),m0〉 , 0 ≤ t ≤ T − ε .(5.6)

This implies

〈φ(T − ε, ·),mT−ε〉 = 〈φ(0, ·),m0〉

= 〈w(T, ·),m0〉 = 〈〈g(·), νT 〉,m0〉 =

∫
D

∫
D
νxT (dy)g(y)m0(dx)

=

∫
D
g(y)

∫
D
νxT (dy)m0(dx) =

∫
D
g(y)νm0

T (dy) = 〈g, νm0
T 〉 .(5.7)

The left hand side is

〈φ(T − ε, ·),mT−ε〉 = 〈
∫
D
g(y)νxε (dy),mT−ε〉 = 〈Sεg,mT−ε〉

= 〈Sεg − g,mT−ε〉+ 〈g,mT−ε〉 .

Assume we prove that the first term vanishes as ε → 0. Then, since the second term

approaches 〈g,mT 〉, we proved that mT = νm0
T . This will be true for arbitrary T > 0,

concluding the proof.

It remains to analyze the first term. The solution m· is a regular solution in the sense

of (3.1), its total variation ||mt|| is bounded uniformly for t ∈ [0, T ]. Write Stg = SDt g +

(St− SDt )g in view of applying (4.18). Using the strong continuity of the semigroup SDt we

obtain

|〈SDε g − g,mT−ε〉| ≤ ||SDε g − g|| sup
t∈[0,T ]

||mt|| → 0 .

Again, from (4.18), the second part of Sεg satisfies

|(St − SDt )g(x)| ≤ K̄
∫ t

0

∫
D
|St−sg(x′)γ(dx′)|dFD(s, x)

≤ K̄||g||
∫ t

0
C(γ, K̄)eα

∗(t−s)dFD(s, x) ≤ K̄||g||C(γ, K̄)eα
∗tPx(τD ≤ t)

We only need to show that 〈Px(τD ≤ ε),mT−ε(dx)〉 → 0 as ε → 0. Pick F ⊂ D \ D(γ)

F = {x′ ∈ D | dist(x′, ∂D) < δ}, for arbitrary but sufficiently small δ > 0 independent of ε.
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From the properties of the diffusion (L,D(L)) we have that x → Px(τD ≤ ε) converges to

zero as ε→ 0, uniformly in x ∈ D \ F .

Fix t0 > 0 such that for all ε, T − ε > t0. In integral notation

|〈Px(τD ≤ ε),mT−ε(dx)〉| = |
∫
D
Px(τD ≤ ε)mT−ε(dx)| ≤ (I) + (II) .

For the first term

(I) = |
∫
D\F

Px(τD ≤ ε)mT−ε(dx)| ≤ sup
x∈D\F

Px(τD ≤ ε) sup
t∈[t0,T ]

||mt||

due to the remarks above. For the second term

(II) ≤ |
∫
F
Px(τD ≤ ε)mT−ε(dx)| ≤ Leb(F )C(t0, T ) ,

because m· satisfies (3.1). Recall that D is bounded and C2, meaning that Leb(F ) =

O(δ) and consequently lim supε→0[(I) + (II)] ∼ O(δ), δ independent of ε. Since δ can be

arbitrarily small, we proved the claim.

5.5. Proof of Theorem 3. A function φ(t, ·) with compact support in D \ {c} = D(γ)

trivially satisfies the boundary conditions (1.2) if

(5.8) φ(t, c) = K̄φ(t, x′) = 0 , x′ ∈ ∂D .

At this point we apply the parabolic Weyl lemma (for the heat equation) (cf. [30] and [22])

noticing that all φ(t, ·) ∈ C∞c (D \ {c}) are admissible as test functions. By uniqueness,

the weak solution v is given by (5.4) according to Theorem 2 (i). In part (ii) of the same

theorem, we proved continuity up to the boundary ∂D. Moreover, the last assertion in part

(i) states that if y → pD(t, x, y) vanishes on ∂D, so does y → p(t, x, y). Consequently, the

same is true for the integral in the variable x, namely y → v(t, y). We have shown that the

density v(t, y) is smooth for t > 0 and y ∈ D \ c and continuous for t > 0, y ∈ D̄ \ {c} and

satisfies the strong forward equation (note that L = L∗ here)

(5.9) ∂tv =
1

2
∆v on D \ {c} , v(t, ·)|∂D = 0 .

Due to ∂D ∈ C2, regularity theorems (cf. [11], Ch. 7, Theorem 7 and [14] Ch. 6.3 Theorem

6.14) imply that v ∈ C2(D(γ) ∪ ∂D). The regularity at the boundary, here C2 (in general,

it must be at least C1) will be needed when we apply the classical Green’s theorem below.

