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Abstract. We analyze the fluctuations near a stationary point of the deterministic fluid

limit of a random genetic model established in [4]. Near such a point, the vector field

is small, but on the Central Limit Theorem scale, the departures from the equilibrium

point converge in distribution, as a time dependent process, to a linear diffusion with drift

intensity proportional to the derivative of the vector field. When the equilibrium is stable

the constant is negative and the limit is the classical Ornstein-Uhlenbeck process. The

result is under natural scaling in the sense that we do not add noise to a deterministic

dynamical system, instead we study the second order approximation of a random process

that scales to a deterministic ordinary differential equation.

1. Introduction and mathematical model

The genetic model for the fixation mechanism in a chromosome introduced in [10] and

generalized in [6] follows the evolution of words

Z = (Z1, Z2, . . . , ZL) ∈ S := {0, 1, . . . , N − 1}L

of length L taking values in the first N − 1 positive integers together with zero, which is

singled out as a special character. A certain preferred configuration, here 0 = (0, . . . , 0),

is attained by random mutations. Once a zero component is reached, the probability to

switch back to a non-zero character is g(Z) ∈ [0, 1], where g(·) is a function depending on

the current word (configuration). The case g = 0 corresponds to the Muller ratchet effect,

and g ∈ (0, 1) to a degree of stickiness of the preferred configuration.

Let’s denote by U the number of non-zero components of Z. We assume there exists

γ ∈ C1([0, 1]), 0 ≤ γ(u) ≤ 1 such that

(1.1) g(Z) = γ(
U

L
) , Z ∈ S , 0 ≤ U ≤ L .
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The process Ut, t ≥ 0, otherwise a function of Zt, is in itself a Markov chain on the space

{0, 1, ..., L}. Following the discrete time model from [6], the generating function of the

transition probabilities associated to Ut+1, at update time t is given by

(1.2) E
(
sUt+1 |Ut = U

)
=

(
1

N
+

(
1− 1

N

)
s

)U (
1− γ(

U

L
) + γ(

U

L
)s

)L−U
, s > 0 .

In other words, after jump, Ut+1 is the sum of two independent binomials, one with

U = Ut trials and probability of success (to remain non-zero) 1 − 1
N and one with L − U

trials corresponding to the zero components, with probability of success (i.e. to convert

into a non-zero character) equal to γ(UL ). If γ(0) = 0, the state U = 0 is absorbing (the

cemetery state of the Markov process) and extinction occurs with probability one.

In this paper we consider the continuous time, pure jump version version of this dynamics.

The infinitesimal generator is, for f ∈ C([0, 1])

ALf(u) = L

[
u

N

(
f(u− 1

L
)− f(u)

)
u+ γ(u)(1− u)

(
f(u+

1

L
)− f(u)

)]
.(1.3)

We note that time is sped up by a factor of L and that when γ(0) = 0 the process will

never leave the state 0.

One can see the process as the evolution of the empirical measure (relative frequency)

(1.4) uLt =
Ut
L

=
1

L

L∑
j=1

1{0}(Z
j
t ) .

This and γ = γ(uL) point out to a mean-field dependence, leading to the natural scaling

of a Law of Large Numbers. When in time-dependent setup and established for dependent

particles, such a scaling limit is known as a fluid limit. The empirical measure of the zero

states, here simply Ut/L, converges in probability to the deterministic solution of an ODE

(1.6). This article aims at a second approximation of the solution, on a CLT scale, near

equilibrium points.

Theorem 1 (from [4]) establishes the fluid limit. It is the continuous time analogue

of Theorem 3 in [6]. In that paper, the scaled process is a deterministic discrete time

dynamical system. With γ(u) defined in (1.1), let

(1.5) H(u) :=

(
− 1

N

)
u+ γ(u)(1− u) , 0 ≤ u ≤ 1 .

Theorem 1 (Theorem 1 from [4]). Assume that uL0 converges in probability, as L → ∞,

to the deterministic state ū ∈ [0, 1] and γ = γ(u), 0 ≤ u ≤ 1 from (1.1). Then, as L→∞,

the Markov process (uLt )t≥0 converges in distribution to the deterministic process (ut)t≥0 on
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[0, 1], equal to the unique solution of

(1.6)
du

dt
= H(u) , u(0) = ū .

2. Fluctuation Near Equilibrium

In this paper we will analyze behavior near equilibrium points. We will show that if

we use a different scaling near equilibria, given the appropriate initial values, the second

approximation to the process ut behaves as a diffusion.

To describe fluctuations around an equilibrium point u′ of the function H, we introduce

a new process (yLt ) of the form

(2.1) yLt =
√
L
(
uLt − u′

)
, H(u′) = 0 and uLt =

ULt
L
.

