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Abstract. A scaled version of the general AIMD model of transmission control protocol

(TCP) used in internet traffic congestion management leads to a Markov process x(t)

representing the time dependent data flow that moves forward with constant speed on the

positive axis and jumps backwards to γx(t), 0 < γ < 1 according to a Poisson clock whose

rate α(x) depends on the interval swept in between jumps. Under very general condition

that α is bounded above and away from zero, we show that the invariant measure is

unique, has a bounded density, and the process is exponentially ergodic via the local

Doeblin condition on general state spaces. When α is constant, an explicit formula for the

invariant measure is provided together with estimates on the exponential moments of the

first return time.

1. Introduction

Let (Ω, Σ, P ) be a probability space and {xt}t≥0 be a stochastic process adapted to

the filtration {Ft}t≥0 on Σ. In the following we study the time-homogeneous one particle

process {xt}t≥0 with state space (0,∞) solving the martingale problem with generator

(B,D)

(1.1) Bφ(x) = ∇φ(x) + α(x)(φ(γx)− φ(x)) , φ ∈ D = C1
b ((0,∞)) ,

on the C0
b ((0,∞)). Here γ ∈ (0, 1), α(x) is a measurable function (later on, α will be

assumed bounded) and Ck
b ((0,∞)) is the space of functions with k continuous derivatives

up to the boundary of (0,∞). This simple dynamics is the scaled version [13, 8, 12, 9]

of an additive increase multiplicative decrease (AIMD) process modeling the traffic flow

in internet congestion control [6, 7, 1, 9, 12]. Let τ ′i , i = 0, 1, . . . be a non-decreasing

sequence of random times representing the loss events (when packets of data are lost).
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Between two consecutive loss events (jumps) τ ′i−1 ≤ t < τ ′i , the transmission rate (also

known as congestion window or cwnd) x(t) increases at constant speed one. Once the

volume
∫ t
τ ′i−1

α(x(s))ds reaches a random quantity χi > 0 as t ↑ τ ′i , the rate falls back

to γx(τ ′i−). This mechanism leads to a Markov process by adopting a sequence of i.i.d.

exponential r.v. χi, i = 1, 2, . . . and repeating the construction for τ ′0 = 0, x(0) = x0 > 0,

τ ′i = inf{t > τ ′i−1 |
∫ t
τ ′i−1

α(x(s))ds > χi}, i = 1, 2, . . .. We notice that if i is the first rank

such that τ ′i = ∞, as it may happen if α(x) vanishes, the process remains well defined,

following a deterministic motion with speed one for all t ≥ τ ′i−1. On the other hand, if α(x)

becomes arbitrarily large, there is the possibility that the process finishes in finite time.

This paper is focussed on recurrence and ergodic properties of the process. The simplest

yet most enlightening case is when α(x) is constant, when Theorem 3 gives the explicit

form of the invariant measure (4.5)-(4.6). Formulas (4.2)-(4.3) and (4.6) imply that (1) the

convergence to the invariant measure is exponential and (2) that the convergence depends

on the initial state x0, as reflected in the constant factor V (x) in (2.2), whereas the rate

ρ is independent of x. Proposition 8 shows that the return times have a finite exponential

moment.

It is intuitively clear that as α approaches zero, the time before a jump backwards

becomes very large and the particle escapes, at constant speed, to infinity. Evidently, there

is no proper equilibrium probability measure (the point at infinity is a cemetery). At the

other extreme, when α can be arbitrarily large, the particle jumps backwards very often

and may be trapped in a neighborhood of the origin. In this case the process becomes

‘transient’ and the invariant measure becomes again trivial. Thus we assume that there

exist positive constants α0 and ||α|| such that

(1.2) 0 < α0 ≤ α(x) ≤ ||α|| < ∞ , ∀x ∈ (0,∞) .

Our setup is natural and concentrates on the convergence to equilibrium when the loss

rate α is a function of x, in other words when the rate of marking/dropping is a function of

the share of the bandwidth associated to the connection (see [2, 5] for the explicit formulas

of the invariant measure when α(x) is a power of x). Theorem 1 is the main result of

the paper, and, to our knowledge, the first rigorous AIMD result not based on the explicit

computation of the invariant measure, thus valid for a general rate function α(x).
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There is a natural relation ρ ≤ 1−c between the constant c in the definition of a Doeblin

set (Definition 1) and the geometric rate of convergence ρ from (2.2)(cf. [11, 4]). Theorem 1

provides a concrete estimate of the speed of convergence to equilibrium, which is essential in

simulation and in justifying the mean-value analysis approach [13] which is used massively

in the engineering literature.

In general, the analysis of continuous time Markov processes on general state spaces is

much more delicate than in the countable state case and solid references are less readily

available. We found useful to provide a brief review of the so called local Doeblin theory

in Section 2, based mainly on [3] (for the continuous time case) and, to a lesser extent on

[4, 10, 11].

