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Abstract. A gambler starts with a fortune f < 1 and plays in a Vardi casino with

infinitely many tables indexed by their odds r ≥ 0. In addition, all tables return the same

expected winnings c < 0 per dollar and a discount factor is applied after each round. We

determine the optimal probability to reach fortune one, as well as an optimal strategy,

different from bold play for fortunes larger than a critical value depending exclusively

on c and the discount factor 1 + a. The general result is computed explicitly for some

relevant special cases. The question whether bold play is an optimal strategy is discussed

for various choices of the parameters.

1. Introduction

The main result of the paper is Theorem 1 which finds the optimal probability P0(f) of

reaching wealth at least one (non-extinction) when we start with wealth 0 ≤ f ≤ 1 in a

casino with a continuum range of odds r ∈ R, at tables indexed by r ≥ 0, with expected

winnings per dollar at every table equal to c ∈ (−1, 0) and inflation (or interest) rate a > 0.

More precisely, a gambler starts off with wealth f and is allowed to stake at any table of

the casino an amount s with restrictions 0 ≤ s ≤ f and f +rs ≤ 1+a. The latter condition

can be ignored because as we show it is never violated for any optimizing strategy. Tables

are indexed by their odds r, meaning that a stake s at table r is lost with probability 1−w

and, with probability w, returns rs if the gambler wins. In this paper, every time a game

is played, the current wealth is discounted by a factor (1 + a)−1, accounting for inflation

(or interest rate). It is probably true that the optimal strategy is unique for a > 0 but for

a = 0, this is false.
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What we mean by a Dubins (r, c) casino is the casino with only one table paying odds r

and with expected payoff c < 0 on a dollar bet (also known as subfair). Dubins and Savage

[6] consider the more general case where the casino has several tables, but they do not seem

to have considered the casino proposed by Vardi [13] where a table, Tr, is available for every

odds r and c is fixed and has the same negative value on all the tables. Such a casino will

be called thereafter a Vardi casino, with or without interest, according to whether a > 0 or

a = 0. This terminology was introduced in [12].

The expected payoff c is equal to (+1)rw+(−1)(1−w) < 0, which implies that throughout

the paper w = w(c, r) = (1 + c)/(1 + r). It thus provides an upper bound on any casino’s

optimal probability to reach fortune one if c is the largest expected return on any of the

tables. It is shown by John Lou in a forthcoming thesis [9] that having all the additional

tables and odds in the Vardi casino provides only a relatively small gain in the optimal

probability to reach fortune one over that of the Dubins casino, which seems quite surprising.

All tables are independent, and all games at each table are independent of each other.

More formally, let Ω = {−1, 1}R×Z+ with the σ-field F generated by cylinder functions

and Fn the sequences of outcomes for all tables up to time n. Since Ω = ⊗Ωr, where

Ωr = {ω(r, ·) |ω ∈ Ω} are the projections of Ω, we denote the infinite product of Bernoulli

measures Pr on Ωr assigning probability w(c, r) = (1 + c)/(1 + r) to +1 and 1− w(c, r) to

−1 for all n, and then we set P = ⊗r∈RPr.

A gambling strategy, or simply a strategy S is a sequence of measurable functions

(1.1) Sn(ω, ·) : [0, 1] −→ [0, 1]×R , Sn(ω, f) = (s, r) , n ≥ 0 , ω ∈ Ω

adapted to the filtration {Fn}n≥0, that assign a pair (s, r) = (sn(ω, f), rn(ω, f)) = Sn(ω, f)

to every value f ∈ [0, 1] current at time n, with the only restriction

(1.2) 0 ≤ sn(ω, f) ≤ f.

The set of strategies will be denoted by S.

In other words, S tells the gambler how much he should bet and at which table, for a given

fortune, at a given time. More general strategies than Markovian strategies do not provide

additional probability to reach one. Precisely, we show that all optimal strategies discussed

are simply functions of f , and not of ω and n. In other words, all optimal strategies are

Markovian. In the following, we shall omit ω in Sn(ω, f), and by abuse of notation we shall

make the convention to omit the subscript n whenever Sn(f) depends only on f .
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We assume R = [0,∞), but it is interesting to put the present results in the context

of various other choices of R. The classical result of Dubins and Savage [6] (see also [11]

for more background of the problem) showed that when a = 0 and R = {r}, the optimal

strategy is bold play, more precisely Sb(f) = f when f ≤ (1 + r)−1 and Sb(f) = (1− f)/r

when f > (1 + r)−1 (use the maximum bet allowed at any time). The bold play conjecture

dating back to Coolidge [5] - see also [4] for more comments on this - is not valid for a Vardi

casino without inflation, as shown in [12], where the parameters are a = 0 and R = [0,∞).

