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Abstract. In a general model (AIMD) of transmission control protocol (TCP) used in

internet traffic congestion management, the time dependent data flow vector x(t) > 0

undergoes a biased random walk on two distinct scales. The amount of data of each

component xi(t) goes up to xi(t) + a with probability 1 − ζi(x) on a unit scale or down

to γxi(t), 0 < γ < 1 with probability ζi(x) on a logarithmic scale, where ζi depends on

the joint state of the system x. We investigate the long time behavior, mean field limit,

and the one particle case. According to c = lim inf |x|→∞ |x|ζi(x), the process drifts to

∞ in the subcritical c < c+(n, γ) case and has an invariant probability measure in the

supercritical case c > c+(n, γ). Additionally, a scaling limit is proved when ζi(x) and a

are of order N−1 and t → Nt, in the form of a continuum model with jump rate α(x).

1. Introduction

In a general model used in internet congestion control [8, 9, 2, 14, 17, 19], related to

classical autoregressive models [18, 7], the time dependent data flow x(t) undergoes a biased

random walk with linear steps in one direction (x moves to x+a, a > 0) and on a logarithmic

scale in the other (x moves to γx, where 0 < γ < 1), belonging to a class of dynamics known

in the literature [14] as AIMD (additive increase multiplicative decrease). In the present

paper, we concentrate on one standard model, defined rigorously as the solution to the

martingale problem given by (2.3), which we shall call the γ - process.

More precisely, assume (Ω, Σ, P ) is a probability space, {Ft}t≥0 is a filtration on (Ω, Σ).

Let n be a positive integer and ζi : [0,∞) × (0,∞)n → [0, 1], 1 ≤ i ≤ n be continuous

functions. In addition, we consider a family of n independent Poisson processes {πi(t)}1≤i≤n

with rate λ > 0, adapted to the filtration {Ft}t≥0.
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For any starting point x0 with components x0i, 1 ≤ i ≤ n, let x(t) denote the pure

jump Markov process on (0,∞)n with components (x1(t), x2(t), . . . , xn(t)), constructed as

follows. A Poisson clock πi(t) with intensity λ > 0 is attached to each particle xi(t),

1 ≤ i ≤ n, with all clocks mutually independent. When the Poisson clock πi, associated to

the particle xi(t), rings at time τ , xi moves to xi(τ−) + a with probability 1− ζi(τ,x(τ−))

and to γxi(τ−) with probability ζi(τ,x(τ−)). In this standard construction of a pure jump

process, there are no simultaneous jumps.

This is a multiple particle process x(t), to be introduced rigorously in Section 2, where

particles xi (or different server rates) interact through their jump probabilities ζi(t,x). It

can be regarded as a generalization of a continuous time linear state space model LSS(F, G)

(page 9 in [18]) with driving matrices F and G depending on the trajectory of the process.

The only case when the autoregressive models (see extensive references in [7]) coincide with

a skeleton of the Markovian process given here is when the jump rates ζi are constant.

We are exploring the model in the following directions:

1) Theorem 1 in Section 2 gives sufficient bounds on the rates ζi assuring the existence

of an invariant probability measure of the system while not assuming any particular nature

of the interaction (mean-field or otherwise), of the form ζi(t,x) ∼ c/|x| when x is large

and ζi(t,x) ∼ O(1) (bounded away from zero) when x is small. The theorem provides

sharp bounds (see the discussion thereafter). Most importantly, it establishes a phase

transition according to c > lim inf |x|→∞ |x|ζi(t,x) = c+(n, γ) > 0, when there exists an

invariant measure, and c < c+(n, γ), when the particles drift to infinity in mean value. As

different orders of magnitude lead to transient behavior of the process (see remarks after

the theorem), the bounds are optimal.

Various orders of magnitude of the jump size are considered in recent papers [19, 14, 17]

under constant ζ but this is the first instance to our knowledge where the rates themselves

are analyzed and the natural scale and criticality are identified. This approach is particu-

larly important and the natural one since in the main application of the model, in which

ζ represents the probability of loss of packets of information x, one expects non-increasing

behavior in each component of x (or, in other models, the “average” level of congestion x̄).

In this case the assumptions (C+) and (C−) of Theorem 1 are immediately satisfied with

the exception of the trivial case ζ ≡ 0.
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It is useful to note in the discrete setting, where a = 1, the left side jump is xi → [γxi]

and a lower bound away from zero on x is imposed, the irreducibility of the process is

immediate and Theorem 1 implies the existence of an unique invariant measure - see [19]

for related models.

2) The mean-field case from Section 3 appears in the engineering literature [1, 6, 8, 9, 10],

studied via simulations in [1, 6] and considered in [2, 3] with a related but different model.

Here ζi(t,x) = p(t, x̄) depends on t and the average x̄ = n−1
∑

xi. This arises as the

simplest interactive setup in which the data flows xi depend on the total transmission rate.

Mean field traffic control protocols may be used when a large number of individual flows

are present. In case of large data loads, it would be ideal to identify the main individual

contributors and control those specific flows with large loads. However, in reality, it may

be difficult to identify those main contributors and an “average”-dependent protocol is

appropriate. One could consider the representation of the effects of TCP on a large space-

time scale as a processor sharing queue where every flow receives the same share of the

total capacity of the link. Then, under homogenization as in Theorem 2, the bulk behavior

can be analyzed via a differential equation (3.8). Mathematically, the mean field model is

important because it is closable: as n → ∞, the differential equation (3.9) governing the

limit of the empirical process (3.1) emerges in explicit, closed form. Section 4 looks at the

one particle process (n = 1). Proposition 1 establishes the uniqueness of the solution to the

fluid limit equation (3.1) and Theorem 4 gives the explicit form of the invariant measure

in the simplest case (n = 1, ζ = const).

3) Section 5 pursues the multi-particle case (n = N) when p(t,Nx) ' N−1α(t, x) under

time speed up t → Nt for a large scaling factor N (consistent with the analysis in Theorem

1), proving a full hydrodynamic limit for the empirical measure (5.1) in Theorem 5. The

result relates partially to the limiting process from eq. (2.1) in [19] (α =constant, n = 1,

non-interactive dynamics) and the convergence to the process given by eq. (2.7) quoted

in [14] from [5] (α(x) = x, n = 1, non-interactive dynamics). Recurrence issues and the

ergodic properties of the one-particle scaling limit process with rate α(x) are analyzed in

greater detail in [13].
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2. The general model

2.1. Martingale problem and a class of test functions. Due to the natural bounds

x0iγ
πi(t) ≤ xi(t) ≤ x0i + aπi(t), 1 ≤ i ≤ n and t ≥ 0,

(2.1) E[exp(ηxi(t))] ≤ exp(ηx0i + λt(eaη − 1)) , 0 ≤ η < ∞

additionally, all negative moments are finite and

(2.2) E[(xi(t))m] ≤ xm
0ie

λt(γm−1) , −∞ < m ≤ 0 .