This amounts to studying the fluctuation process (2.1) for (1.4) since uLt = ULt /L and so

yLt is exactly the diffusive or Central Limit Theorem scaling. Throughout we assume the

initial condition at time zero

(2.2)
√
L(uL0 − u′)

p→ y0 ∈ R ,

i.e. yL0 converges in probability to a real value y0 when we start from values ∼ O(L−1/2).

In the main result, Theorem 2, we prove that the process (yLt ) converges in distribution

to (yt), an Ornstein-Uhlenbeck (O-U) process with drift parameter r = H(u′). We note the

convergence is not only for marginals at given time t, but as a process, which is seen as a

random variable on the Skorokhod space of rcll paths. In a dynamical systems context, a

random perturbation of an ODE induces a similar behavior after linearization - see [2], Ch.

1 and references on slow-fast systems.

It is remarkable that, at the microscopic level of the Ut process, the only equilibrium is

zero. In [3] the relation between quasi-stationary distributions and equilibrium points of

the scaled system is investigated in more detail.

Theorem 2 (Perturbation near Equilibrium). Let H be defined as in (1.5), with u′ an

equilibrium point of H. Provided the initial condition (2.2) then, the process (yLt ) from (2.1)

converges in distribution, as L→∞, to the one-dimensional O-U process with generator

(2.3) Ug(y) = −ryg′(y) +
1

2
σ2g′′(y) , r = −H ′(u′) , σ2 =

2u′

N

starting at y0 ∈ R.

The arguments given in this paper prove a slightly stronger result, in that H needs to

have a continuous derivative only in a neighborhood of an equilibrium point u′ ∈ (0, 1). This

is due to the fact that under the scaling considered in (2.1) only a neighborhood u′±O( 1√
L

)
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ever appears in calculations involving H ′ directly. We did not make this distinction because

it complicates the exposition and most applications use a smooth γ. Moreover, Theorem 2

improves the result of Theorem 3.1 in [3], by removing the condition that H ′ be Lipschitz.

In [4] function γ was a power law γ(u) = cua in all applications. Here we require that

γ ∈ C1([0, 1]), which would be satisfied if a ≥ 1. Moreover, in a region of the parameters

(a, c,N) with a > 1 and cN sufficiently large, the ODE has at least two stationary solutions

(equlilibrium points), besides zero, one stable and one unstable (cf. Proposition 1, [4]).

Evidently, at those points the question of a scaled version of the second approximation is

meaningful.

Stability and recurrence are put in direct correspndence, mirrored in the sign of the

parameter r ∈ R. Classical results imply that when r = H ′(u′) > 0 (u′ stable) the O-U

process is recurrent and when r < 0 (u′ unstable) it is transient. We note that Theorem

2 holds when r = 0 (non-hyperbolic equilibrium [7]). Since the fluctuation limit is a one-

dimensional Brownian motion, it is null-recurrent. Recalling that y = 0 means u = u′ (2.1)

on the larger scale
√
L, L→∞, the initial point is, macroscopically, within 1/

√
L from u′

and points on [0, 1] at macroscopic distance are sent to infinity. However, the microscopic

behavior can be studied in detail, e.g. the hitting time τ0 of y = 0 (i.e. u′) can be explicitly

calculated. For this, fine properties and explicit formulas for τ0 we refer the reader to [1].

The diffusion coefficient σ2 = 2u′/N reflects the particular interaction model (1.2) and

(1.5) under consideration. The factor 1/N is proportional to the intensity of mutation,

while u′ shows that a larger value of the equilibrium is more volatile. If u′ = 0, the process

is a nonrandom trajectory solving the ODE (2.3). Finally, if u′ = H(u′) = 0, which can

only occur if γ(0) = 0, yt ≡ y0.

3. The differential formula and martingales

The pure jump Markov process (ut) with generator AL (1.3) evolves in the state space

[0, 1]. We assume it is defined on a filtered probability space (Ω,F , (Ft), P ), where the

filtration satisfies the usual conditions.

More generally, for any f ∈ Cc(R) (including the space C([0, 1]) by canonical extension)

(3.1) Mf,L
t = f(uLt )− f(uL0 )−

∫ t

0
ALf(uLs ) ds

is an (Ft) - martingale with predictable quadratic varation

(3.2) 〈Mf,L〉t =

∫ t

0
ALf2(uLs )− 2f(uLs )ALf(uLs ) ds .
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This can be written explicitly

(3.3)

〈Mf,L〉t =

∫ t

0
L

[
uLs
N

(
f(uL − 1

L
)− f(uL)

)2

+ γ(uLs )(1− uLs )

(
f(uLs +

1

L
)− f(uLs )

)2
]
ds .