Theorem 1. If α satisfies (1.2), then the time homogeneous process with generator (1.1)

has a unique invariant probability measure which is absolutely continuous with respect to

the Lebesgue measure l(dx), and is exponentially ergodic in the sense of (2.2).

The proof of the theorem is postponed to subsection 3.3.

2. Local Doeblin theory for continuous time processes

We start with the introduction of the basic concepts relevant to the theory of continuous

time Markov processes on general state spaces.

Let {x(t)}t≥0 be a continuous time non - explosive Markov process on the state space S
with Borel sets B(S). For a Borel set A, τA = inf {t ≥ 0 |x(t) ∈ A} is the first hitting time

of A and if x ∈ S

(2.1) G(x,A) = Ex

[ ∫ ∞

0
1A(x(t))dt

]

denotes the Green function associated to the process.

Definition 1. (Local Doeblin condition and small sets) A Borel subset F in the state space

S of the Markov process will be said

(i) attractive, if Px(τF < ∞) = 1, for any x ∈ S, and

(ii) small, if there exists a time t > 0, a probability measure ν0(dx) concentrated on F ,

and a constant c ∈ (0, 1) such that, for all x ∈ F and all Borel sets B of S, we have

Px(x(t) ∈ B) ≥ c ν0(B).

A set F satisfying (i)-(ii) is also called an attractive Doeblin set.
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Definition 2. Given φ a measure on (S,B(S)), a process is said φ - irreducible if for any

Borel set B of S with φ(B) > 0, then G(x,B) > 0 for any x ∈ S. We also say that φ is

an irreducibility measure. The process is said aperiodic if there exists a small set F with

φ(F ) > 0 and a time t0 ≥ 0 such that Px(x(t) ∈ F ) > 0 for all t ≥ t0 and x ∈ F .

We note that whenever there exists φ as above, there exists a maximal irreducibility

measure ψ such that ν << ψ for any irreducibility measure ν. Hence aperiodicity can be

defined directly in terms of ψ; at the same time, if we find a small set F with φ(F ) > 0

then automatically ψ(F ) > 0.

Theorem 2 summarizes results from [3, 4, 10, 11]. Only [3] deals directly with the

continuous time case.

For δ > 0, define τF (δ) = inf{t ≥ δ |x(t) ∈ F}. In the continuous time case, τF (δ)

replaces the first time of return to the set F from the discrete time setting.

Theorem 2. Assume a Markov process is non-explosive, ψ - irreducible and aperiodic with

an attractive Doeblin set F . If there exists δ > 0, η > 0 such that V (x) = Ex[exp(ητF (δ))] is

finite for all x ∈ S and V (x) is uniformly bounded on F , then there exist a unique invariant

probability measure µ(dx), constants D > 0 and ρ ∈ (0, 1) such that for all t ≥ 0 and x ∈ S

(2.2) ||Px(x(t) ∈ ·)− µ(·)|| ≤ DV (x)ρt ,

where || · || denotes the total variation norm of a measure.

Remark. The existence of an attractive Doeblin set F implies that F is a petite set for

the resolvent chain with transition probabilities Uλ(x, dy) =
∫∞
0 λe−λtPx(x(t) ∈ dy), λ > 0.

Then Uλ is Harris recurrent, implying that there exists an invariant measure µ(dx), not

necessarily finite, for both the recurrent chain and {xt}t≥0. Positive recurrence, defined as

Ex[τ(δ)] < ∞ for all x ∈ S is necessary and sufficient to show that µ(dx) is a probability

measure. The condition V (x) < ∞ is much stronger, and implies exponential ergodicity.

Proof. The theorem is an immediate consequence of Theorems 6.2, 5.2 and 5.3 in [3] for

the special function f(x) ≡ 1. ¤

3. Proof of Theorem 1

Step by step, we prove the necessary ingredients necessary to apply Theorem 2.
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3.1. Recurrence of the process. In our case, S = (0,∞), φ is the Lebesgue measure

l(dx) on (0,∞). In the proof of Theorem 1 (subsection 3.3) we show that l(dx) is the

maximal irreducibility measure ψ.

Proposition 1. If x ∈ (0,∞), then for any a′ > 0, Px(τ(0,a′) < ∞) = Px(τ(0,a′] < ∞) = 1.

Moreover, for any open set A in (0,∞), we have Px(τA < ∞) > 0.

Proof. Let a′ > 0 and denote τ0 = τ(0,a′) (notice that it is a stopping time). Pick an

arbitrary ε > 0. Let χ1, χ2, . . . be the i.i.d. holding times of the Poisson process driving

x(t), w′1, w
′
2, . . . the actual holding times of the process and τ ′0 = 0, τ ′1, τ

′
2, . . . be the actual

jump times of x(t). More precisely, for j ≥ 1,

(3.1) τ ′j = inf{t > τ ′j−1 |χj <

∫ t

τ ′j−1

α(x(s))ds} , w′j = τ ′j − τ ′j−1 .