The process {x(t)} can be seen as the solution to a martingale problem. Denote Rix =

(x1, x2, . . . , xi + a, . . . , xn) and Lix = (x1, x2, . . . , γxi, . . . , xn). For a test function f ∈
Cb([0,∞) × (0,∞)n) - the space of continuous bounded functions in (t,x) - let Mf (t) be

defined by the stochastic differential formula

Mf (t) = f(t,x(t))− f(0,x(0))(2.3)

−
∫ t

0

{
∂sf(s,x(s−)) + λ

n∑

i=1

[(
1− ζi(s,x(s−))

)(
f(s,Rix(s−))− f(s,x(s−))

)

+ ζi(s,x(s−))
(
f(s, Lix(s−))− f(s,x(s−))

)]}
ds .

Then, Mf (t) is a martingale with quadratic variation

〈Mf 〉(t) = λ

∫ t

0

n∑

i=1

[(
1− ζi(s,x(s−))

)(
f(s,Rix(s−))− f(s,x(s−))

)2
(2.4)

+ ζi(s,x(s−))
(
f(s, Lix(s−))− f(s,x(s−))

)2]
ds .

The martingale problem (2.3)-(2.4) can be formulated with functions in a larger space,

including exponentials and, in particular, polynomial functions, that will be used repeatedly.

Definition 1. Given η > 0, let φ ∈ C1,2
η ([0,∞) × (0,∞)n) be functions in C1,2([0,∞) ×

(0,∞)n) with partial derivatives ∂a
t ∂b

xφ, 0 ≤ a ≤ 1, 0 ≤ |b| ≤ 2 having exponential moments

up to η as |x| → ∞ and negative moments as |x| → 0. More precisely, there exists k > 0

and a positive constant Kφ(k) such that

(2.5) sup
0≤a≤1 ,0≤|b|≤2

sup
(t,x)∈[0,∞)×(0,∞)n

|x|ke−η|x|| ∂a
t ∂b

xφ(t,x) | = Kφ(k) < ∞ .
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Here b = (b1, . . . , bn) is a multi-index with nonnegative integer entries and |b| = ∑n
j=1 bj.

The notation stands for ∂a
t ∂b

x = ∂a∂b1 ...∂bn

∂ta∂x
b1
1 ...∂xbn

n

and a = 0, bj = 0 means no derivative is

taken.

Remark. Power functions and exponential functions obviously belong to C1,2
η ([0,∞) ×

(0,∞)n) for some η > 0. Due to the integrability conditions (2.1) and (2.2), the stochastic

differential formulas (2.3)-(2.4) can be extended to test functions in the class C1,2
η ([0,∞)×

(0,∞)n).

2.2. Existence of invariant measures. A Poisson process escapes towards infinity as

t → ∞. However, lower and upper bounds on the rate ζi of moving backwards x → γx

ensure that the process has at least one invariant probability measure on the interval (0,∞).

In the following theorem, we shall take a = 1, λ = 1 without any loss of generality.

Theorem 1. Let c+(n, γ) = n
1−γ . Assume that, uniformly in t ≥ 0, the jump rates satisfy

(C+) for all i, 1 ≤ i ≤ n, lim inf |x|→∞ |x|ζi(t,x) > c+(n, γ), and

(C-) there exists an index i, 1 ≤ i ≤ n such that lim sup|x|→0 ζi(t,x) < 1.

Then, the process defined by (2.3)-(2.4) has tight average occupation measures (2.8).

In the time-homogeneous case the process has at least one invariant probability measure

concentrated on (0,∞).

Remark 1. A simple sufficient condition for (C+) is lim inf |x|→∞ |x|bζi(t,x) > 0 for some

b ∈ [0, 1). The bound c+(n, γ) is nontrivial when b = 1, and reflects the critical nature of

ζi(t,x) ∼ O(|x|−1), present in the scaled model from Section 5, where ζ(t,Nx) ' constN−1.

More precisely, t−1
∫ t
0 E|x(s)|ds ∼ O(1) when c > c+(n, γ) and ∼ O(t) (transient case) when

c < c+(n, γ). For example, take n = 1 and ζ(t, x) = c(1 + x)−1 for small c. Alternatively,

if ζ(t, x) = (1 + (1− γ)x)−1 the process x(t) is a martingale. One can interpret (C−) as a

condition on the support of the invariant measure.

Remark 2. Conditions (C+) and (C−) do not guarantee the uniqueness of the invariant

measure. Set ζi ≡ 0 for some intermediate regime x in a finite box in Rn away from the

origin. The state space breaks down into incommunicable classes and evidently there will

be more than one invariant probability measures. One can strengthen the conditions with

bounds over all x, but this weakens the result; as mentioned earlier, see [13] for the detailed
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treatment of an AIMD model in one dimension (the proof in higher dimensions is essentially

the same), including ergodicity on a general state space (continuum).

Remark 3. The two m in Part 1 (m > 0) and Part 2 (m < 0) of the proof are obviously

not the same (they have opposite signs). In Part 1, the constant c+ must exceed c+(n, γ)

which is achieved at m = 1. On the other hand, for any c− > 0, there exists m < 0 to

satisfy c− > γm − 1, which makes c− arbitrary; in other words c−(n, γ) = 0, by analogy

with the notation for the upper bound c+(n, γ).

Proof. Condition (C+) implies that there exist k+ > 1, c+ > c+(n, γ) such that, uniformly

in (t,x)

(2.6) ζi(t,x) ≥ c+|x|−1 , |x| ≥ k+ .

Similarly, for at least one index i, there exist 0 < k− < 1, c− > 0 such that, uniformly in

(t,x)

(2.7) 1− ζi(t,x) ≥ c− , |x| ≤ k− .

Fix x0 = (x10, . . . , xn0) ∈ (0,∞)n. Our goal is to prove the tightness of the family of

probability measures on (0,∞)n

(2.8) νt(dx) = t−1

∫ t

0
Px0(s, dx) ds , t > 0

where Px0(s, dx) = P (x(s) ∈ dx |x(0) = x0).