Non-optimality of bold play in a one-table casino in the presence of inflation is proved in

earlier work [1, 2, 8] and in a different setting in [7]. In a primitive subfair casino with one

table, satisfying the condition 1/r ≤ a ≤ r, with r > 1, [3] shows that bold play is not

optimal, yet it is conjectured that when r < 1 it is. A recent result [4] proves the conjecture

under the additional assumption that w ≤ 1/2.

The present article sheds some light on the interplay between various parameters defining

the casino, and when bold play is optimal. We give a complete answer to the problem in

the case a > 0 and R = [0,∞). As anticipated from the preceding discussion, a dichotomy

between bold and non-bold play regimes emerges, depending on the choice of parameters

(c, a). There exists a value f̂ such that the optimal strategy is strict bold play (s(f) = f) for

f ≤ f̂ , and a more cautious policy is required for f > f̂ (see (4.4) for a concrete case). Some

parameter combinations like a2 > |c| from Section 2 have f̂ = 1, allowing bold play only,

in some sense concealing the nature of the general problem. Another remarkable feature

of the solution is the presence of a jump at f = 1, meaning that as soon as a > 0, the

extinction probability is bounded away from zero even as f → 1, showing that the gambler

cannot beat the inflation, even under optimal play. An interesting question is what effect

would a random inflation rate have on the gap.

We believe that the present constructive approach based on the variational formulas (3.4)

and (3.7) from Theorem 1 can settle the other cases, when various subsets R of [0,∞) are

adopted for the definition of the casino.

Let φ denote a continuous function on [0, 1]. For a given strategy S, let {XS
n }n≥0 be

the discrete time stochastic process representing the fortunes at times n = 0, 1, . . . under

strategy S. The chain starts at XS
0 = f ∈ [0, 1], is adapted to {Fn}n≥0, and satisfies the
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recurrence

(1.3) E(φ(XS
n+1) |XS

n = g) = w(c, rn(g))φ(
g + rnsn(g)

1 + a
) + (1− w(c, rn(g)))φ(

g − sn(g)
1 + a

) ,

when g ∈ (0, 1) and equal to φ(g) if g = 0 or g = 1. We note that Xn is not Markovian in

general, as the strategy S may take into account the whole past.

The chain {XS
n } is bounded above and below and is a super-martingale with respect to

{Fn}n≥0 (Theorem 1), as a consequence of the subfair nature of the casino. With probability

one, the limit limn→∞XS
n exists and is denoted by XS∞. Let PS

f be the probability to

achieve the value one before extinction, starting with the initial fortune f , while applying

the strategy S, and define

(1.4) P0(f) = sup
S∈S

PS
f , PS

f = P(XS
∞ = 1 |XS

0 = f) .

Our goal is to determine P0(f) for any f ∈ [0, 1] and to formulate at least one strategy to

achieve it.

Strict bold play is the strategy consisting of staking all the gambler’s fortune for any

f ∈ (0, 1). Of course this strategy is never optimal if a is small since it is foolish to exceed

fortune one.

It is intuitively clear that for large a the player (i) will be forced to bet all his wealth

f for all f ∈ (0, 1) (strict bold play), and (ii) the optimal strategy has a gap at one,

i.e. P0(1−) < 1. This behavior contrasts with the non-interest rate setting a = 0, where

P0(f) = 1 − (1 − f)1+c, proved in [12]. Section 2 presents the special case when a drops

below the critical value
√
|c| that imposes strategy (i). While this is covered by the general

result from Theorem 1, it is shown directly in Proposition 1.

Section 3 proves the general result. The optimal probability P0(f) is defined via a

variational formula (3.4) for R(f) = 1 − P0(f), and is shown to be convex (3.7). The

discontinuity at f = 1 is consistent with the fact that P0(f) is lower semi-continuous.

For general parameters (a, c), the case a2 < |c| is more complex than a2 ≥ |c| since

P0(f) is not given explicitly, even though it is fully computable, technically speaking, not

just numerically. This is because the infimum in (3.4) is a finite-dimensional problem, the

number (3.2) of parameters k ≤ n(a, c) < ∞, a constant dependent on a and c but not on

f . For a relevant particular choice of parameters (a, c) such that k = 1, Section 4 derives

explicit expressions (4.4) for P0(f) and the discontinuity at one.
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Finally, section 6 provides an upper bound (6.1) for P0(f), equal to a smooth perturbation

of the result of [12], which corresponds to a = 0. This approximation does not present the

discontinuity at f = 1, making it useful in the intermediate range above the bold play range

yet away from one for pairs (a, c) with large n(a, c).