Part 1. We first show that Px(τ0 < ∞) = 1 for all x > 0. By construction, (3.1) implies

that w′i ≤ α−1
0 χi with probability one. Right after exactly the n-th jump, a particle that

started at x will be at

(3.2) x(τ ′n) = γnx +
n−1∑

k=0

γk+1w′n−k ≤ γnx + α−1
0

n−1∑

k=0

γk+1χn−k .

It is straightforward to see that unless x < a′, we have that x(τ0) coincides with the position

x(τ ′n), exactly after a jump, for some n ≥ 1. A coupling argument based on a process with

constant α = α0 driven by the same holding times {χi}i≥0, together with (3.2), shows

that if the process with constant rate reaches (0, a′), then for sure {x(t)}t≥0 reaches it even

before. Proposition 8 (not dependent on the results in this section) concludes the argument.

Part 2. Without loss of generality, we assume that A is an open interval (a, b) with a > 0.

Choose a′ ∈ (0, a). Let n be large enough to make γnx small in comparison to a′. At the

same time, we work with the event that the first n consecutive holding times w′j are small,

while w′n+1 is large enough to reach a. Then τA ≤ τ ′n+1 < ∞. More precisely, we use once

again (3.2), the position at t = τ ′n, after n consecutive holding times of length less than ε is

(3.3) x(τ ′n) = γnx +
n−1∑

k=0

γk+1w′n−k ≤ γnx + εα−1
0 γ(1− γ)−1 .
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We choose n and ε such that γnx < a′/2 and ε < (a′
2 )α0(1− γ)γ−1. Noticing that τ ′n ≥ τ0,

we have

Px(τA < ∞) ≥ Px(χ1 ≤ ε, χ2 ≤ ε, . . . χn ≤ ε, w′n+1 > a) ≥ (1− e−ε)ne−α0a > 0 .

¤

Proposition 2. For any Borel set A on (0,∞) with l(A) > 0 and any x ∈ (0,∞), we have

G(x,A) = ∞.

Remark. In continuous-time setting [3], l - irreducibility is defined as G(x,A) > 0 for any

x and any A with l(A) > 0. Proposition 2 shows that x(t) is l - recurrent, which means

that G(x,A) = ∞. Intuitively, once x(t) enters an open set, it will spend a positive time

in the set with positive probability while waiting for the next jump.

Proof. Since l(A) > 0, there exists a compact set K ⊆ A with l(K) > 0 and 0 < a < b < ∞
such that K ⊆ (a, b). Pick a′ ∈ (0, a). Starting with τ0 defined in Proposition 1, for

i = 0, 1, 2, . . . we set

(3.4) σi = inf{t > τi |x(t) ∈ (a, b)} , τi+1 = inf{t > σi |x(t) ∈ (0, a′)} .

We notice that τi − τi−1 > a − a′ > 0, bounded below uniformly in i, showing that

limn→∞ τi = ∞ with probability one. In view of the results from Proposition 1, the event

that all τi+1 − σi < ∞, i ≥ 0, has probability one. At the same time, P (σi − τi = ∞) ≤
Πn>iP (w′n < a) = 0. This shows that τi+1 − τi < ∞, i ≥ 0, has probability one.

We need to calculate

G(x, A) ≥ Ex

[ ∫ ∞

τ0

1A(x(t))dt
]
≥ Ex

[ ∞∑

i=0

∫ τi+1

τi

1A(x(t))dt
]
.(3.5)

Applying the strong Markov property to (3.5), it is enough to show that

inf
y∈(0,a′)

Ey

[ ∫ τ1

0
1A(x(t))dt

]
> 0 .(3.6)

For χ an exponential random variable with mean value one, independent of the process,

define

w′ = inf{t > 0 |χ <

∫ t

0
α(x(s))ds} ,
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the first jump time of x(t). The rates α(x) are bounded above by ||α|| ∈ (0,∞) and

||α||w′ ≥ χ. Whenever w′ > b − y we have
∫ τ1
0 1A(x(t))dt > l(K). Then, if χ > ||α||b we

have that w′ > b, which implies

Ey

[ ∫ τ1

0
1A(x(t))dt

]
≥ l(K)Py

(
χ > ||α||b

)
= l(K) exp{−||α|| b} > 0 ,

where the lower bound is independent of y. ¤

Denote A(y) =
∫ y
0 α(x′)dx′ and recall the condition (1.2). Then A is Lipschitz continuous

(upper bound on α(x)) and strictly increasing, hence has an inverse A−1 which is also

Lipschitz continuous (lower bound on α(x)) and increasing

(3.7) α0(y′′ − y′) ≤ A(y′′)−A(y′) ≤ ||α||(y′′ − y′) , y′′ ≥ y′ > 0 .

The Lipschitz constant for A is ||α|| and for A−1 it is α0.

Proposition 3. The probability distribution of x(t) has a density for any t > 0.