The family of probability measures {νt}t>0 is tight if there exists M > 1 such that

(2.9) lim
M→∞

lim sup
t→∞

νt({M−1 ≤ |x| ≤ M}c) = 0 .

We shall break down the proof into two parts, showing respectively

(2.10) lim
M→∞

lim sup
t→∞

νt({|x| > M}) = 0 , lim
M→∞

lim sup
t→∞

νt({|x| < M−1}) = 0 .

We shall denote by dl and Dl the positive constants such that for all x ∈ Rn

(2.11) dl|x|l ≤
n∑

i=1

xl
i ≤ Dl|x|l , l > 0 .

The moments E[xm
i (t)], 1 ≤ i ≤ n are finite for both m positive and negative due to the

bounds (2.1)-(2.2) and the stochastic differential formulas (2.3)-(2.4) are valid for power

functions as mentioned in the remark following Definition 1.
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We apply the expected value in (2.3) to the function f(x) =
∑n

i=1 xm
i on a time interval

0 ≤ s ≤ t to obtain

E[
n∑

i=1

xm
i (t)] =

n∑

i=1

xm
i (0)(2.12)

+
∫ t

0
E

[ n∑

i=1

{
(1− ζi(s,x(s−)))[(xi(s−) + 1)m − xm

i (s−)]

− (1− γm)ζi(s,x(s−))xm
i (s−)

}]
ds .

Part 1: the upper bound in (2.10). Since c+(n, γ) = limm↓1 nm2m−1

dm(1−γm) , whenever (2.6)

holds, there exists m > 1 satisfying c+ > nm2m−1

dm(1−γm) . Using the bounds ζi(s,x(s−)) ≥
c+|x(s−)|−1 as well as the trivial bound 1− ζi(s,x(s−)) ≤ 1, we have an upper bound

(2.13) E[
n∑

i=1

xm
i (t)] ≤

n∑

i=1

xm
i (0) + I1 + I2 ,

where

I1 =
∫ t

0
E

[( n∑

i=1

[m(xi(s−) + 1)m−1 − (1− γm)c+
xm

i (s−)
|x(s−)| ]

)
1[k+,∞)(|x(s−)|)

]
ds ,

and

I2 =
∫ t

0
E

[( n∑

i=1

[m(xi(s−) + 1)m−1]
)
1(0,k+)(|x(s−)|)

]
ds ≤ nm(1 + k+)m−1t .

The terms (xi(s−) + 1)m−1 in integral I1 are bounded above by 2m−1|x(s−)|m−1 and
∑n

i=1
xm

i (s−)
|x(s−)| ≥ dm|x(s−)|m−1 from (2.11). Re-writing the inequality after we move I1 to

the left hand side, we find

(2.14)
∫ t

0
E[|x(s−)|m−11[k+,∞)(|x(s−)|)]ds ≤

∑n
i=1 xm

i0 + nm(1 + k+)m−1t

dmc+(1− γm)− nm2m−1
,

where the coefficient dmc+(1− γm)− nm2m−1 from I1 is positive by construction. Denote

C+(t,x0) the right side of (2.14).

Let M > 0 be a large number, M ≥ k+ + 1 without loss of generality. Since either

xi(s) = xi(s−), xi(s) = xi(s−) + 1 or xi(s) = γxi(s−), then xi(s−) ≥ xi(s) − 1 and also

|x(s−)| ≥ |x(s)| − 1. For νt defined in (2.8),

(2.15) νt({|x| > M}) =
1
t

∫ t

0
Px0(|x(s)| > M)ds ≤

∫ t
0 E

{
|x(s−)|m−11[k+,∞)(|x(s−)|)

}
ds

t(M − 1)m−1
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showing that

(2.16) lim
M→∞

lim sup
t→∞

νt({|x| ≤ M}c) ≤ lim
M→∞

lim sup
t→∞

C+(t,x0)
t(M − 1)m−1

= 0

which proves the upper bound for our claim.

Part 2: the lower bound in (2.10). Without loss of generality we take i = 1. Pick m < 0

fixed but arbitrary and the test function f(x) = (
∑n

i=1 xi)m.

(2.17) E[f(x(t))] = f(x(0)) +
n∑

i=1

(J i
11 + J i

12 + J i
21 + J i

22) ,

where

(2.18) J i
11 =

∫ t

0
E

{[
(1− ζi(s,x(s−)))[f(Rix(s−))− f(x(s−))]

]
1(0,k−](|x(s−)|)

}
ds ,

(2.19) J i
12 =

∫ t

0
E

{[
ζi(s,x(s−))[f(Lix(s−))− f(x(s−))]

]
1(0,k−](|x(s−)|)

}
ds

and

(2.20) J i
21 =

∫ t

0
E

{[
(1− ζi(s,x(s−)))[f(Rix(s−))− f(x(s−))]

]
1(k−,∞)(|x(s−)|)

}
ds ,

(2.21) J i
22 =

∫ t

0
E

{[
ζi(s,x(s−))[f(Lix(s−))− f(x(s−))]

]
1(k−,∞)(|x(s−)|)

}
ds .

We look for an upper bound for the right hand side. For all i, the terms J i
11 and J i

21 are less

or equal to zero. All J i
21 will be ignored, together with all J i

11, except J1
11 for i = 1. In J1

11

we have (1−ζi(s,x(s−)))f(Rix(s−)) ≤ 1 and −(1−ζi(s,x(s−)))f(x(s−)) ≤ −c−f(x(s−)).

In all J i
12, J i

22 we use the inequality f(Lix(s−)) − f(x(s−)) ≤ (γm − 1)f(x(s−)). For J i
22

we have the bound f(x(s−)) ≤ dm
1 km− . We put together the upper bounds obtained for the

terms multiplied by 1(0,k−](|x(s−)|)

−
(
c− − n(γm − 1)

)∫ t

0
E

{
f(x(s−))1(0,k−](|x(s−)|)

}
ds + t

and the upper bounds for the terms multiplied by 1(k−,∞)(|x(s−)|), which are less or equal

to n(γm − 1)dm
1 km− t. Based on (2.17), we move the term with factor −(c− − n(γm − 1))

to the left hand side of the inequality and E[f(x(t))] to the right hand side; since the
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latter is nonnegative, it will be ignored. Choosing m sufficiently close to zero, the factor

c− − n(γm − 1) becomes positive. We have proven the inequality

(2.22)
∫ t

0
E

{
f(x(s−))1(0,k−](|x(s−)|)

}
ds ≤ f(x(0)) + [1 + n(γm − 1)dm

1 km− ]t
c− − n(γm − 1)

.

We denote C−(t,x0) the constant on the right hand side of (2.22).