If the state space X is Polish, i.e. separable, complete metric space, Feller processes

on X can be canonically constructed (Ch. III [8]) on the Skorokhod space D([0,∞),X) of

right-continuous with left-limit paths (rcll), a space endowed with the J1 metric topology.

The law of such a process is a probability measure on D([0,∞),X). Tightness is the notion

of pre-compactness of probability laws defined by Prokhorov’s theorem. We shall use the

stronger notion of C − tightness, which guarantees that any limit point of a precompact

set is supported on the subset of contiunous paths C([0,∞),X).

Definition 1. A sequence of processes (Y L
· )L>0 on a Polish space (X, || · ||) with right-

continuous with left limits paths (in the Skorokhod space) is C-tight, if for any T ≥ 0

(i) lim
M→∞

lim sup
L→∞

P
(
||Y L

T || > M
)

= 0 and(3.4)

(ii) ∀ ε > 0 lim
δ→0

lim sup
L→∞

P
(

sup
t,t′∈[0,T ],|t′−t|<δ

||Y L
t′ − Y L

t || > ε
)

= 0 .(3.5)

In this paper, X is R with the Euclidean norm and the process (Y L
t ) is (yLt ) from (2.1)

as well as the associated processes form the differential formula (Ito’s formula) (3.1).

4. Proof of Theorem 2

Theorem 2 will be proven in several steps. First, we show that the scaled process yLt is

C-tight. By Prokhorov’s theorem, tightness is pre-compactness in the space of probability

measures. Denote by LL the probability law of the processes yL· , indexed by L ∈ Z+, with

values in D([0,∞),R). If the measures are tight, then there exists at least a limit point L
and denote by (yt) the process with this probability law. In subsection 4.3 we show that L
solves the martingale problem associated with the generator U defined in (2.3) (Theorem

4.28 in [9], also Corollary 4.29 in [5]). The aim is then to prove that for any g ∈ C∞c (R),

the process

Mg
t = g(yt)− g(y0)−

∫ t

0
Ug(ys) ds

is a continuous (Ft) - martingale under the probability measure L . Finally, this process

is unique, coinciding with the Ornstein-Uhlenbeck process. This concludes the proof of

convergence in distribution.
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All functions considered belong to the family of test functions of the form f(u) = g(y),

y =
√
L(u− u′), g ∈ C3

c (R).

Tightness requires a square norm bound, uniform in L. This is done in subsection 4.1,

Proposition 1, which also implies (3.4). As a consequence, both the generator ALg(yLs )

(Proposition 2) and the quadratic variation of the martingale Mg,L
t (Proposition 3), are

uniformly bounded in L2. These bounds are needed in subsection 4.2 which establishes the

modulus of continuity, necessary for (3.5). Proposition 6 concludes the proof of tightness.

Finally subsection 4.3 shows that any limit point solves the martingale problem for the

Ornstein-Uhlenbeck generator (Proposition 8).

Several times we shall apply the differential formula (1.3) -(3.1) to a function f ∈ C∞c (R)

together with the expansion of H around the point uLs = u′+ yLs√
L

, based on Taylor’s formula

with remainder in integral form. If φ ∈ Cn+1
c (R) such that φn+1 exists and is continuous

on an open interval containing [u′, u′+ yLs√
L

], then by Taylor’s formula with remainder in the

integral form

(4.1) φ(u′ +
yLs√
L

) =
n∑
k=0

1

k!
φ(k)(u′)

(
yLs√
L

)k
+Rn(u′ +

yLs√
L

)

where

(4.2) Rn(u′ +
yLs√
L

) =
1

n!

(
yLs√
L

)n+1 ∫ 1

0
wnφ(n+1)

((
u′ + (1− w)

yLs√
L

)k)
dw.

Since φn+1 is bounded on [u′, u′ + yLs√
L

] by some constant c(φ), then Rn satisfies

(4.3) |Rn(u′ +
yLs√
L

)| ≤ 1

(n+ 1)!

(
yLs√
L

)n+1

c(φ).

4.1. Uniform L2 Bound. Due to the initial condition (2.2), the initial value has uniformly

bounded second moment. We prove a slightly stronger result.

Proposition 1. Assume that the initial values are random variables and there exists a

positive C, independent of L, such that E[(yL0 )2] ≤ C. Let T > 0 be arbitrary but fixed.

Then the process yLt is square integrable. Moreover, we have the bounds

(4.4) E
[(
yLt
)2] ≤ K1 exp (K2 t) 0 ≤ t ≤ T,

where K1, K2 are constants independent of t and L, and are given explicitly by K1 =

3C + 3
(
1 + 2

N

)
T and K2 = 3T (c1(H))2, where c1(H) is bound of the function H ′.