The gambler with current fortune f is allowed to exceed the value one before the discount

(1+a)−1 is applied by choosing to bet s dollars on a table with 1+a− f ≤ rs. However, if

his strategy is optimal, then the strategy with r = (1 + a− f)/s would be optimal as well,

since r does not matter when the player loses, according to (1.3).

In addition, given that the gambler will stop either when his fortune reaches zero or

achieves f = 1, the strategies can be defined arbitrarily at f = 0 and f = 1. We adopt

the natural choice sn(0) = sn(1) = 0, n ≥ 0 and r can be taken arbitrarily for fortunes

f = 0 or f = 1, since the gambler does not actually play the next game. Notice that in the

absence of inflation a = 0, it would be enough to specify that s = 0, whereas when a > 0

even passively waiting a turn and not playing sets back the fortune to f/(1 + a). Without

loss of generality, we shall assume throughout the paper that any strategy S satisfies

(1.5) 0 ≤ sn(f) ≤ f , rn(f)sn(f) ≤ 1 + a− f , sn(0) = sn(1) = 0 ,

for any n ≥ 0. For simplicity, we shall use the notation p = (1 + c)/(1 + a).

2. The case a2 ≥ |c|.

We prove that the optimal probability of survival (1.4) is achieved by strict bold play

Ssb(f) = (f, (1 + a− f)/f) for all f ∈ (0, 1) and is equal to

(2.1) P0(f) =

{
pf , if f < 1

1 , if f = 1
.

Proposition 1. The function P0(f) satisfies (2.2).

Proof. We have to prove

(2.2) P0

(f + rs

1 + a

)
w(c, r) + P0

(f − s

1 + a

)
(1− w(c, r)) ≤ P0(f)

when f < 1, f + rs ≤ (1 + a), 0 ≤ s ≤ f and r ≥ 0. When f = 1 the inequality is trivial,

since s = 0.

1) If (f + rs)/(1 + a) < 1, the inequality is equivalent to sc ≤ af which is evident since

c < 0.
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2) If (f + rs)/(1 + a) = 1, the inequality becomes

(2.3) w + p(
f − s

1 + a
)(1− w) ≤ pf , w =

1 + c

1 + r
.

Fix r ≥ 0 and regard (2.3) as an inequality in f . The restriction 1 + a = f + rs makes

sense only if r ≥ a. In addition, we must have f ≥ (1 + a)/(1 + r). Moving all the terms to

the right hand side of the equality, the expression obtained is linear in f . It is sufficient to

verify the inequality at the endpoints. The case f = (1 + a)/(1 + r) is easy to verify. The

case f = 1 is

(2.4)
1 + c

1 + r
+

( 1 + c

1 + a

)( 1 + r

r(1 + a)
− 1

r

)(
1− 1 + c

1 + r

)
≤ 1 + c

1 + a
,

which is equivalent to (r−a)(ra−|c|) ≥ 0. The restrictions on the parameters make r ≥ a,

concluding the proof. ¤

Remark. The range of r is indeed arbitrarily close to a for bold play, by taking f = s = 1−ε

and r = (1 + a− f)/f .

Proposition 2. Strict bold play, that is, for any 0 < f < 1, betting the full wealth f on

the table with odds r = (1 + a− f)/f , achieves the probability of survival P0(f) from (2.1).

Proof. We see by conditioning on the outcome of the first game that for all f ∈ (0, 1), the

probability P (f) of reaching wealth one when starting with wealth f under strict bold play

satisfies

P (f) =
1 + c

1 + r
P (

1 + r

1 + a
f) =

[
1 + c

1 + (1 + a− f)f−1

]
P (1) = P0(f) .

¤

3. The general case

In the following, we shall use the notation η = (a + a2)/(a + |c|).

Proposition 3. Let f̂ be the largest value of f ≤ 1 for which (2.2) is satisfied for any

admissible choice of s, r in the sense of (1.5). Then f̂ = 1 when a2 ≥ |c|, and f̂ = η when

a2 < |c|.