Let M > 0 be a large number, k− > D1(d1γM)−1 without loss of generality. Since

either xi(s) = xi(s−), xi(s) = xi(s−) + 1 or xi(s) = γxi(s−), then |x(s)| < M−1 implies

|x(s−)| < γ−1M−1 and then f(x(s−)) > Dm
1 (γM)−m.

For νt defined in (2.8),

(2.23) νt({|x| < M−1}) =
1
t

∫ t

0
Px0(|x(s)| < M−1)ds ≤

1
t

∫ t

0
Px0(f(x(s−)) > Dm

1 (γM)−m)ds ≤
∫ t
0 E

{
f(x(s−))1(Dm

1 (γM)−m),∞)(f(x(s−)))
}

ds

tDm
1 (γM)−m

,

using Chebyshev’s inequality on the last line. The indicator function in the last integral is

less than 1(0,k−](|x(s−)|) from (2.22), showing that

(2.24) lim
M→∞

lim sup
t→∞

νt({|x| ≥ M−1}c) ≤ lim
M→∞

lim sup
t→∞

C−(t,x0)
tDm

1 γ−mM−m
= 0

which proves the lower bound for our claim.

We put together (2.15)-(2.16) and (2.23)-(2.24), finishing the proof of (2.10).

¤

3. The fluid limit for the mean-field model

Let M1(R) denote the space of probability measures on the set R. We start the investi-

gation by considering the empirical measure of the n particle γ-process

(3.1) µn(t, dx) =
1
n

n∑

i=1

δxi(t)(dx) ∈ M1(R) ,

with initial distribution

(3.2) µn(0, dx) =
1
n

n∑

i=1

δxi(0)(dx) ∈ M1(R) .

Remark. The measures (3.1)-(3.2) are concentrated on (0,∞) ⊆ R. We shall write

M1((0,∞)), M1([0,∞)), M1(R) when we want to emphasize the set where the probability

measure under consideration is concentrated.
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Definition 2. The average of the positions xi of the particles will be denoted by x̄. In the

special case when ζi(t,x) = p(t, x̄) for all particles 1 ≤ i ≤ n, where p(t, x) is a continuous

function p : [0,∞)× (0,∞) → [0, 1], {x(t)}t≥0 shall be called a mean field γ-process.

Throughout this section we assume that p(t, x) is differentiable with bounded derivatives

in both variables, a = 1 and λ = 1 and there exist constants p−, p+ such that

(3.3) 0 < p− ≤ p(t, x) ≤ p+ < 1 .

We now state the general conditions for tightness on the Skorohod space of right-

continuous left-limit functions (rcll), which will be needed several times throughout the

paper. The parameter N > 0 eventually converges to infinity; in Sections 3 and 4, N = n

(the number of particles in the system), while in Section 5 the scaling factor N appears in

the space and time coordinates in a nontrivial way.

Let {Y N (t)}t≥0 be a family of continuous time rcll random process on Rd, indexed by

N > 0. For a fixed N , the trajectories of the process are elements of the Skorohod space

D([0,∞),Rd) with the space of continuous paths C([0,∞),Rd) as a subset. If

(3.4) lim
K→∞

lim
N→∞

P (|Y N (0)| > K) = 0

and for any T > 0 and ε > 0

(3.5) lim
δ→0

lim sup
N→∞

P ( sup
0<t−s<δ , 0≤s≤t≤T

|Y N (t)− Y N (s)| > ε) = 0 ,

then {Y N (t)}t≥0 is tight in D([0,∞),Rd) and any limit point is in C([0,∞),Rd). The reader

is referred to [4] for the convergence theorems in the Skorohod space.

The fluid limit can be described in closed form by a weak differential-difference equation

(3.9) by setting n = N as scaling constant from (3.4)-(3.5). No other quantity, including

time t, is scaled.

The first assumption (A1) stipulates that the initial mass distribution has a Laplace

transform (positive exponential moments). It is trivially satisfied when x0 is deterministic

and allows the use of the generalized test functions introduced in Definition 1. Assumption

(A2) is needed to ensure the convergence to an initial mass profile.

Assumption (A1). There exists η0 > 0 such that

(3.6) lim sup
n→∞

E[〈eη0x, µn(0, dx)〉] < ∞ .

10



Assumption (A2). The initial distribution is said to have an initial deterministic profile

µ0(dx) ∈ M1((0,∞)) if limn→∞ µn(0, dx) = µ0(dx) in probability in the sense of the weak

convergence of finite measures.

Remark. The convergence in probability from (A2) is relevant when the initial configura-

tion is random: in that case, for any φ ∈ Cb((0,∞)) and ε > 0,

(3.7) lim
n→∞P (|〈φ, µn(0, dx)〉 − 〈φ, µ0(dx)〉| > ε) = 0 .

Combining (3.7) with (A1) we obtain easily that µ0 necessarily has exponential moments

up to η0 and satisfies the bound (3.6). The next assumption (A3) ensures the de-coupling

of individual particles as n →∞ stated in Theorem 3.

Assumption (A3). We choose a finite collection of particles {xn
j (·)}, 1 ≤ j ≤ l, with l a

positive integer fixed for all n. Since the limit is considered as n →∞ the condition n ≥ l

is trivial. We assume that for all 1 ≤ j ≤ l, the initial point xn
j (0) has a deterministic limit

xj.

In the following, we shall denote 〈φ(s), µ(s)〉 =
∫

φ(s, x)µ(s, dx) for a test function φ and

a time-indexed family of measures {µ(t, dx)}t≥0. The test functions defined in Definition 1

include the set of C1,2 functions continuous up to the origin in the space variable X, which

allows without any loss of generality to prove tightness in the sense of (3.4)-(3.5) on [0,∞).

Theorem 2. Under (3.3), (A1) and (A2), the average process x̄n(·) is tight in the Skorohod

space D([0,∞), [0,∞)) and any limit point x̄(·) is the unique deterministic solution of the

ordinary differential equation

dy

dt
= (1− p(t, y))− (1− γ)p(t, y)y , y(0) =

∫
xµ0(dx) ≥ 0 .(3.8)

The empirical measure process (3.1) is tight in the Skorohod space of time-indexed measure-

valued paths D([0,∞),M1([0,∞))) and any limit point is the unique solution that verifies

the equation

〈φ(t), µ(t)〉 − 〈φ(0), µ(0)〉 −(3.9)
∫ t

0
〈∂sφ(s, x) + (1− p(s, x̄(s))(φ(s, x + 1)− φ(s, x))

+p(s, x̄(s))(φ(s, γx)− φ(s, x)) , µ(s)〉 ds = 0 ,

for any φ ∈ C1,2
η ([0,∞)× (0,∞)).
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Remark 1. Equation (3.9) is (4.2) in the special case when At has p(t, x) = p(t, x̄(t)). We

postpone until Proposition 1 in Section 4 to show that the solution in weak sense is unique.