Proof. Notice that uLt ∈ [0, 1] and so yLt =
√
L(uLt −u′) ∈ [−2

√
L, 2
√
L]. Fix T > 0. Adopt

a test function f(x) = I(x) (as in identity function), with I(x) = x on [−3
√
L, 3
√
L] with

compact support. We need uniform bounds in L. However, the estimates obtained below
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only use the fact that I equal the identity on the range of the process. For the generator

(1.3) and 0 ≤ s ≤ t ≤ T

ALI(yLs ) = ALyLs = L

[
1

N

(
(yLs −

1√
L

)− yLs
)
uLs + γ(uLs )

(
(yLs +

1√
L

)− yLs
)

(1− uLs )

]
=

1

N

(
− 1√

L

)
LuLs + γ(uLs )

(
1√
L

)
L(1− uLs )

= H(uLs )
√
L

= yLs

∫ 1

0
H ′(u′ + (1− w)

yLs√
L

)dw,

(4.5)

where the last line is obtained form (4.1) applied to φ = H, n = 0. We obtain that

(4.6) |ALyLs | ≤ c1(H) |yLs |

with c1(H) the supremum of H ′ on [0, 1] which is independent of s and L.

A similar calculation for the quadratic variation (3.3) of the martingale M I,L
t shows

〈M I,L〉t = L

∫ t

0

{[
1

N

(
(yLs −

1√
L

)− yLs
)2 (

uLs
)

+ γ(uLs )

(
(yLs +

1√
L

)− yLs
)2 (

1− uLs
)]}

ds

= L

∫ t

0

{
1

N

(
− 1√

L

)2

uLs + γ(uLs )

(
1√
L

)2

(1− uLs )

}
ds

=

∫ t

0
H(uLs ) +

2

N
uLs ds.

Since |H(u)| ≤ 1, u ∈ [0, 1], then

(4.7) E
[
〈M I,L〉t

]
≤
(

1 +
2

N

)
T 0 ≤ t ≤ T.

Recall that by formula (3.1) we can write

(4.8) yLt = yL0 +

∫ t

0
ALyLs ds+M I,L

t

where ALt yLs is given by the differential formula (4.5). Thus, we obtain that

(yLt )2 ≤ 3

(
(yL0 )2 +

(∫ t

0

∣∣ALyLs ∣∣ ds)2

+
(
M I,L
t

)2)
.

Remember also, that

(4.9) N I
t =

(
M I
t

)2 − 〈M I,L〉t
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is a martingale. Thus, by Cauchy-Schwarz, Fubini’s Theorem, the initial condition on

E[(yL0 )2], and relations (4.6) and (4.7) we obtain that

E
[(
yLt
)2] ≤ 3

(
E
[(
yL0
)2]

+ E

[
T

∫ t

0

(∣∣ALyLs ∣∣)2 ds]+ E

[(
M I,L
t

)2])
≤ 3E

[(
yL0
)2]

+ 3(c1(H))2 T

∫ t

0
E
[(
yLt
)2]

ds+ 3E
[
〈M I,L〉t

]
(4.6)

≤ 3C + 3(c1(H))2 T

∫ t

0
E
[(
yLs
)2]

ds+ 3

(
1 +

2

N

)
T. (3.2), (4.7)

Hence

E
[(
yLt
)2] ≤ K1 +K2

∫ t

0
E
[(
yLs
)2]

ds

where K1 = 3C + 3
(
1 + 2

N

)
T , K2 = 3T (c1(H))2.

By Gronwall’s inequality

(4.10) E
[(
yLt
)2] ≤ K1 exp (K2 t) 0 ≤ t ≤ T.

�

Proposition 2. For every function g ∈ C3
c (R) and H ∈ C2(R) the generator of the process

yLt is in L2. Moreover, we have the estimate

E
(∣∣ALg(yLs )

∣∣2) ≤ C1E
(
|yLs |2

)
+ C2 , s ≥ 0 ,

where C1 and C2 are constants depending on the functions g, H and their derivative but

not depending on L, t.

Proof. We choose a test function g ∈ C3
c (R), and apply the differential formula (1.3)-(3.2).

We get the formula

ALg(yLs ) = L

[
1

N

(
g(yLs −

1√
L

)− g(yLs )

)
uLs + γ(uLs )

(
g(yLs +

1√
L

)− g(yLs )

)
(1− uLs )

]
=

1

N

[(
g(yLs −

1√
L

)− g(yLs )

)
L
]
uLs

+ γ(uLs )
[(

g(yLs +
1√
L

)− g(yLs )

)
L
]
(1− uLs ).