Proof. To prove the absolute continuity with respect to the Lebesgue measure, in view of

(3.2), we have the formula

(3.8) x(t) = x(τ ′n) + t− τ ′n = t + γnx−
n−1∑

k=0

(1− γk+1)w′n−k ,

when there are exactly n jumps before time t > 0 where n = 0, 1, . . .. Due to continuity,

equation (3.1) gives

(3.9) χj =
∫ τ ′j

τ ′j−1

α(x(s))ds =
∫ x(τ ′j)

x(τ ′j−1)
α(y)dy , x(s) = x(τ ′j−1) + s− τ ′j−1

when τ ′j−1 ≤ s < τ ′j . Then

(3.10) χj = A(x(τ ′j−1) + τ ′j − τ ′j−1)−A(x(τ ′j−1)) .

Following the calculation in (3.3) we see that x(τ ′j) are linear functions of the random

variables w′k, 1 ≤ k ≤ j. The system is lower diagonal and (3.7) shows it is invertible.

This, together with (3.1) and (3.2), proves that w′j , 1 ≤ j ≤ n have a continuous joint

distribution depending on the joint density of the vector (χ1, . . . , χn), which demonstrates

our claim. ¤
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3.2. Ergodic properties. The next Proposition identifies a class of attractive small sets.

Proposition 4. Any set F = (0, a′] with a′ > 0 is an attractive small set. More precisely,

Px(τF < ∞) = 1 for all x ∈ (0,∞) and there exists t > 0 and an interval I with I ∩ F 6= ∅
such that the probability density of Px(x(t) ∈ dy) is bounded away from zero on I, uniformly

in x ∈ F .

Remark. In fact, for any t with t/a′ ∈ (0, γ−1), there exists n ≥ 1 such that [γna′+γt, t)∩
F 6= ∅ and I can be chosen as a closed subinterval. The definition of a small set does allow

that I, and implicitly ν0, in this case the uniform probability measure on I, be dependent

of t.

Proof. We shall use the same notations for the holding times and jump times as in the

proof of Propositions 1, 2 and Theorem 1. In the proof of Proposition 1 we showed that

Px(τ(0,a′) < ∞) = 1 for all x ∈ (0,∞). Having τ(0,a′] ≤ τ(0,a′), condition (i) in Definition 1

is satisfied for any set (0, a′].

Fix t > 0 such that t/a′ ∈ (γn(1− γ)−1, (1− γn)γ−1). The interval is properly defined if

γn < 1− γ, which is true for sufficiently large n. By construction, there exist two numbers

t2 > t1 > 0 such that t1 ≥ γna′ + γt and t2 < t (the second inequality has to be strict)

and I = [t1, t2] ∩ F 6= ∅. A possible choice is t1 = γna′ + γt and t2 = t − ε with small ε.

Consider q1 < q2 in I.

Pick a point x ∈ F = (0, a′]. We recall that τ ′n =
∑n

j=1 w′j is the n-th jump (3.1).

A lower bound of the probability that x(t) falls in the interval (q1, q2] is

(3.11) Px

(
q1 < x(t) ≤ q2

)
≥ Px

(
q1 < x(t) ≤ q2 , τ ′n ≤ t < τ ′n+1

)

by intersection with the event that there were exactly n jumps up to time t. Writing

x(t) = x(τ ′n) + (t − τ ′n), using formula (3.2), the event on the right hand side of (3.11) is

the intersection of

(3.12) Gn =
{

q1 < γnx +
n∑

j=1

γn+1−jw′j + (t−
n∑

j=1

w′j) ≤ q2

}

and Rn = {∑n
j=1 w′j ≤ t <

∑n+1
j=1 w′j}. The choice of the interval I makes the inequality

∑n
j=1 w′j ≤ t redundant. To see that, we re-write the left hand side of (3.12)

t >
n∑

j=1

(1− γn+1−j)w′j + q1 − γnx ≥ (1− γ)
n∑

j=1

w′j + (γna′ + γt)− γna′
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and simplify. The remaining condition t <
∑n+1

j=1 w′j , written as w′n+1 > t − ∑n
j=1 w′j , is

equivalent to

A(x(τ ′n) + t−
n∑

j=1

w′j)−A(x(τ ′n)) < χn+1 .

Denote

(3.13) Yn =
n∑

j=1

(1− γn+1−j)w′j .

We note that the random variables Yj , j = 1, 2, ... also depend on the initial point x.

Inductively, from (3.8) and (3.10), one can see that the vector w′ = (w′1, . . . , w
′
n), and all

τ ′i , 1 ≤ i ≤ n are given as deterministic functions of χ = (χ1, . . . , χn). This implies that

χn+1 is independent of w′ = (w′1, . . . , w
′
n).

Let’s assume that w′ = (w′1, . . . , w
′
n) and Yn have density functions ρ(w′) respectively

gn(yn). On the interval I, the lower bound (3.11) can be written as

(3.14)
∫

Gn

exp
{
−

(
A(x(τ ′n) + t−

n∑

j=1

w′j)−A(x(τ ′n))
)}

ρ(w′) dw′

(3.15) ≥ exp(−||α||t)
∫

Gn

ρ(w′) dw′ = exp(−||α||t)
∫ −q1+γnx+t

−q2+γnx+t
gn(yn) dyn .