Remark 2. Equation (3.8) has unique global solutions (affine ordinary differential equa-

tion). Since the right hand side is negative for y > (1−p−)
(1−γ)p− , the solution is bounded above.

Similarly y′ > 0 when y < (1−p+)
(1−γ)p+

, meaning that the solution is also bounded below away

from zero. This shows that the solution µ(t, dx) does not degenerate.

Remark 3. In the case p(t, x) ≡ p(x) (the equation is autonomous) the solution is bounded

and monotonic, thus has a limit as t →∞. The convergence holds for p(t, x) ≡ p(t) as well

when limt→∞ p(t) = p exists. When p = limt→∞ p(t, y(t)), the particles are approaching a

steady state corresponding to the equilibrium distribution of the process. This corresponds

to p is constant, a case studied in more detail in the next section.

Remark 4. It is rather straightforward to get solutions to certain choices of p(t, y). (i) In

the case of time homogeneous p(t, y) = p(y), the equation becomes separable and easy

to solve. The equilibrium state yeq = limt→∞ y(t) can be obtained by solving yeq =

(1 − p(yeq))/(p(yeq)(1 − γ)). For instance, in case p(y) = y/(1 + y), the equilibrium so-

lution is yeq = (1 − γ)−1/2 and p(yeq) = (1 +
√

1− γ)−1. (ii) In the case of state indepen-

dent p(t, y) = p(t), the explicit solution to the ode is y(t) = y(0)e−(1−γ)
R t
0 p(u)du +

∫ t
0 (1 −

p(s))e−(1−γ)
R t

s p(u)duds.

Remark 5. Similar results to Theorem 2 can be obtained for ζi(t,x) = pn(t, x̄,x), where

pn(·, ·, ·) approaches a function p(·, ·) as in Definition 2 with some degree of uniformity in

the first two arguments.

Proof. The average process. In this subsection, we apply (3.4)-(3.5) to N = n, Y N (t) =

x̄n(t). We recall the coupling between x(t) and a family of Poisson processes, as in (2.1)-

(2.2). We arrange the particles, including the Poisson points, in a set of n pairs (xi(t), πi(t)),

1 ≤ i ≤ n. The Poisson processes are the clocks that trigger the jumps of the particles xi,

and they only move forward. We then have inequality xi(t) ≤ xi(0)+πi(t) and (2.1) for all

i, and

(3.10) x̄n(t) ≤ x̄(0) +
1
n

n∑

i=1

πi(t) .

The differential equations (2.3)-(2.4) are valid for f(x) ∈ Cb((0,∞)n). Here we are in-

terested in f(x) = n−1
∑n

i=1 φ(xi), with φ(x) ∈ C1,2
η ((0,∞)). It is easy to see that we
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can extend (2.3)-(2.4) to the class of test functions from Definition 1, and implicitly to

polynomials, due to the exponential bounds (2.1).

Let T > 0 be fixed but arbitrary and φ(x) = x. At time t = 0, the average process x̄n(0)

is tight (3.6). Then, (2.3)-(2.4) show that for 0 ≤ t1 ≤ t2 ≤ T ,

E

[
sup

t1≤s≤t≤t2

|x̄n(t)− x̄n(s)|2
]
≤ C(t2 − t1) ,

with C = C(T ) independent of n, showing that {x̄n(·)}n≥1 is tight in D([0, T ], [0,∞)),

and any limit point x̄(·) is continuous. Moreover, the tight family of processes {x̄n(·)}n≥1

satisfy, due to Doob’s maximal inequality applied to (2.3)-(2.4)

lim
n→∞E

[
sup

0≤t≤T

∣∣∣ x̄n(t)− x̄n(0) −(3.11)

∫ t

0
(1− p(s, x̄n(s−)))− (1− γ)p(s, x̄n(s−))x̄n(s−)ds

∣∣∣
2]

= 0 .

Assumption (A2) and (A1) imply that x̄n(0) converges in distribution to the deterministic

point y0 =
∫

xµ0(dx). Since p is continuous and bounded, and using once more fact that

the expected values of the polynomials φ(x) have uniform bounds over n and t ≤ T , we have

shown that any limit point x̄(·) solves (3.8). We note that (3.8) has unique local solutions

since p is smooth, and since it has an affine bound, it also has global solutions [15].

The fluid limit. The proof of (3.9) follows the same steps as the proof for the average

process. One has to prove tightness for {µn(·, dx)}n≥1, which means that, for any test

function φ ∈ C2
b ((0,∞)), the processes Yn(·) = 〈φ, µn(·)〉 satisfy both (3.4) and (3.5).

The first bound is given by (A1), and the second is a consequence of the Doob’s maximal

inequality applied to the martingale (2.3). Any limit point of the tight family of measure

valued processes (indexed by n) satisfies equation (3.9) modulo an error term of order 1/n.

To close the argument, we only need the uniqueness of the solution to the pde (4.2), proven

in Proposition 1. The details of the proof are standard in any hydrodynamic limit [16], also

in a more similar context in [11]. In addition, the proof of Theorem 5 in the present paper

outlines the main steps of essentially the same argument. ¤

Theorem 3. Under assumptions (A1), (A2), (A3), each particle {xn
j (·)}n≥1 is tight and

its limit point is equal in law to the one particle γ - process defined by equation (2.3)

with n = 1 and ζ(t, x) = p(t, x̄(t)), independent of the space variable x, where x̄(·) is the

13



solution of (3.8). Moreover, the joint system of l tagged particles converges to a collection

of independent one particle processes starting at xj, 1 ≤ j ≤ l.

Proof. Under (A1), (A2), the average process x̄n(·) converges to the solution of the ordinary

differential equation (3.8). It is easy to see that under (A3), that takes care of the initial

point, each individual particle is tight. In the Skorohod space D([0, T ], (0,∞)l), consider

the joint l - dimensional limit point {xj(·)}1≤j≤l of the tagged particle collection xn
j (·),

1 ≤ j ≤ l, obtained as n →∞. Taking into account the continuity of the coefficients p(s, ·)
(to prove that p(s, x̄n(s)) → p(s, x̄(s))), we see that the l dimensional process {xj(·)}1≤j≤l

solves the martingale problem (2.3)-(2.4) with n = l, indices i → j, 1 ≤ j ≤ l, identical

ζj(s,x) = p(t, x̄(t)) and x(0) = (x1, x2, . . . , xl) (see [12] for details in a similar derivation).