Remark. The value r′ is the critical value from (2.4) and (3.1). With the restrictions from

(1.5), the critical values can be achieved, for example when r′ = |c|/a and s′ = η, under

bold play.
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Proof. Proposition 1 proved that if a2 ≥ |c|, then (2.2) is satisfied for all f , up to f equal

to one, showing that f̂ = 1 in this case.

If a2 < |c|, following the steps of Proposition 1, we see that (2.2) is satisfied automatically

when (f + rs)/(1 + a) < 1. When f + rs = 1 + a, (2.2) becomes (2.3). The restrictions

(1.5) imply that f ≥ (1 + r)/(1 + a). The easiest way to check this is to plot (s, t) with

all other parameters fixed and see that the domain 0 ≤ s ≤ f , f + rs ≤ 1 + a has vertices

(0, 0), (0, 1 + a) and ((1 + r)/(1 + a), (1 + r)/(1 + a)). We re-write (2.3) as

(3.1)
ra− |c|
r(1 + a)

(
f − 1 + a

1 + r

)
≥ 0 .

If f ≤ η, 1 + r′ = (1 + a)/η ≤ (1 + a)/f ≤ 1 + r, so (3.1) is satisfied, showing that f̂ ≥ η.

However, when f > η, there exist admissible r such that (3.1) is not satisfied, implying

that f̂ ≤ η. ¤

Propositions 1, 2 and 3 suggest that there must be two regimes of play, according to

whether the current fortune f is above or below the critical value f̂ = η. Assuming that

we start with f > η, we shall look at sequences of descending fortunes fj obtained for

consecutive unsuccessful bets. In general, the only restriction is (1 + a)fj = fj−1 − sj−1 ≤
fj−1. Once the fortune drops below η, intuitively we know that the optimal strategy is bold

play. Finally, the optimal strategy is obtained by optimizing over all scenarios (descending

sequences) leading to a fortune below η. We formalize these ideas starting with a definition.

Definition 1. Let f ∈ [0, 1). A descending sequence of length k + 1 for f is a sequence fj,

j = 0, 1, . . . , k such that (i) f0 = f , (ii) k=0 if f ≤ η, (iii) fj ≤ (1+a)−1fj−1, j = 1, . . . , k,

and (iv) fk−1 > η while fk ≤ η. Such a sequence will be denoted {f}, the set of descending

sequences by D(f) and the set of descending sequences of length k by Dk(f).

A descending sequence has finite length for any f . The maximum admissible length k is

bounded above by

(3.2) n(a, c) = − ln η/ ln(1 + a) + 1 =
ln(a + |c|)− ln(a + a2)

ln(1 + a)
+ 1 ,

a constant depending exclusively on (a, c). We recall that p = (1 + c)/(1 + a).

For every f and every {f} ∈ Dk(f) we construct the function

(3.3) R{f}(f) = (1− pfk)Πk−1
j=0

(
1− p

fj − (1 + a)fj+1

1− fj+1

)
,
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with the convention R{f}(f) = (1− pf) for f ≤ η, which is consistent with Definition 1.

We notice that 0 ≤ R{f}(f) ≤ 1 and define the function P0(f) by P0(f) = 1 for f = 1

and for f < 1

(3.4) R(f) = inf
k

inf
{f}∈Dk(f)

R{f}(f) , P0(f) = 1−R(f) .

The infimum is achieved at least for a certain k = k(f) and a certain {f} ∈ Dk(f) because

k ≤ n(a, c) has a finite range independent of f , the functions R{f}(f) of variable equal to

the vector {f} are continuous, and for each fixed k, the domain where {f} = f0, f1, . . . , fk

is defined is compact (depending on f). For each f , we choose one of the minimizing

sequences of (3.4) and denote it by {f}−. Then evidently R(f) = R{f}−(f).

Proposition 4. The function P0(f) is convex in f .

Proof. We have to show that R(f) is concave. As defined in (3.4), the infimum is taken over

a set depending on f itself; we shall write it in a form that shows clearly that R(f) is the

infimum of a family of linear functions over a set independent of f . For a pair (fj , fj+1),

let rj and γj be defined by the equality

γj =
fj − (1 + a)fj+1

1− fj+1
=

1 + a

1 + rj
.

We can interpret fj+1 = (fj − sj)/(1 + a) as the result of losing a bet sj at the table rj

chosen such that a winning bet would have brought the fortune to exactly one, that is

(fj + rjsj)/(1 + a) = 1 (bold play). Then

rj =
1 + a− fj

sj
≥ 1 + a− fj

fj
≥ a .