Due to the choice of t1 and t2, −q2 + γnx + t > t − t2 > 0 and −q1 + γnx + t ≤ t(1 − γ).

We also note that the two endpoint bounds do not depend on x. In addition, t < a′/γ so

e−||α||t ≥ e−||α||a′γ−1
. If dn = infyn∈[t−t2,t(1−γ)] gn(yn), then

(3.16) Px

(
q1 < x(t) ≤ q2

)
≥ e−||α||a

′γ−1
dn(q2 − q1) .

We know that x(t) has a density from Proposition 3. Inequality (3.16) implies that the

density is bounded below by dn over the interval I.

It remains to prove that gn(yn) exists and that dn > 0 does not depend on x, which is

done in Proposition 5. ¤

The proof of Proposition 5 needs the following lemma.

Lemma 1. Let V be a d - dimensional random variable and W be a one dimensional

nonnegative random variable, with joint density f(v, w) having the property that for any

b > 0, there exists a positive constant k1 = k1(b) such that f(w|V = v) ≥ k1 for all v ∈ Rd
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and w ∈ [0, b]. Let F (v) be a nonnegative measurable function. Then the density function

of Y = F (V ) + W satisfies fY (y) ≥ k1P (F (V ) ≤ y) for all y ∈ [0, b].

Proof. First we fix b > 0. Then for any y ∈ [0, b],

fY (y) =
∫

F (v)≤y
f(v, y − F (v))dv =

∫

F (v)≤y
f(y − F (v)|V = v)fV (v)dv ≥ k1

∫

F (v)≤y
fV (v)dv ≥ k1P (F (V ) ≤ y) ,

where we used the fact that both F (v) and W are nonnegative implies that y−F (v) belongs

to [0, b]. ¤

Proposition 5. The random variables Yn defined in (3.13) have density gn(yn) with the

property that for any b > 0, there exists a constant cn(b) > 0 such that gn(yn) ≥ cn(b)yn−1
n

on [0, b], with cn(b) independent of the initial state x of the process.

Proof. We proceed by induction over n. The verification step for Y1 is immediate since

A(x+w′1)−A(x) = χ1 and the density function of w′1 satisfies fw′1(w) ≥ α0 exp(−||α||w) by

the inversion formula for densities; we can take c1(b) = (1− γ)−1α0 exp(−||α||b(1− γ)−1).

Assuming the statement is true for n − 1, we prove it for n. We write Yn = F (V ) + W

with d = n− 1, Vj = w′j , 1 ≤ j ≤ n− 1, F (V ) =
∑n−1

j=1 (1− γn+1−j)w′j and W = (1− γ)w′n.

The pair (V, W ) satisfies Lemma 1 with Y = Yn. If x(τ ′j) (3.2) is the location of the process

after the j - th jump, then A(x(τ ′n−1) + w′n)−A(x(τ ′n−1)) = χn, thus

(3.17) w′n = A−1(A(x(τ ′n−1)) + χn)− x(τ ′n−1) .

We see that w′n is defined in terms of x(τ ′n−1) = γn−1x +
∑n−1

j=1 γn−jw′j . The conditional

density f(w|V = v) of w′n given V is the conditional density f(w|x0) of w′n given x0 for the

corresponding x0 in the role of x(τ ′n−1). This is bounded below by a constant independent

of x, and we can take it equal to c1(b). Set k1 = c1(b), with k1 from Lemma 1. Because

(1 + γ)Yn−1 ≥ F (V ), by the induction hypothesis, we obtain that

gn(yn) ≥ c1(b)P (F (V ) ≤ yn) ≥ c1(b)P (Yn−1 ≤ (1 + γ)−1yn)

≥ c1(b)cn−1(b)
∫ (1+γ)−1yn

0
un−2du ≥ c1(b)cn−1(b)

(n− 1)(1 + γ)n−1
yn−1

n .

The proposition is proved with cn(b) = (n− 1)−1(1 + γ)1−nc1(b)cn−1(b). ¤
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Proposition 6. There exists t0 ≥ 0 and F a small set with l(F ) > 0 such that Px(x(t) ∈
F ) > 0 for all t ≥ t0 and all x ∈ F and hence the process x(t) is l - aperiodic.