Naturally, in this setting the l components are independent since no coefficient of the

infinitesimal generator depends on more than one component. ¤

4. The one particle process

As in Section 3, a = 1 and λ = 1 and condition (3.3) are in force. We want to investigate

the dynamics of the process governed by (2.3)-(2.4) in the special case n = 1. In view

of Definition 2, for consistency with Section 3, we denote the jump probabilities ζ(t, x) =

p(t, x). Denote by At the operator

(4.1) Atφ(t, x) = (1− p(t, x))(φ(t, x + 1)− φ(t, x)) + p(t, x)(φ(t, γx)− φ(t, x)) ,

applied to φ ∈ C1,2
η ([0,∞) × (0,∞)). For a probability measure µ0(dx) on (0,∞), we

say that the time indexed family of measures µ(t, dx) is a weak solution to the evolution

equation µt = A∗t µ with initial condition µ(0, x) = µ0(dx), where the star indicates the

formal adjoint of At in the space variable, if

(4.2) 〈φ(t, x), µ(t, dx)〉 − 〈φ(0, x), µ0(dx)〉 =
∫ t

0
〈∂sφ(s, x) + Asφ(s, x), µ(s, dx)〉 ds .

4.1. The forward equation. The next proposition looks at the situation when p(t, x)

depends only on time. We write p(t, x) = p(t) for simplicity. On one hand, this is a special

case of the one particle process, and Proposition 1 applies in particular to the case (Theorem

4) when the jump rates ζi are constant. On the other hand, the interest for this setting

comes from the fluid limit in Section 3. By a law of large numbers effect, the average x̄(t)

approaches a deterministic limit, as in (3.8). Then, p(t, x̄(t)) ≡ p(t) becomes a function of
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t only. Uniqueness of the pde (4.2) is essential for closing the argument of the fluid limit

from Theorem 2.

Proposition 1. The solution in weak sense to equation (4.2) exists and is unique and

corresponds to the forward equation of the one particle γ - process with jump rates ζ(t, x) =

p(t) depending continuously of time.

Proof. Existence. The transition probability µ(t, dx) = Pµ0(x(t) ∈ dx) of the (nonexplo-

sive) process defined by (2.3)-(2.4) for n = 1 satisfies the desired equation by taking the

expected value in (2.3), which is exactly the forward equation of this particular case of the

γ - process.

Uniqueness. The forward equation in integral form reads

〈φ(t, x), µ(t)〉 − 〈φ(0, x), µ(0)〉 =(4.3)
∫ t

0

{
〈∂sφ(s, x) + (1− p(s))(φ(s, x + 1)− φ(s, x))

+p(s)(φ(s, γx)− φ(s, x)) , µ(s)〉
}

ds ,

and is valid for test functions φ(t, x) ∈ C1,2
η ([0,∞)× (0,∞)). The bound (2.1) shows that

η can be arbitrarily large. All we need is that the moment generating functions of all µ(t)

exist on an interval including the origin. Next, let φ(t, x) = xm for integers m ≥ 0. We

can see that {〈xm, µ(t)〉}m≥0 are defined recursively by a system of affine ode’s (2.12); such

equations have global existence and uniqueness of solutions (see [15]). The induction step

uses essentially that p depends on time only. Two solutions will have equal moments for

any fixed t, so will have equal moment generating functions, thus the measures are the

same. ¤

4.2. The case of constant jump probabilities. The next theorem gives the exact in-

variant measure when ζ ≡ p(t) = p is constant. The particles are trivially independent and

it is sufficient to study one individual label i, thus n = 1.

Theorem 4. In the case when the jump probabilities are constant with ζ(t, x) = p > 0 for

all (t, x), the invariant measure µ(dx) is unique and has characteristic function

(4.4) µ̂(ξ) = Eµ[eiξx] = Π∞n=0

(
1− 1− p

p
(eiγnξ − 1)

)−1

, ξ ∈ R .
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Alternatively, let {Wk}k≥0 be i.i.d. geometric random variables with parameter p, that is

P (Wn = j) = (1 − p)jp, j ≥ 0. Then, the probability measure µ(dx) on (0,∞) defined in

(4.4) is the distribution of the random variable

(4.5) X =
∞∑

k=0

γkWk .

Remark. The form of the invariant measure is essentially the same as in Theorem 2.3.18

(yet the ‘noise’ does not have mean zero) and (4.5) is in the form of a random geometric

series as in 2.3.3, both in [7]. Theorem 4 is a continuous time result and cannot be directly

derived from Theorem 2.3.18 even after shifting the process by a constant to compensate

for the mean value of the noise. It can be used to obtain the invariant measure for the

chain given by the position right before each jump.

Proof. The existence and uniqueness of the invariant measure µ(dx) is proven in Theorem

1 and Proposition 1. The functions x → exp(iξx) are bounded and continuous; the passage

from real-valued to complex-valued functions is elementary. The series (4.5) is convergent

in distribution (also almost surely) as long as 0 ≤ γ < 1, so the distribution of X is well

defined. We also notice that the infinite product in (4.4) is convergent due to the inequality

|eiξ − 1| ≤ 2| sin ξ
2 | ≤ |ξ|. The invariant measure has to satisfy 〈Aφ, µ〉 = 0 for A the

operator (4.1), which is independent of t in this case. Naturally, this is the operator from

(2.3) when n = 1, λ = 1, a = 1 and ζ = p is constant. For φ(x) = exp(iξx), we verify that

the characteristic function µ̂(ξ) has to satisfy the equation

(4.6)
(

1− (
1− p

p
)(eiξ − 1)

)
µ̂(ξ) = µ̂(γξ) , µ̂(0) = 1 .

The infinite product from (4.4) is the only solution of this recursive equation. ¤

5. Scaling limit

In this section, we recall the definition of the γ - process (2.3)-(2.4) with nontrivial

choices of intensity λ and jump size a. Let N be a positive integer. We consider the

mean field γ - process with scaling given by n = N , a time speed up t → Nt given by

λ = N , and the shrinking of the forward jump size a = N−1. In addition, we shall assume

pN (t, x) = N−1α(t, x), with α ∈ C0,1
b ([0,∞)× (0,∞)), the space of functions with bounded

continuous derivatives up to the multi-index (0, 1). Finally, the backward jump size has no
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scaling on γ ∈ (0, 1). The scaled process considered is xN (t) = x(Nt). Denote the empirical

measure by

(5.1) µN (t, dx) = N−1
∑

δxi(Nt)(dx) ∈ M1((0,∞)) .