With this in mind, the sequence γj defines a finite number of parameters in (0, 1], without

other restrictions depending on f .

To ease the computation, let αj = (1 + a− γj)−1 and βj = γjαj . Then

f1 = α0f0 − β0

. . .

fk−1 = αk−2fk−2 − βk−2(3.5)

fk = αk−1fk−1 − βk−1
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and

(3.6) fk = Af −B , A = Πk−1
j=0αj , B =

k−1∑

j=0

βjΠk−1
i=j+1αi .

Re-casting (3.4) in terms of the independent {rj}0≤j≤k−1, respectively 0 < γj ≤ 1, and

f , we have

(3.7) R(f) = inf
k

inf
{γ}∈(0,1]k

(
1 + pB − pAf

)
Πk−1

j=0

(
1− pγj

)
,

where the first factor is a linear function of f as in (3.6). This proves that R(f) is concave

(see [10]). ¤

For every {f} ∈ D(f), we define the sequence of bets {s} = s0, s1, . . . , sk as follows,

according to the sequence length k(f): if k(f) = 1, then s0 = f0, and if k(f) > 1, sj =

fj−(1+a)fj+1, j = 0, . . . , k−1, with sk = fk. We denote {s}− the sequence corresponding

to {f}−.

Definition 2. Let S− be a strategy defined as follows. When f = 0 or f = 1, we stop.

When 0 < f < 1, we have two alternatives.

1) If f ≤ η we bet s = s(f) = f on the table with r = r(f) = (1 + a− f)/s(f); if we win,

we have reached one and stop, and if we lose, we stop as well, since f − s(f) = 0.

2) If f > η we bet s(f) = f0 − (1 + a)f−1 on the table with r = r(f) = (1 + a− f)/s(f);

if we win, we stop, and if we lose, we proceed by betting s(f−1 ) = s−1 and so on, until we

either win or reach f−k(f) ≤ η, when we go to 1).

Theorem 1. The optimal probability of reaching one when we start with wealth 0 ≤ f ≤ 1

is equal to P0(f) = 1−R(f) if f < 1 and P0(f) = 1 if f = 1, and is realized by the strategy

S−. In addition, 1− P0(1−) ≥ (1− p)n(a,c)+1 > 0, where n(a, c) is the bound in (3.2).

The theorem will be proved in three steps: Proposition 5 shows that strategy S− realizes

P0(f) = 1−R(f), Proposition 6 shows that P0(f) is an upper bound for the probability to

reach one, and finally we prove the lower bound for the discontinuity at one.

Proposition 5. The probability of survival PS−
f defined in (1.4), starting from f < 1 and

corresponding to the strategy S− from Definition 2, is equal to P0(f).

9



Proof. Let R−(f) = 1 − PS−
f . Let f = f0 and let f−1 be the wealth in case of loss while

applying S− (in one step). By conditioning upon the events of winning/losing in the first

play, the law of total probability and (1.3) applied to the chain XS−
n give that R−(f)

satisfies the recurrence

(3.8) R−(f0) =
(
1− p

f0 − (1 + a)f−1
1− f−1

)
R−(f−1 ) .

To see this, we remember that

f0 − (1 + a)f−1
1− f−1

=
1 + a

1 + r−1
, r−1 = r(f0) ,

according to Definition 2. Notice that in the case f ≤ η, (3.8) leads trivially to equality

between R−(f) and R(f), since f−1 = 0. When f > η, relation (3.8) is satisfied by R(f)

once again, as seen in (3.3) applied to the optimizing sequence. We can re-iterate the same

reasoning for f−2 , f−3 , ... and so on to see that R−(f) = R(f). Alternatively, if {f}− is

an optimal descending sequence for f and f−1 is the second term in the sequence, then the

truncated sequence {f−1 } = f−1 , f−2 , . . . , f−k , that is, the same sequence shifted by one unit,

is an optimal descending sequence for f−1 . This fact is clear by construction. We have

shown that R−(f) = R(f). ¤

Proposition 6. For any given (a, c) and any compatible set (f, s, r) in the sense of (1.5),

0 ≤ f < 1, 0 ≤ s ≤ f , r ≥ 0, the function P0 from (3.4) satisfies the inequality

(3.9) P0(
f + rs

1 + a
)w + P0(

f − s

1 + a
)(1− w) ≤ P0(f) .

We note that f = 1 implies s = 0 and (3.9) is trivial.