(4.11)
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We expand each difference in the integrand using the Taylor expansion (4.1) of order two

n = 2 around the point yLs with remainder in the integral form

g(yLs ±
1√
L

)− g(yLs ) = g′(yLs )

(
± 1√

L

)
+

1

2
g′′(yLs )

(
± 1√

L

)2

+
1

2

(
± 1√

L

)3 ∫ 1

0
w2g′′′

(
yLs + (± 1√

L
)(1− w)

)2

dw.

(4.12)

Replacing these expressions back in (4.11) we obtain that the generator takes the form

ALg(yLs ) =
1

N

(
g′(yLs )

(
− 1√

L

)
+

1

2
g′′(yLs )

(
− 1√

L

)2
)
LuLs

+ γ(uLs )

(
g′(yLs )

(
1√
L

)
+

1

2
g′′(yLs )

(
1√
L

)2
)
L(1− uLs ) +R (ω, g, L, s) .

Where R (ω, g, L, s) is a function obtained by collecting all expressions involving the

remainder expressions in the Taylor formulas (4.12). The random element ω ∈ Ω is added

to emphasize the random nature of the intermediate points in the remainder theorem.

Collecting all terms involving g′ and recalling that H(u′) = 0

(4.13) ALg(yLs ) = g′(yLs )
[√

L
(
H(u′ +

yLs√
L

)−H(u′)
)]

+
1

2
g′′(yLs )

(
H(uLs ) +

2

N
uLs

)
+ R (ω, g, L, s) .

Since the function g has compact support there exists a constant c3(g), depending on

the function g (in fact, on g′′′) only, and not L or s, such that the part of the remainder

appearing in (4.12) is bounded by

(4.14)

∣∣∣∣∣12
(
± 1√

L

)3 ∫ 1

0
w2g′′′

(
yLs + (± 1√

L
)(1− w)

)2

dw

∣∣∣∣∣ ≤ 1

6

(
1√
L

)3

c3(g).

Now, bound (4.14) together with uLt ∈ [0, 1] imply that the function R (ω, g, L, s) can be

estimated by

(4.15) |R (ω, g, L, s)| ≤ 1

6

(
1√
L

)(
H(uLs ) +

2

N
uLs

)
c3(g) ≤ 1

6

1√
L

(
1 +

2

N

)
c3(g).

At this point, we take a close look at expression (4.13) and observe that the third term in

the sum is bounded by (4.15) and the second term is bounded since g has compact support,

while H(uLs ) and uLs belong to [0, 1]. In the first term, the factor
√
L would be too large

unless H(u′) = 0. The key point of the approximation we study is exactly that it makes

no semse at non-stationary points. Since u′ is stationary by hypothesis, we develop further

9



the function H by Taylor formula of order one, to obtain

(4.16) H(u′ +
yLs√
L

) = H(u′) +
yLs√
L

∫ 1

0
H ′(u′ + w

yLs√
L

)dw.

Plugging back into (4.13) we obtain that the generator is

(4.17)

ALg(yLs ) = g′(yLs )yLs

∫ 1

0
H ′(u′ + w

yLs√
L

)dw +
1

2
g′′(yLs )

(
H(uLs ) +

2

N
uLs

)
+ R (ω, g, L, s) .

Since H ′ is continuous, the integral remainder in (4.16) can be bounded by a constant c1(H)

depending on the function H ′. Denote by c1(g), c2(g) uniform bounds for the function g′

and g′′ respectively. More precisely, we obtain the L2 bound

E
[(
ALg(yLs )

)2] ≤ E[3

((
g′(yLs )c1(H)yLs

)2
+

1

4

(
g′′(yLs )

(
H(uLs ) +

2

N
uLs

))2

+
(
R
(
ω, g′′′, L, s

))2)]

≤ E

[
3c21(g)c21(H)

(
yLs
)2

+ 3

(
1 +

2

N

)2(1

4
c22(g) + c23(g)

1

L

)]
.

Since L and N can be taken bigger than 1 we obtain that,

E
[(
ALg(yLs )

)2] ≤ C1E
[(
yLs
)2]

+ C2

where C1 = 3c21(g)c21(H) and C2 = 27
(
1
4c

2
2(g) + c23(g)

)
. �

Proposition 3. For every function g ∈ C3
c (R) and every t ∈ [0, T ], the quadratic variation

of Mg,L
t satisfies the bound

(4.18) 〈Mg,L〉t ≤
(
M1 +

1√
L
M2

)
t

where M1, M2 are constants depending on g, H and their derivatives but not depending on

L > 0 and t ≥ 0.

Proof. We apply formula (3.3) and obtain that the quadratic variation can be written as

〈Mg,L〉t =

∫ t

0

[ 1

N

(
g(yLs− −

1√
L

)− g(yLs−)

)2

LuLt(4.19)

+ γ(uLs−)

(
g(yLs− +

1√
L

)− g(yLs−)

)2

L(1− uLt )
]
ds.