Proof. Let F = (0, a′] as in Proposition 4. Let t > 0 be arbitrary. We shall construct the

event

(3.18) At = {γ(a′ + w′1) < ca′} ∩
(
∩N

i=2 {ε1 < w′i < ε2}
)

where c is a number in (γ, 1), ε2 = a′(1 − c), ε1 ∈ (0, α0
||α||ε2) and N = [t/ε1] + 2. Set

t0 = (cγ−1−1)a′. Under At, the choice of t0 ensures that the first jump occurs before t0 and

brings x(t) below ca′ < a′. The choice of the constant c ensures that both γ(ca′+w′i) < ca′

(the process returns to a point in (0, ca′) after each jump) and ca′ + w′i < a′ (the process

will not exceed a′) for the next N − 1 steps. The lower bound ε1 ensures that when x(t)

starts at x(0) = x ≤ a′ there can be at most N jumps in the time interval [0, t] and that

x(t) stays in (0, a′] on [t0, t], hence x(t) ∈ F .

Since ||α||w′i ≥ χi ≥ α0w
′
i, the event At includes the event

(3.19) Aχ
t = {χ1 < α0t0} ∩

(
∩N

i=2 {||α||ε1 < χi < α0ε2}
)

.

Then, for any x ∈ F , Px(x(t) ∈ F ) ≥ Px(Aχ
t ) > 0, proving that x(t) is aperiodic. ¤

Proposition 7. For δ > 0, recall τF (δ) = inf{t ≥ δ |x(t) ∈ F} defined in Section 2. Then,

there exists δ > 0, θ < 0 such that (i) Ex[exp(−θτF (δ))] < ∞ for all x ∈ (0,∞) and (ii)

there exists M > 0 such that Ex[exp(−θτF (δ))] ≤ M < ∞ for all x ∈ F .

Proof. In the time interval [0, δ] the particle x(t) cannot exceed the value [x + δ]. We shall

replace (i) and (ii) from the proposition with the stronger condition

(3.20) sup
x∈(0,b]

Ex[exp(−θτ(0,a′))] < ∞ , ∀b > 0 .

We shall use the coupling with the process with constant rate α0 as we did before, in

the proof of Proposition 1, starting with equation (3.2). The first hitting time is either

zero, if we start with x ∈ (0, a′), or will be one of the jump times τ ′n. Due to the bound

(3.2), the first hitting time τ(0,a′) is bounded above by the first hitting time of the process

with constant rate α0. With the notations of Proposition 8, for 0 > θ > θ0, we have

sup0≤x≤b Ex[exp(−θτ(0,a′))] < ∞. ¤
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3.3. Proof of Theorem 1. We first show that the Lebesgue measure l(dx) is maximal (see

Definition 2 and the discussion thereafter). Given that l(dx) is an irreducibility measure

from Proposition 2, it is sufficient to show that Px(x(t) ∈ dy) has a density. This is

proven in Proposition 3. In that case, if l(A) = 0 implies that Px(x(t) ∈ A) = 0 and

so G(x, A) = 0. If ν is another irreducibility measure and ν(A) > 0, we should have

G(x,A) > 0, a contradiction; thus ν << l.

Next, we shall use Theorem 2. The process is non-explosive since α(x) is bounded above

and below away from zero. Proposition 2 proves l - recurrence, hence l - irreducibility.

Proposition 4 identifies all intervals (0, a′] to be Doeblin attractive sets and Proposition 6

proves that x(t) is aperiodic. Finally Proposition 7 shows that the conditions of Theorem

2 are satisfied for any F = (0, a′] with some δ > 0 and η > 0.

4. The case α constant

In the present discussion we assume a constant α(t, x) = α > 0 and the process with

generator (1.1).

4.1. Explicit formula for the invariant measure when α is constant. For many

choices of α(t, x), both z(t) approaches an equilibrium value zeq as t → ∞ and the jump

rate α(t, z(t)) becomes asymptotically equal to a constant α, showing that for large time t,

the evolution of the model coincides with the case α = constant. The steady state equation

is

(4.1) 〈∇φ + α(φ(γx)− φ(x)) , µ〉 = 0 , α = α(zeq) , µ(dx) ∈ M1((0,∞)) ,

where φ ∈ C2
b ((0,∞)). An alternative way to identify the steady state is by setting B̃w(x) =

γ−1w(γ−1x)− α−1∇w(x), and then a steady state is a fixed point of the operator B̃.

A heuristic approach, that offers insight in the way the equilibrium is approached by

the process, is to look at the position Yn of the Markov process right before each jump. A

particle starting at Y0 = x0 > 0 drifts with constant velocity one in the positive direction.

When an exponential clock with intensity α rings, it jumps to a position equal to γ times

its current position. Let χn be a sequence of i.i.d. exponentials with intensity α. Let Yn

be the position right before the n th jump. Then

Y1 = Y0 + χ1 , Y2 = γY1 + χ2 , . . . Yn = γYn−1 + χn(4.2)

12



yielding

(4.3) Yn = γn−1Y0 +
n∑

j=1

γn−jχj

according to (3.2). We calculate the limiting distribution of Yn. The characteristic function

is

(4.4) E
[
eiξYn

]
= eiξγn−1x0 Πn

j=1

(
1− (

iξ

α
)γn−j

)−1
= eiξγn−1x0 Πn−1

k=0

(
1− (

iξ

α
)γk

)−1

with limit as n →∞ equal to

(4.5) E
[
eiξY∞

]
=

[
Π∞k=0

(
1− iξ(

γk

α
)
)]−1

.