Proof. By construction, the function P0(f) is convex, being the supremum over linear func-

tions in f according to Proposition 4. As functions of s, both P0((f + rs)/(1 + a)) and

P0((f − s)/(1 + a)) are convex, so the left-hand side of (3.9) is convex in s. The maximum

can only be achieved at extreme values of s. Given the restrictions on s,

(1) if f > (1 + a)/(1 + r), the extreme values are s = 0 and s = (1 + a− f)/r, and

(2) if f ≤ (1 + a)/(1 + r), the extreme values are s = 0 and s = f .

(i) Suppose s = 0, for both (1) and (2). If f ≤ η we are back to (2.2), and the proof is the

same. If f > η, then f0 = f and f1 = f/(1 + a) can be seen as the first two admissible

terms of a descending sequence {f}. By construction, P0(f1) ≤ P0(f0).
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(ii) Suppose s = (1 + a− f)/r in (1). This corresponds to bold play, that is, r is such that

we reach one if we win. We have to prove that R(f) ≤ R((f − s)/(1 + a))(1−w). Writing

f0 = f and f1 = (f − s)/(1 + a), we have the equivalent inequality

R(f) ≤
(
1− p

f0 − (1 + a)f1

1− f1

)
R(f1) ,

which is immediate by construction.

(iii) Suppose s = f in (2). We reduced the problem to showing that R(f) is less or equal

to R(f(1 + r)/(1 + a))w + (1− w) or equivalently,

P0(
1 + r

1 + a
f) w ≤ P0(f)

for all pairs (f, r) satisfying 0 ≤ r ≤ (1 + a− f)/f = (1 + a)/f − 1 (since s = f). Re-write

the desired inequality as

(1 + c)P0(
1 + r

1 + a
f)− (1 + r)P0(f) ≤ 0 .

Let f be fixed. As a function of r, the left hand side is convex. The maximum is achieved

at one of the endpoints. At r = 0 one has

P0(f) ≥ P0(
1

1 + a
f)(1− |c|) ,

which is weaker that P0(f) ≥ P0( 1
1+af), or R(f) ≤ R( 1

1+af). This inequality is true for

any f < 1 by construction, adopting f0 = f and f1 = f/(1 + a) as the first two terms of a

descending sequence for f if f > η, and simply by direct verification when f ≤ η. Finally,

at the upper end point r = (1 + a)/f − 1, which implies that f(1 + r)/(1 + a) = 1, the

inequality becomes R(f) ≤ (1−pf). This is true by construction by picking f0 = f , f1 = 0

as descending sequence. ¤

Proof of Theorem 1. Denote {XS
n }n≥0 the values at times n = 0, 1, . . . of the player’s wealth

under an admissible strategy S ∈ S defined in (1.3). We drop the superscript S since there is

no possibility of confusion. In other words, at time n, the player chooses a stake and a table

corresponding to the current value of its fortune Xn according to {(sn(Xn), rn(Xn))}n≥0

with the convention that Xn stays at zero (or one) once it has reached it for the first

time. Moreover, since {Xn} is bounded by one, it is easy to check that it is a super-

martingale. The fact that P0 is bounded and inequality (3.9) show that P0(Xn) is also a
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super-martingale. The limit X∞ of Xn as n → ∞ exists almost surely. Since P0(0) = 0,

P0(1) = 1 and 1[1,∞)(x) ≤ P0(x), then

P(X∞ = 1 |X0 = f) ≤ E[P0(X∞) |X0 = f ] ≤ E[P0(X0) |X0 = f ] = P0(f) .

Meanwhile, Proposition 5 shows that P(X∞ = 1 |X0 = f) ≥ P0(f), by applying strategy

S−.

Finally, it remains to show that P0(1−) < 1, or equivalently that R(1−) > 0. Note

that the product (3.3) has at most k + 1 factors, each bounded below by (1− p), and k is

bounded above by a value depending on a and c only, which concludes the proof.

4. Explicit results when k(f) ≤ 1.

When a2 ≤ |c| ≤ 2a2 + a3, we shall see that the descending sequence from Definition 1

has length k ≤ 1 and an explicit form of the optimum function P0(f) can be derived. In

fact, this inequality between a and c is equivalent to having k(f) ≤ 1 for all f . Let f0 = f

and f1 < f0 such that f1 ≤ (1 + a)−1f0. It is easy to see that f1 ≤ η if 2a2 + a3 ≥ |c|, for

any initial f . On the other hand, let’s assume that for any f , the second term f1 ≤ η. We

want to prove that 2a2 + a3 ≥ |c|. Since s = f0− (1+ a)f1, we introduce r, the table where

we bet under f + rs = 1 + a (bold play), and obtain,

(4.1) f1 =
1 + r

r(1 + a)
f0 − 1

r
.