We develop the differences in the integrand by Taylor’s formula

g(yLs ±
1√
L

)− g(yLs ) = g′(yLs )

(
± 1√

L

)
+ r±(ω, g, L, s)

10



where r±(ω, g, L, s) are the remainders of the Taylor expansion of order one in integral form

r±(ω, g, L, s) =

(
± 1√

L

)2 ∫ 1

0
w g′′

(
yLs + (± 1√

L
)(1− w)

)
dw

These expressions are bounded uniformly in time t and ω by

(4.20) |r±(ω, g, L, s)| ≤ 1

2

(
1√
L

)2

c2(g)

Replacing the Taylor expansion in (4.19) we obtain that, the quadratic variation of the

martingale is

〈Mg,L〉t = L

∫ t

0

(
1

N

(
− 1√

L
g′(yLs ) + r−

)2

uLt + γ(uLs−)

(
1√
L
g′(yLs ) + r+

)2

(1− uLt )

)
ds

=

∫ t

0

((
g′(yLs )

)2(
H(uLs ) +

2

N
uLs

)
+ R̄

(
g′′′, L, s

))
ds

(4.21)

where R̄ (g′′′, L, s) collects all terms involving the Taylor formula remainders. We do not

need the exact form of R̄ (g′′′, L, s). It is only important that

R̄
(
g′′′, L, s

)
= O(

1√
L

) ,

more precisely, there is a constant M2 such that R̄ (g′′′, L, s) ≤ 1√
L
M2. Thus, we obtain

that

0 ≤ 〈Mg,L〉t ≤
(
c21(g)

(
1 +

2

N

)
+
∣∣R̄ (g′′′, L, s)∣∣) t ≤ (c21(g)

(
1 +

2

N

)
+

1√
L
M2

)
t.

Hence, by denoting M1 = c21(g)
(
1 + 2

N

)
we obtain

0 ≤ 〈Mg,L〉t ≤
(
M1 +

1√
L
M2

)
t.

�

4.2. Modulus of Continuity. With the same convention of notation as in the preceding

sections g(y) = f(
√
L(u− u′)), the process satisfies the differential formula (3.1)

(4.22) g(yLt ) = g(yL0 ) +

∫ t

0
ALg(yLs ) +Mg,L

t .

First, we show that g(yLt ), L > 0 is a tight family by showing that the three terms on the

right hand side are tight. Notice that only condition (ii) (3.5) is non-trivial when g has

compact support.

Proposition 4. The processes dg,Lt :=
∫ t
0 A

Lg(yLs ) ds is C-tight.

11



Proof. Condition (i) in definition (1) is easily satisfied by dg,Lt since g has compact support.

In order to prove condition (ii) for dg,Lt we let δ > 0. On the interval [0, T ], we choose

0 ≤ t < t′ ≤ T such that t′ − t < δ. For the process dg,Lt we have

P

 sup
0≤t<t′≤T
t′−t<δ

∣∣∣dg,Lt′ − dg,Lt ∣∣∣ > ε

 ≤ 1

ε2
E

 sup
0≤t<t′≤T
t′−t<δ

(∫ t′

t
ALg(yLs ) ds

)2
 (Chebyshev)

≤ 1

ε2
E

δ sup
0≤t<t′≤T
t′−t<δ

∫ t′

t

(
ALg(yLs )

)2
ds

 (Cauchy-Schwarz)

≤ δ

ε2
E

(∫ T

0

(
ALg(yLs )

)2
ds

)
(positivity of the integrand)

=
δ

ε2

∫ T

0
E
[(
ALg(yLs )

)2]
ds (Fubini)

≤ 3δ

ε2

∫ T

0

(
C1E

[(
yLs
)2]

+ C2

)
ds by (2)

≤ 3δ

ε2

∫ T

0
[C1K1 exp (K2 s) + C2] ds by Proposition 1

=
3δ

ε2

[
C1K1

exp (K2 T )− 1

K2
+ C2T

]
,

hence

lim
δ→0

lim sup
L→∞

P

 sup
0≤t<t′≤T
t′−t<δ

∣∣∣dg,Lt′ − dg,Lt ∣∣∣ > ε

 = 0.

�

Proposition 5. The process Mg,L
t is C-tight.