In the following, Dε = {x ∈ D|dist(x, ∂D) > ε}. Due to ∂D ∈ C2, for ε sufficiently small

B(c, 3ε) and D \D3ε are away from each other.

For sufficiently small ε, there exists a smooth function y → hε(y) on D̄ having the

properties:

(i) hε(y) = 1 on D \Dε and B(c, ε)

(ii) supp hε ⊆ D \D3ε ∪B(c, 3ε)
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(iii) ∇hε(y) = 0 on ∂D3ε, ∂Dε, ∂B(c, ε) and ∂B(c, 3ε).

Denote

D1
ε = Dε \D3ε , D2

ε = B(c, 3ε) \B(c, ε) .

When φ satisfies the boundary conditions (1.2), the functions φ1 = hεφ and φ2 = (1−hε)φ
satisfy (1.2) and (5.8), respectively. Let φ(c) = B. Then φ(S) = K̄B, S on the boundary.

Together with the properties of hε, we have the estimates

(5.10) supp φ1 ⊆ D1
ε ∪D2

ε

(5.11) φ1 = 2B + o(ε) on B(c, ε) φ1 = o(ε) on ∂B(c, 3ε)

(5.12) φ1 = B + o(ε) on D \Dε φ1 = o(ε) on ∂D3ε .

(5.13) ∇φ1 = o(ε) on ∂(D1
ε ∪D2

ε )

We know that v(t, y) satisfies (1.3) in simplified form (no dependence on t in φ). This

translates into

Eq(1) + Eq(2) = 0

where

Eq(i) = 〈v(t, ·), φi〉 − 〈v(0, ·), φi〉 −
∫ t

0
〈v(s, ·), 1

2
∆φi〉ds , i = 1, 2

after splitting the equation into the φ1 and the φ2 parts. The φ2 part satisfies (5.8) and is

zero in a neighborhood of ∂D and c, implying that Eq(2) = 0. It follows that Eq(1) = 0.

We now write the integrand (multiplied by two for simplicity)

〈v(s, ·),∆φ1〉 =

∫
D
v(s, y)∆φ1(y)dy =

∫
D1
ε∪D2

ε

v(s, y)∆φ1(y)dy

where we see that supp∆φ1 ⊆ D1
ε ∪D2

ε by eliminating the neighborhood of the boundary

∂D and of c where hε ≡ 1 (so its derivatives are zero) as well as where hε ≡ 0. Using the

second Green formula, the integral on the right hand side splits into I1 + I2 + I3 with

Ii = −
∫
∂Diε

φ1(S)∇v(s, S) · n dS +

∫
∂Diε

v(s, S)∇φ1(S) · n dS , i = 1, 2

and

I3 = −
∫
D1
ε∪D2

ε

∆v(s, y)φ1(y)dy .

Due to the assumptions on hε

(5.14) I1 + I2 = −φ1(c)Φ(v(s, ·), c)− φ1(S)Φ(v(s, ·), ∂D) + o(ε) =

−B
[
Φ(v(s, ·), c)− K̄Φ(v(s, ·), ∂D)

]
+ o(ε) , K̄ = 2 .
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The parenthesis multiplied by B isolates the boundary conditions. Suppose we can show

that all remaining terms in Eq(1) are o(ε). Since B is arbitrary, letting ε → 0, we would

obtain the time integral of the bracket is zero, that is∫ t

0

[
Φ(v(s, ·), c)− 2Φ(v(s, ·), ∂D)

]
ds = 0 .

Since the integrand is continuous in s, the derivative is zero for all s > 0, which proves the

claim.

Now we have to prove that the other terms are o(ε). We can break down Eq(1) in two

terms. One, which includes I3∫
D1
ε∪D2

ε

[
v(t, y)− v(0, y)−

∫ t

0

1

2
∆v(s, y)

]
φ1(y) dy

and another one on the complement set∫
B(c,ε)∪D\Dε

[
v(t, y)− v(0, y)

]
φ1(y) dy = o(ε) .

Note that the time integral part in the second term is zero because of hε = const on the set of

integration and its derivatives vanish. In the first term, the parenthesis is identically equal

to zero since the integration set is away from the boundary and from c and we have shown

that v solves the heat equation in the interior of D \ {c}. The second term is vanishing

as ε → 0 due to the fact that p(t, x, y) has integral equal to nxt < ∞ and thus v(t, ·) is

always integrable. Due to the definition of hε, the argument is concluded by dominated

convergence.
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