One can see from (4.5) that

(4.6) Y∞ ∼
∞∑

k=0

γkχ̃k ,

where χ̃k are i.i.d. exponential with parameter α and ∼ indicates equivalence in probability

law.

Theorem 3. The steady state of the process, equal to the stationary solution of the process

(1.1) for constant jump rate α, is the distribution of the random variable Y∞ and has

characteristic function (4.5). The distribution of Y∞ has a bounded density function and

for any open interval (a, b), Px(Y∞ ∈ (a, b)) > 0.

Proof. We first show that the invariant measure is equal to the distribution of Y∞ with

characteristic function given in (4.5). An invariant measure µ(dy) of the process (1.1)

satisfies
∫∞
0 Bφ(x)µ(dx) = 0 (4.1) for any φ ∈ Cb((0,∞)). We shall show that the solution

to (4.1) has the same characteristic function as (4.5). It is straightforward to extend (4.1)

to bounded, complex functions with second derivative, and implicitly to functions of the

form x → exp(iξx). Any solution to the weak equation (4.1) would have characteristic

function µ̂(ξ) satisfying µ̂(ξγ) = (1− iξα−1)µ̂(ξ). The solution of this recurrence is exactly

(4.5), as the characteristic function µ̂(ξ) is continuous at ξ = 0 where it is equal to one.

For convenience, we recall that Y∞ has the same distribution as
∑∞

k=0 γkχ̃k, where χ̃k are

i.i.d. exponential with parameter α. Let Sn =
∑n

k=0 γkχ̃k (notice that Sn ∼ Yn+1 modulo

a constant) and denote the remainder Rn =
∑∞

k=n+1 γkχ̃k. Let ρn(y) be the density of Sn.

13



It is easy to show inductively that ρn is positive on (0,∞). Since the convolution of two

bounded density functions is bounded by the minimum bound of the two and the density

of an exponential distribution is bounded, we can see by induction that ρn(y) ≤ α. Since

Sn ⇒ Y∞, for any open interval (a, b) in (0,∞), we have

P (Y∞ ∈ (a, b)) ≤ lim inf
n→∞ P (Sn ∈ (a, b)) ≤ α(b− a)

which implies that P (Y∞ ∈ dy) = ρ∞(y)dy and ρ∞(y) ≤ α.

For any m > n, let the partial sum Rn,m from the remainder term Rn be denoted

as Rn,m =
∑m

k=n+1 γkχ̃k . Then the martingale decomposition on the sub-martingale

{Rn,m}m≥n+1 provides Rn,m = Mn,m + Vn,m where the martingale part is

Mn,m =
m∑

k=n+1

γk(χ̃k − α−1)

and the remainder is Vn,m = α−1
∑m

k=n+1 γk. To control the martingale term, observe that

for any K > 0 and m > n

P ( sup
n+1≤k≤m

|Mn,k| > K) ≤ EM2
n,m

K2
≤ γ2(n+1)

K2α2(1− γ2)
,

by Doob’s maximal martingale inequality. Hence

(4.7) P ( sup
n+1≤k

|Mn,k| > K) = lim
m→∞P ( sup

n+1≤k≤m
|Mn,k| > K) ≤ γ2(n+1)

K2α2(1− γ2)
.

Also note that limm→∞ Vn,m = γn+1

α(1−γ) . From (4.7) for any small ε > 0, there exists a

large enough N0 ∈ N to ensure both P (supn+1≤k |Mn,k| > ε/2) < 1/2 and γn+1

α(1−γ) < ε/2 if

n ≥ N0. For n ≥ N0, on the event An = {supn+1≤k |Mn,k| ≤ ε/2}, we have 0 ≤ Rn < ε and

P (An) > 1/2. Since Sn has a strictly positive density function ρn(y) on (0,∞), for any open

interval (a, b) ∈ (0,∞) and for any small enough ε > 0, the event Bn = {Sn ∈ (a, b − ε)}
has positive probability and is independent of the event An (from the mutual independence

of {χ̃k}). Therefore P (Y∞ = Sn + Rn ∈ (a, b)) ≥ P (An ∩Bn) > P (Bn)/2 > 0. ¤

For any a′ > 0 and any x > 0, let τ0 = inf{t > 0 |x(t) < a′} = τ(0,a′) and uθ(x) =

Ex[exp(−θτ0)], for all θ where it is finite. Naturally the Laplace transform is finite for

θ ≥ 0. We are interested in proving a bound for θ < 0. In the following proposition we

assume α = 1 without any loss of generality.
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Proposition 8. There exists θ0 < 0 such that for all x > 0, the Laplace transform uθ(x)

is finite when θ > θ0 and for any b > 0 and any θ > θ0

(4.8) sup
0≤x≤b

uθ(x) < ∞ .