Proof. As before, condition (i) in definition (1) is easily satisfied by Mg,L
t since g has

compact support. Again, we let δ > 0. On the interval [0, T ], we choose 0 ≤ t < t′ ≤ T

such that t′ − t < δ. For the process Mg,L
t we have

P

 sup
0≤t<t′≤T
t′−t<δ

∣∣∣Mg,L
t′ −M

g,L
t

∣∣∣ > ε

 ≤ 1

ε2
E

(∣∣∣Mg,L
t′ −M

g,L
t

∣∣∣2) (Doob’s L2 maximal inequality)

=
1

ε2
E
(∣∣〈Mg,L〉t′ − 〈Mg,L〉t

∣∣) by (3.2)

≤ δ

ε2

(
M1 +

1√
L
M2

)
by (3) ,

12



hence

lim
δ→0

lim sup
L→∞

P

 sup
0≤t<t′≤T
t′−t<δ

∣∣∣Mg,L
t′ −M

g,L
t

∣∣∣ > ε

 = 0.

�

Proposition 6. The process yLt is C-tight.

Proof. Condition (i) (3.4) is immediately satisfied from Proposition 1, eq. (4.4). Inspecting

(4.22), we see that Propositions 4, 5 imply that (g(yLt ) is tight for g ∈ C3
c (R). The modulus

of continuity is obtained by localization. �

4.3. Solution of the Martingale Problem. We know that any process (yt) with proba-

bility law a limit point of the C − tight family of processes (yLt )L>0, has continuous paths.

In addition, we would like to show it satisfies the martingale problem for U defined in (2.3).

It is well known ([5]) that the problem is well posed, and the solution has the law of the

solution to the stochastic differential equation

(4.23) dyt = −H ′(u′)ytdt+
2u′

N
dBt ,

with initial value y0 defined in (2.2). Here (Bt) is a standard Brownian motion.

Proposition 7. There exist D1, D2 and D3 independent of s and L (but dependent on T )

such that

(4.24) lim sup
L→∞

E
[
|ALg(yLs )− Ug(yLs )|

]
= 0 .

Proof. From (4.17) and (2.3) we have that

ALg(yLs )− Ug(yLs ) = g′(yLs )yLs

∫ 1

0

(
H ′(u′ + w

yLs√
L

)−H ′(u′)
)
dw︸ ︷︷ ︸

(I)

+

+
1

2
g′′(yLs )

(
H(uLs ) +

2

N
uLs −

2

N
u′
)

︸ ︷︷ ︸
(II)

+

+ R
(
ω, g′′′, L, s

)
.︸ ︷︷ ︸

(III)

The function γ, and thus H are of class C1, and the argument appearing in H is u′+(1−
w) y

L
s√
L
∈ [0, 1] because it is a point between u′ and uLs . We shall prove that for 0 ≤ s ≤ T

(4.25) lim sup
L→∞

E

[∣∣∣∣yLs ∫ 1

0
(H ′(u′ + w

yLs√
L

)−H ′(u′)) dw
∣∣∣∣] = 0 .

13



Choose M > 0 arbitrary. We shall split the quantity in absolute value in two. The first

will be I1, over the event {|yLs | > M} and I2, over its complement. Pick ε > 0. H ′ is

continuous on [0, 1], thus uniformly continuous. There exists δ > 0 such that |u1 − u2| < δ

then |H ′(u1)−H(u2)| < ε. Take L so large that |yLs /
√
L| ≤M/

√
L < δ. Then

E[I1 + I2|] ≤Mε+ 2( sup
u∈[0,1

|H ′(u)|) E[(yLs )2]

M2

where we used Chebyshev’s inequality for I2. E[(yLs )2] ≤ K1e
K2T from (4.4) in Proposition

1. Denote the supremum norm of H ′ by c1(H). We obtained that the bound for all L

satisfying M/
√
L < δ, i.e. L > (M/δ)2. This implies that lim supL→∞E[I1 + I2|] ≤

Mε+ Const(T )/M2 for arbitrary M, ε. Let ε→ 0 and the M →∞, and we are done.

In expression (II), we write uLt = u′ + yLs√
L

and expand the function H around the point

u′ using Taylor formula with remainder, in integral form, of order one. Thus, obtain that

H(uLs ) =
yLs√
L

∫ 1

0
H ′
(
u′ + (1− w)

yLs√
L

)
dw

(II) =
1

2
g′′(yLs )

(
yLs√
L

∫ 1

0
H ′
(
u′ + (1− w)

yLs√
L

)
dw +

2

N
(u′ +

yLs√
L

)− 2

N
u′
)

=
1

2
g′′(yLs )

yLs√
L

(∫ 1

0
H ′
(
u′ + (1− w)

yLs√
L

)
dw +

2

N

)
Since H ′ is continuous, it is bounded, and let c1(H) be supremum norm on [0, 1] for H ′,

and c2(g) a positive bound for 1
2g
′′. Then

(4.26) |(II)| ≤ c2(g)
|yLs |√
L

(
c1(H) +

2

N

)
Finally, (4.15) gives

(4.27) |(III)| =
∣∣∣R(ω, g(3), L, s)∣∣∣ ≤ 1√

L

(
1 +

2

N

)
c3(g).