We recall that for φ(t, x) ∈ C1,2
η ([0,∞) × (0,∞)) we use the shorthand 〈φ(t), µ(t)〉 for the

integral of φ against the measure µ over the variable x and that M1((0,∞)) is the space of

probability measures on (0,∞) with the topology of convergence in distribution.

5.1. Initial profile. We shall assume that there exists η0 > 0, such that

(5.2) lim sup
N→∞

E[〈eη0x, µN (0, dx)〉] < +∞ .

Assume that there exists a deterministic measure µ0(dx) ∈ M1((0,∞)) such that, for

any ε > 0 and any φ ∈ C∞
0 ((0,∞)) we have the limit

(5.3) lim
N→∞

P
(|〈φ(x), µN (0, dx)〉 − 〈φ(x), µ0(dx)〉| > ε

)
= 0 .

The measure µ0(dx) is called the initial profile of the particle system. Using (5.2) and

(5.3) we can show immediately that µ0 must satisfy the same bounds (5.2) on exponential

moments up to η0 as µN (0, dx). This proves that x̄N (0) = 〈x, µN (0, dx)〉. Even though

φ(x) = x is unbounded, by truncation with a smooth function and monotone convergence,

we obtain limN→∞〈x, µN (0, dx)〉 = 〈x, µ0(dx)〉 which implies that z0 =
∫

xµ0(dx).

5.2. The equation satisfied by the average. For a given α(t, x), z0 ≥ 0, let z(t) be the

solution to the ode

(5.4) z′(t) = 1− (1− γ)α(t, z(t))z(t) , z(0) = z0 .

Remark. The solution has global existence and is unique due to the fact that 1 − (1 −
γ)α(t, z)z is C0,1 in (t, z) and affine in z. See also the discussion from Remark 3 after Theo-

rem 2. As an illustration, let α be constant. In this case z(t) = r−1[1− (1− rz0) exp(−rt)],

where r = α(1− γ) > 0, remains bounded for all t and limt→∞ z(t) = r−1.

5.3. The equation satisfied by the macroscopic profile. Starting with the solution

z(t) of equation (5.4), for a given η > 0 we define the operator Bt on the space of test

functions φ ∈ C1,2
η ([0,∞)× (0,∞))

(5.5) Btφ(t, x) = ∇φ(t, x) + α(t, z(t))(φ(t, γx)− φ(t, x)) .
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For any t ≥ 0, B∗
t denotes the formal adjoint of Bt in the space variable. We shall say

that time indexed measures µ(t, dx) satisfy the equation

(5.6) ∂tµ = B∗
t µ , µ(0, dx) = µ0(dx)

with initial condition µ0(dx) in weak sense, if µ(0, dx) = µ0(dx), and there exists η > 0

such that for any test function φ ∈ C1,2
η ([0,∞)× (0,∞)),

〈φ(t), µ(t)〉 − 〈φ(0), µ(0)〉 −
∫ t

0
〈∂sφ(s) + Bsφ(s) , µ(s) 〉 ds = 0 .(5.7)

A solution µ(t, dx) to (5.7) can be obtained probabilistically as the transition probability

of the inhomogeneous Markov process x(t), t ≥ 0 solving the martingale problem associated

to (5.5). The construction can be done either from a scaled pure jump γ - process, or directly

as follows. Let χn, n = 1, 2, ... be i.i.d. exponential r.v. of intensity one, independent of the

starting point x0 > 0. A particle starts at x0 and moves at constant speed in the positive

direction of the real line. Define τ ′1 ≤ ∞ the first time t > 0 when
∫ t
0 α(s, x(s−))ds exceeds

χ1. If τ ′1 = ∞, the particle moves for all time deterministically at speed one. If τ ′1 < ∞,

x(τ ′1) = γx(τ ′1−). Re-set x0 = x(τ ′1) and continue the construction in the same fashion for

τ ′n, n ≥ 2. Due to the boundedness of α, the process does not end in finite time and the

i.i.d. exponentials guarantee that x(t) is Markovian. Once we have constructed the solution

µ(t, dx), there is only a question about uniqueness, which is shown in Step 4 of the proof

of Theorem 5.

Theorem 5. Assume both (5.2) and (5.3) and choose η ∈ (0, η0). Then, the average x̄N (·)
converges in probability to a deterministic continuous function z(t) solving the equation

(5.4). In addition, the measure-valued processes µN (·, dx) converge weakly in probability to

the unique measure-valued path µ(·, dx) ∈ C([0,∞),M1([0,∞))) solving the equation (5.6)

in weak sense over the space of test functions C1,2
η ([0,∞)× (0,∞)).

Proof. We shall prove the theorem on any time interval [0, T ], where T is fixed but arbitrary.

Step 1. We want to show that the bounds (5.2) hold for µN (t, dx), for any T > 0. First,

lim sup
N→∞

E

[
sup

0≤s≤T
〈eη0x, µN (s, dx)〉

]
< +∞(5.8)
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and then, a fortiori, for all positive integer m,

lim sup
N→∞

E

[
sup

0≤s≤T

∣∣∣〈xm, µN (s, dx)〉
∣∣∣
]

< ∞ .(5.9)

This is based on the martingale inequality applied to the process xN (0) + πN (t) coupled

with x(t). At time t = 0, both processes start from the same points xi(0). Whenever

the exponential clock of intensity N associated to particle i rings, the particle πi simply

jumps forward by N−1. Since πN
i (t) are independent Poisson processes, all bounds are

finite for any t ≤ T . The uniform integrability from (5.9) follows from (5.8) due to the

independence of πN and the initial point xN (0). The bound (5.9) implies that, for any

t ≥ 0, {µN (t, dx)}N>0 is a tight family of measures.

Step 2. We prove the limit for the average process. First, assume φ(x) = x. Denote

〈φ, µN (t)〉 = zN (t) in this case. The bounds (5.8)-(5.9) are stronger than (3.4). Moreover,

they allow us to apply the differential formulas (2.3)-(2.4) to φ(x) = x, a polynomial. As

a consequence of the martingale maximal inequality, since the quadratic terms (2.4) are of

order N−1, we obtain (3.5) for zN (t).