The condition is equivalent to

1 + r

r(1 + a)
f − 1

r
≤ a + a2

a + |c| ,

which reduces to

(4.2)
1
r
≥ (1 + a)(|c| − 2a2 − a3)

a(a + |c|)(1 + a)
,

satisfied by any r as long as

(4.3) a2 ≤ |c| ≤ 2a2 + a3 .

The left hand side of the inequality is not required for the strategy, but was included to

underscore the interval where the r is located.
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Proposition 7. If a2 < |c| ≤ 2a2 + a3, then any descending sequence has k(f) ≤ 1 and the

optimal probability of non-extinction is

(4.4) P0(f) =





pf if f ≤ η

1−
(√

|c|(1− p) + p
√

1 + a− f
)2

if η < f < 1

1 if f = 1

.

In addition, 1 − P0(1−) = [
√
|c|(1− p) + p

√
a]2 > 0 and P0(f) has continuous derivative

for 0 ≤ f < 1.

Proof. We want to minimize R(f) = 1− P (f)

(4.5) R(f) = inf
f1

(
1− p

f − (1 + a)f1

1− f1

)(
1− pf1

)
= inf

f1

U(f1) ,

where 0 ≤ f1 ≤ (1 + a)−1f .

The function U(·) in f1 to be minimized is convex on the interval of interest [0, 1). We

recall that strict bold play, when we bet s = f for all f , corresponds to realizing the

minimum at f1 = 0 for all f , which we shall see is not the case. Re-writing,

U(x) = |c|(1− px) + p(1− p)(1 + a− f)(1− x)−1 + p2(1 + a− f)

so

U ′(x) = p(1− p)(1 + a− f)(1− x)−2 − p|c| ,

and

U ′(0) = p
a + |c|
1 + a

(a + a2

|c|+ a
− f

)
, U ′(f/(1 + a)) > 0 .

As long as f > η = (a+a2)/(a+|c|), the derivative U ′(0) < 0, showing that the minimizer

x = f−1 is in (0, f/(1 + a)). The exact value is

(4.6) f−1 (f) = 1−
√(

1− f

1 + a

)(
1 +

a

|c|
)

,

providing the exact strategy

(4.7) s(f) =

{
f − (1 + a)f−1 (f) , if f > (a + a2)/(a + |c|)

f , if f ≤ (a + a2)/(a + |c|)
.

It is easy to verify the value of the jump discontinuity at f = 1 and the equality of the

one-sided limits at η. ¤
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5. Calculations for k(f) = 2.

To gain some insight in the computational difficulty of the case when the descending

sequence used in the expressions (3.3)-(3.4) involves more than two terms, we investigate

the simplest case when k(f) = 2 (the sequence length is at least three).

We have to evaluate

(5.1) inf
f1,f2

(
1− p

f − (1 + a)f1

1− f1

)(
1− p

f1 − (1 + a)f2

1− f2

)
(1− pf2)

with f1 ≤ (1 + a)−1f and f2 ≤ (1 + a)−1f1. An alternative expression based on (3.7) is

(5.2) inf
(γ0,γ1)∈(0,1]×(0,1]

[
(1 + a− γ0)(1 + a− γ1) + γ0 − pf

(1 + a− γ0)(1 + a− γ0)

]
(1− pγ0)(1− pγ1)

but we proceed with (5.1). We are interested in nontrivial (interior) critical points (f ′1, f
′
2)

of the function (5.1) in the variables (f1, f2), since the boundary cases correspond to k ≤ 1.

We make the observation that if the function of x ∈ [0, 1)

(5.3) x −→
(

1− p
g − (1 + a)x

1− x

)
(ρ− x) , ρ ≥ 1 ,

has a nontrivial critical point x′ ∈ (0, 1), then that is

(5.4) x′ = 1−
√(

ρ− 1
)( 1
|c| − 1

)(
1− g

1 + a

)
.

Fixing f2 in (5.1) and applying (5.3)-(5.4) with g = f , ρ = (1 + cf2)p−1 ≥ 1, and x = f1,

and then again fixing f1 in (5.1) and applying (5.3)-(5.4) with g = f1, ρ = p−1 ≥ 1 and

x = f2, we obtain the system

1− f ′1 =

√(
1 +

a

|c| − (1 + a)f ′2
)(

1− f

1 + a

)

1− f ′2 =

√(
1 +

a

|c|
)(

1− f ′1
1 + a

)
,

equivalent to finding a real zero of a polynomial of degree four.