Where c3(g) is a positive bound for g′′′. Now bounds (4.25), (4.26) and (4.27) show that

the difference

|ALg(yLs )− Ug(yLs )| ≤ c1(g)(I1 + I2)

(4.28) +
1√
L

(
c2(g)|yLs |

(
c1(H) +

2

N

)
+

(
1 +

2

N

)
c3(g)

)
.

Taking the expected value and letting L→∞ proves the proposition. �

Proposition 8. Let (yt)t≥0 with probability law L be a limit point of the C-tight family

(yLt )t≥0 with probability laws LL, indexed by L ≥ 1. Then (yt)t has continuous paths almost
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surely and for any g ∈ C3
c (R)

(4.29) g(yt)− g(y0)−
∫ t

0
Ug(ys) ds

is a (Ft) - martingale, where U is the Ornstein-Uhlenbeck generator in (2.3).

Proof. Define Mg,η
s,t , g ∈ C3

c (R) the difference of expressions from (2.3) taken at two times

0 ≤ s ≤ t ≤ T .

(4.30) Mg,η
s,t = g(ηt)− g(ηs)−

∫ t

s
Ug(ηs′) ds

′ η ∈ D([0, T ],R) .

Let ψ(η·) a Fs - measurable function, equal to a finite product of continuous bounded

functions applied at a finite number of times s′, 0 ≤ s′ ≤ s. Define Ψ : D([0, T ],R)→ R

(4.31) Ψ(η·) = Mg,η
s,t ψ(η·) .

Ψ is a bounded, continuous functional. Since g has compact support, the only term

that appears not bounded is the drift term in U . However, a closer look shows it is

equal to −ryg′(y). If supp(g) ⊂ [−A,A] then this term is, for a fixed g, bounded by

|r|A supy∈[−A,A] |g′(y)| < ∞. It only remains to prove that, if (yt), with probability law

L is a limit point of the tight sequence of processes (yLt ), with probability laws LL, then

E[Ψ(y·)] = 0. This will show that L, which is supported on the subspace of continuous

paths, solves the martingale problem for U . This reasoning is standard but theparticulars

of the functional involved diffrs from model to model. See [11] for a similar proof.

We have

E[Ψ(yL· )] = E

[(
g(yLt )− g(yLs )−

∫ t

s
Ug(yLs′) ds

′
)
ψ(yL· )

]
= E

[(
g(yLt )− g(yLs )−

∫ t

s
ALg(yLs′) ds

′ +

∫ t

s
(AL − U)g(yLs′) ds

′
)
ψ(yL· )

]
= E

[
(Mg,L

t −Mg,L
s )ψ(yL· )

]
+ E

[(∫ t

s
(AL − U)g(yLs′) ds

′
)
ψ(yL· )

]
= E

[(∫ t

s
(AL − U)g(yLs′) ds

′
)
ψ(yL· )

]
where the last equality follows from the fact that Mg,L

t is a martingale. From (4.24) we

have that the error term∣∣E[Ψ(yL· )]
∣∣ ≤ ∣∣∣∣E [(∫ t

s
(AL − U)g(yLs′) ds

′
)
ψ(yL· )

]∣∣∣∣
≤ (sup |ψ|)

∫ t

s
E[|(AL − U)g(yLs′)|] ds′ .
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Proposition 7 says that the integrand, as a function of s′ converges to zero as L→∞. We

recall the bound on ALg(yLs ) from Proposition 2. A similar bound on Ug(yLs′) is immediate

from Proposition 1 , eq. (4.4). Together, these allow to use dominated convergence to

conclude that limL→∞E[Ψ(yL· )] = 0.

The proof of C − tightness show that (yLt ) ⇒ y(·) (converges in distribution) and (yt)

which has continuous paths almost surely. Portmanteau Theorem implies that

E[Ψ(y·)] = lim
L→∞

E[Ψ(yL· )] = 0 .

Keeping in mind the choice of ψ, as a bounded Fs - measurable function, we obtained that

Mg
t = g(yt)− g(y0)−

∫ t

0
Ug(ys) ds

is a continuous (Ft) - martingale and the probability law L of the process (yt) solves the

martingale problem associated with the generator

Ug(x) = −rxg′(x) +
1

2
σ2g′′(x) , r = −H ′(u′) , σ2 =

2u′

N
.

The parameters r and σ2 are constant and the coefficients are Lipschitz. By Theorem 4.28

and Corollary 4.29 in Karatzas et al. [5] (and Stroock & Varadhan [9]), the martingale

problem is well posed. The unque solution is the Ornstein-Uhlenbeck process described

in Theorem 2. This concludes the proof that the sequence of processes (yLt ) converge in

distribution, as L→∞, to (yt). �
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