Moreover, uθ(x) satisfies the differential equation

(4.9) u′θ(x) = (θ + 1)uθ(x)− uθ(γx) , x ≥ a′

with boundary conditions uθ(x) = 1 for x ∈ (0, a′).

Remark. The proposition trivially implies that u0(x) = Px(τ0 < ∞) = 1. We note that

uθ(a′) 6= 1.

Proof. The proof is based on the exponential decay of the tail Px(τ0 > t) ≤ exp(−λt) as

t → ∞ of the distribution on τ0, where λ = λ(a′) > 0 will be a uniform decay rate for all

x ∈ (0,∞). First, if ε > 0 is fixed,

(4.10) Px(τ0 > t) ≤ Px(Ac
n) + Px(An ∩ {τ0 > t})

where An is the event that there are at least n = [t(1− ε)] many jumps before time t. By

the large deviations principle applied to n i.i.d. exponentials with rate one, there exists a

constant λ0 > 0 depending on ε but not on x such that Px(Ac
n) ≤ exp(−λ0t). Recalling

(3.3), we define the Markov chain

(4.11) Zn = γnb +
n−1∑

k=0

γk+1χn−k

which is equal to γ−1Yn from (4.2) with Y0 = b > x and represents the position of the

particle x(t) right after the n-th jump. Then

(4.12) Px(An ∩ {τ0 > t}) ≤ Px(Z1 > a′ , . . . , Zn > a′) ≤

Πn
k=2Px(Zk > a′ |Zk−1 > a′ , . . . , Z1 > a′) = Πn

k=2Px(Zk > a′ |Zk−1 > a′)

by the Markov property. Using conditional probability

(4.13)

Px(Zk > a′ |Zk−1 > a′) =
(∫ ∞

a′
Px(χk > γ−1a′ − z)Px(Zk−1 ∈ dz)

)(
Px(Zk−1 > a′)

)−1
.
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As n → ∞, Zn → γ−1Y∞ and we recall that Y∞ has a density. The right hand side of

(4.13) can be written as

(4.14)
(∫ γ−1a′

a′
e−(γ−1a′−z)Fk−1(dz) +

∫ ∞

γ−1a′
Fk−1(dz)

)(
Fk−1((a′,∞))

)−1

for Fk−1(dz) = Px(Zk−1 ∈ dz), which converges as k →∞ to

(4.15)
(∫ γ−1a′

a′
e−(γ−1a′−z)F (dz) +

∫ ∞

γ−1a′
F (dz)

)(
F ((a′,∞))

)−1

where F (dz) = Px(γ−1Y∞ ∈ dz). We have used that Fn ⇒ F implies that the distribution

functions converge at all points of continuity (here this means all points). The constant

(4.15) is strictly less than one since we know from Theorem 3 that F ((0, a′)) > 0. We have

shown that for any λ1 > 0 less or equal than the negative of the natural logarithm of (4.14)

(depending on a′ but independent of b), there is a rank k1 = k1(a′, b) (depending on a′, b)

such that (4.14) is dominated by exp(−λ1) for all k ≥ k1. For n ≥ k1, the left hand side of

(4.12) is less than exp(−λ1(n−k1)). This shows that there exists λ = λ(a′) ≤ λ0∧λ1(a′) > 0

such that the right hand side of (4.10) is exponentially bounded

Px(τ0 > t) ≤ exp(−λ0t) + exp(−λ1([t(1− ε)]− k1)) ≤ C exp(−λt) , t ≥ 0 ,

where C > 0 depending on (a′, b). This proves that the exponential moments are finite for

all θ > θ0, where we pick θ0 := −λ. In addition, sup0≤x≤b Ex[exp(ητ0)] < ∞ for any given

b > 0.

To prove the equation (4.9), let χ1 be the first exponential holding time of intensity one

before the first jump. Then, if x < a′, we have uθ(x) = 1, and if x ≥ a′ we can derive the

relation

Ex[e−θτ0 ] =
∫ ∞

0
Ex[e−θτ0 |χ1 = s] e−s ds =

∫ ∞

0
Eγ(x+s)[e

−θ(s+τ0)] e−s ds

which reduces to

(4.16) uθ(x) =
∫ ∞

0
uθ(γ(x + s))e−(θ+1)sds , x ≥ a′ .

After a substitution y = γ(x + s),

(4.17) uθ(x)e−(θ+1)x = γ−1

∫ ∞

γx
uθ(y)e−γ−1(θ+1)ydy , x ≥ a′ .
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In view of the bound (4.8), the integral on the right hand side of is finite when θ > θ0. For

such θ, the integrand is bounded, which implies that the left hand side of (4.17) is contin-

uous. This, in turn, shows that uθ(x) is differentiable in x, x ≥ a′. After differentiating

both sides of (4.17) and a simplification by a factor e−(θ+1)x, we have (4.9). Naturally, this

is (B − θ)uθ = 0, with B from (1.1) corresponding to α ≡ 1. ¤
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