6. An upper bound

An upper bound for the probability of success is

(6.1) P1(f) = 1− (1− f)
1+c
1+a ,

for any initial fortune 0 ≤ f ≤ 1.
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Remark. We note that p = (1 + c)/(1 + a) is such that 0 < p < 1, and any function

1− (1− f)p′ with p′ ≥ p provides an upper bound.

Proposition 8. Let {XS
n }n≥0 be the chain describing the evolution of the gambler’s fortune,

defined by (1.3), with initial value X0 = f . Then, for any strategy S ∈ S, the process

{P1(Xn)}n≥0 is a super-martingale with respect to {Fn}n≥0.

Proof. Recall that the winning probability w(c, r) is equal to (1+ c)/(1+ r). The reasoning

is identical to that leading to the upper bound from Theorem 1, obtained via Proposition

6. We have to prove the analogue of inequality (3.9) for the utility function (6.1), that is

(6.2) P1

(f + rs

1 + a

)
w(c, r) + P1

(f − s

1 + a

)
(1− w(c, r)) ≤ P1(f)

for any 0 ≤ f ≤ 1, 0 ≤ s ≤ f , f + rs ≤ 1 + a and r ≥ 0. The inequality is equivalent to

(6.3)
(
1− f + rs

1 + a

)p (1 + c

1 + r

)
+

(
1− f − s

1 + a

)p (
1− 1 + c

1 + r

)
≥ (1− f)p .

We think of (6.3) as a function of (s, f) with fixed a and r.

For fixed f , the left hand side of (6.3) is a concave function of s, which shows that it is

sufficient to check its values at the endpoints. We write

ψ(s) =
(
1− f

1 + a
− r

1 + a
s
)p

w(c, r) +
(
1− f

1 + a
+

1
1 + a

s
)p

(1− w(c, r))

as

(c1 − c2rs)pw + (c1 + c2s)p(1− w)

with c1 = 1− f/(1 + a) and c2 = 1/(1 + a). The derivative in s

p(c1 − rc2s)p−1(−c2r)w + p(c1 + c2s)p−1c2(1− w)

is decreasing, proving that ψ(s) is concave.

It remains to verify the inequality (6.3) at the endpoints of the interval where s is

compatible with (1.5). The restrictions on (s, f) impose the two cases: (1) when a < r and

(2) when a ≥ r.

Case (1) is further split into (1.1) when f ≥ (1 + a)/(1 + r), implying that 0 ≤ s ≤
(1 + a− f)/r, and (1.2) when f ≤ (1 + a)/(1 + r), implying that 0 ≤ s ≤ f .

Case (1.1), (1.2), (2) at s = 0. The inequality is trivial in this case.
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Case (1.1) We have to check (6.3) at s = (1 + a− f)/r, which is

(
1− f − (1 + a− f)r−1

1 + a

)p
(1− w) ≥ (1− f)p .

The inequality is trivially true for f = 1. Divide by the right hand side, and we have to

show

(1 +
1
r
)p

(1− f
1+a

1− f

)p
(1− w) ≥ 1 .

The function in f is increasing, hence we need to prove the inequality at f = (1+a)/(1+r),

(1− 1 + c

1 + r
) ≥

(
1− 1 + a

1 + r

)p

for r ≥ 0. This is a consequence of (1 − px) ≥ (1 − x)p for all x ≥ 0, with x = 1/(1 + r)

and p = (1 + c)/(1 + a).

Case (1.2) We have to check (6.3) at s = f , i.e.

(6.4)
(
1− (

1 + r

1 + a
)f

)p
w + (1− w)− (1− f)p ≥ 0

when f ≤ (1 + a)/(1 + r). One can see that the derivative of the function in f on the left

hand side changes sign only once in the interval, from a positive to a negative value. This

shows that the minima are to be found at f = 0 or f = (1 + a)/(1 + r). It is sufficient to

verify

(1− 1 + c

1 + a
) ≥

(
1− 1 + a

1 + r

)p
,

true as shown above.

Case (2) In this case we have to check (6.3) at s = f , as in (1.2), which means to verify

(6.4) on 0 ≤ f ≤ 1, and again, with the same reasoning, the values at f = 0 and f = 1. At

f = 0 we obtain zero and at f = 1 we have

(
1− 1 + r

1 + a

)p
w + (1− w) > 0 .

¤
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