Let z(·) be a limit point of zN (·). We note that z0 = limN→∞〈x, µN (0)〉 = 〈x, µ0〉 exists

and is unique from (5.3) and an application of (5.2). For ω ∈ D([0,∞), (0,∞)), we write

Xt(ω) = ω(t)−ω(0)−∫ t
0 (1−(1−γ)α(s, ω(s−))ω(s−)ds. Let Xt,M = |Xt|ψM (|Xt|) where ψM

is a smooth nonnegative version of the indicator function of [−M, M ]. Here M > 0 is fixed

but arbitrary. The functional Xt on D([0,∞), (0,∞)) is continuous and Xt,M is continuous

and bounded. We have limN→∞E[Xt,M (zN )] = E[Xt,M (z)]. Since Xt,M (zN ) ≤ |Xt(zN )|
and limN→∞E[X2

t (zN )] = 0 by Doob’s maximal martingale inequality, we conclude that

E[|Xt(z)|] = 0 after M → ∞. Finally Xt(z) = 0 with probability one. The random

process Xt(z), t ≥ 0 is also continuous with probability one. With the exception of a set

of probability zero, X·(z) is continuous on [0, T ] and for all t ∈ Q ∩ [0, T ], Xt(z) = 0. This

implies that supt∈[0,T ] |Xt(z)| = 0 with probability one. We want to prove a little more:

(5.10) lim
N→∞

E[ sup
s∈[0,T ]

|x̄N (s)− z(s)|] = 0 .

The functional ω(·) → F (ω) = sups∈[0,T ] |ω(s) − g0(s)| is continuous on D([0, T ],R) when

g0(·) is continuous - from [4]. In this case, set z(s) = g0(s) and ω(s) = x̄N (s). This implies

that FM (ω) = F (ω)ψM (F (ω)) is continuous and bounded. The convergence in distribution,

followed by M →∞ concludes the proof.
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Step 3. Let φ ∈ C1,2
η ([0,∞) × (0,∞)). For each N , the differential formula corresponding

to 〈φ(t), µN (t)〉 can be obtained directly from (2.3), applied to the function f(t,x) =

N−1
∑

φ(t, xi). Formulas (2.3)-(2.4) give (recall n = N and pN (s, x) = N−1α(s, x), α

continuous in s)

MN
φ (t) = 〈φ(t), µN (t)〉 − 〈φ(0), µN (0)〉 −(5.11)

∫ t

0
N−1

N∑

i=1

{
∂sφ(s, xN

i (s−)) +(5.12)

N
[(

1− pN (s, x̄N (s−))
)(

φ(s, xN
i (s−) +

1
N

)− φ(s, xN
i (s−))

)
(5.13)

+ pN (s, x̄N (s−))
(
φ(s, γxN

i (s−))− φ(s, xN
i (s−))

)]}
ds .(5.14)

(1) The integrands in (5.12)-(5.14) have uniformly bounded moments due to the es-

timates (5.8). This proves that 〈φ(·), µN (t)〉, indexed by N , satisfy (3.4)-(3.5), showing

that {µN}N>0 are tight processes on D([0, T ] , M1([0,∞)), and any limit point belongs to

C([0, T ] , M1([0,∞))).

(2) Modulo error terms of order N−1, line (5.13) is equal to ∇φ(xN
i (s)). Here we use

that α ∈ C0,1
b ([0,∞) × (0,∞)), and then Taylor’s formula with the remainder in integral

form.

(3) Given φ(t, x), denote φγ(s, x) = φ(s, γx). For ν ∈ D([0, T ] , M1([0,∞))), define

Uφ(s) = 〈∂sφ(s) +∇φ(s) + α(s, z(s))(φγ(s)− φ(s)) , ν(s−) 〉 ;

(5.15) X(ν) = 〈φ(t), ν(t)〉 − 〈φ(0), ν(0)〉 −
∫ t

0
Uφ(s) ds .

We would like to prove that limN→∞E[|X(µN )|] = 0. By Doob’s maximal inequality, we

have limN→∞E[|X−(µN )|2] = 0, where X− is the functional identical to X except the factor

α(s, z(s)) in Uφ(s) that is replaced by α(s, x̄N (s−)). To evaluate E[|X−(µN )−X(µN )|], we

shall apply Hölder’s inequality inside the time integral containing Uφ. Due to the fact that

α(t, x) is bounded and φ(s, x) has exponential moments for some η0 > 0, it is sufficient to

show that, for a suitable r > 1,

(5.16) lim
N→∞

E[ sup
s∈[0,T ]

|α(s, x̄N (s−))− α(s, z(s))|r] = 0 .
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For any r > 1, the limit (5.16) results from (5.10) and dominated convergence. For the

exponential moments (5.2) we need η ≤ η0(1 − 1/r), which shows that the only condition

on η is η < η0.

From here on we proceed like in Step 2, first by truncation with ψM (x), a smooth version

of the indicator function of [−M, M ]. For ease of notation, we omit the subscript t until the

end of this paragraph. The functional XM (ν) = |X(ν)|ψ(X(ν)), defined in similar fashion

to Xt,M in Step 2, is continuous and bounded. Since limN→∞E[|X(µN )|2] = 0, we derive

that E[|X(µ)|] = 0 for any limit point µ ∈ C([0,∞)×M1([0,∞))), following the reasoning

from Step 2. So X(µ) = 0 with probability one. At this point we recall the dependence on

t of the random variable X(ν) = Xt(ν). By continuity, exactly as at Step 2, we conclude

that supt∈[0,T ] |X(µ)| = 0 with probability one.

(4) We know that any limit point µ(·, dx) of the tight family of empirical measures

{µN (·, dx)}N>0 is continuous in time and satisfies equation (5.6) in weak sense. We only

have to prove that the equation has a unique deterministic solution, completed in the next

step.

Step 4. To prove the uniqueness of the solution to (5.6), for any weak solution of (5.7), we

define the exponential moment 〈exp(η0x, µ(t, dx)〉 and the moments µm(t) = 〈xm, µ(t, dx)〉,
m ≥ 0. The moments are finite for a limit point µ due to (5.8) via the same truncation

argument used in Step 2. The existence of a positive exponential moment shows that the

moment generating function is defined on an open interval containing the origin. Hence

the measure µ is identified by its moments. The (5.7) applied to φ(t, x) = xm gives the

recurrence

(5.17)
d

dt
µm(t) = mµm−1(t) + α(t, z(t))(γm − 1)µm(t) , µ0(t) = 1 .

The affine ode’s have unique global solutions since α is bounded (a general result when the

equation has an affine bound [15]). For two limit points µ′ and µ′′, the equality of moments

implies µ′ = µ′′. ¤
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