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Abstract

In a previous paper we studied parametrized autonomous systems and gave a computable

criterion that an approximate orbit connecting hyperbolic equilibria is shadowed by a

true connecting orbit. This criterion was used to give rigorously verified examples of

Shilnikov saddle-focus homoclinic orbits in three dimensions. This involved verifying a

condition on the eigenvalues of the linearization at the equilibrium. In dimensions greater

than three, there are three more conditions which must be established: general position,

asymptotic tangency and a transversality condition. In this paper we give computable

criteria for verifying these three conditions. An example in four dimensions, in which

detailed rigorous computations are carried out, is given.
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1. Introduction
Chaos cannot occur in two dimensional autonomous systems of ordinary differential

equations. It does occur for two dimensional diffeomorphisms which have a transver-

sal homoclinic orbit to a hyperbolic fixed point and hence for periodic nonautonomous

systems in two dimensions. In Silnikov [1965] it was shown that chaos can occur for

autonomous systems in three dimensions in the neighborhood of a homoclinic orbit to

a hyperbolic equilibrium — not any hyperbolic equilibrium but only one for which the

linearization has a pair of complex conjugate eigenvalues with positive real part less than

the absolute value of the other real negative eigenvalue. Silnikov proved the existence of

chaotic behavior in the neighborhood of such a homoclinic orbit. His theorem is stated

later in this introduction.

Later Silnikov [1967a] generalized his theorem to four dimensions and in Silnikov

[1970] generalized it to arbitrarily high dimensions. For this the homoclinic orbit, be-

sides the eigenvalue condition called (D1) below, had to satisfy three other conditions,

(D2)–(D4) below, These three conditions, as originally given, are not well adapted to

computation. The conditions given below are purely in terms of bounded solutions of the

variational system along the homoclinic orbit and are better adapted to computation.

Their relation to the original conditions and their geometric meaning are discussed later

in this introduction.

We consider the differential equation

ẋ = f(x), x ∈ IRn (1)

where f is Cr (r ≥ 1), and denote by φt its associated flow. We suppose z is a hyperbolic

equilibrium and that q(t) is an associated homoclinic orbit. We will call q(t) a Shilnikov

saddle-focus homoclinic orbit if the following four conditions are satisfied:

(D1) the eigenvalues of f ′(z) having the (strictly) smallest positive real part are β ± iω
with ω > 0, each having algebraic multiplicity one, and satisfying

0 < β < −Re(λ)

for all eigenvalues λ with negative real parts;

(D2) up to a scalar multiple, q̇(t) is the only bounded solution of

ẏ = f ′(q(t))y;
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(D3) q̇(t)e−νt is not bounded on IR−, where β < ν < Re(λ) for all eigenvalues λ with

Re(λ) > β;

(D4) there does not exist ξ 6= 0 such that solution y(t) of

ẏ = −f ′(q(t))T y, y(0) = ξ

is bounded on IR− and the solution y(t) of

ẏ = −[f ′(q(t))T − ν]y, y(0) = ξ

is bounded on IR+.

Note that (D2) is automatic when the dimension of the stable manifold of z is one

and (D3), (D4) are not needed when the dimension of the unstable manifold of z is 2 so

that none of these conditions is needed in three dimensions. Also note that if (D3) and

(D4) hold for some ν satisfying the condition β < ν < Re(λ), then they hold for all such

ν.

As mentioned earlier, in three dimensions Shilnikov studied this kind of homoclinic

orbit in 1965 and proved the existence of complicated dynamics in its neighbourhood.

He extended his investigations to the n−dimensional case in 1970, where he proved the

following theorem, which was extended by Deng [1993] under the assumption that f is

only C5.

Theorem. Suppose f in Eq. (1) is analytic and conditions (D1)–(D4) hold. Let Ω(ρ) be

the set of doubly infinite sequences (. . . , ji, ji+1, . . .) consisting of the symbols 0, 1, 2, . . .

and satisfying the condition that ji+1 < ρji for all i for some ρ satisfying 1 < ρ <

−Reλ/β for all eigenvalues λ with negative real part. Then in an arbitrary neighborhood

of the homoclinic orbit q(t), there exists a subsystem of trajectories which is in one-to-one

correspondence with the set Ω(ρ).

As noted earlier, in previous papers, conditions (D2)–(D4) were described in a dif-

ferent way from what we have given here. Now we describe these differences. First

regarding condition (D2), we note that it is equivalent to general position, that is, the

one-dimensionality of the intersection of the tangent spaces to the stable and unstable

manifolds along q(t).

As shown in Battelli-Palmer [2011], (D3) is equivalent to the asymptotic tangency of

q(t) to the linear span V of the eigenvectors corresponding to β±iω as t→ −∞, which in

turn is equivalent to q(t) not lying in the strong unstable manifold, the latter being the
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invariant manifold corresponding to the unstable eigenvalues apart from β ± iω. These

are the conditions used in Shilnikov [1970], Shilnikov et al. [2001] and Deng [1993].

As shown in Battelli-Palmer [2011], (D4) is equivalent to the transversality of the

intersection of the extended stable manifold and the unstable manifold along q(t), which

is the condition used in Shilnikov et al. [2001]. Shilnikov’s original condition in [1970]

was that a certain quantity δ not vanish. In Shilnikov et al. [2001], δ was replaced by

A and there it was indicated that the condition that A not vanish was equivalent to the

transversality condition just mentioned. Note that the local extended stable manifold

is an invariant manifold containing the equilibrium z such that its tangent space at z

is the sum of the stable subspace and the two-dimensional eigenspace corresponding to

the pair of complex eigenvalues. Such a manifold is not unique but each such manifold

contains the homoclinic orbit and all these manifolds share the same tangent space along

the homoclinic orbit.

Instead of (D4), Deng [1993] gave a different condition which he calls the strong

inclination condition: there is a submanifold M0 of the unstable manifold containing

q(0) with dim M0 = dim Wuu such that limt→∞ Tq(t)Mt = T0W
uu, where Wuu is the

strong unstable manifold and Mt = φt(M0).(Note this condition depends only on the

tangent space to the submanifoldM0 at q(0), not on the submanifold itself.) Again this

was shown in Battelli-Palmer [2011] to be equivalent to (D4) as given above.

In Battelli-Palmer [2011], an analytical example of a Shilnikov saddle-focus homo-

clinic orbit in four dimensions was given and all conditions (D1)–(D4) were verified.

Another analytical example of a Shilnikov saddle-focus homoclinic orbit in four dimen-

sions was given in Belykh and Pankratova [2014]. However, conditions (D2)–(D4) were

not explicitly verified. Numerical examples of such an orbit in a four dimensional Lotka-

Volterra system are given in Vano et al. [2006] and Wang and Xiao [2010].

In this paper we study the rigorous numerical verification of the existence of this

kind of homoclinic orbit when an approximate homoclinic orbit is given. We already did

this in Coomes et al. [2016] for the three-dimensional case. Other examples of Shilnikov

orbits in three dimensions, obtained by rigorous computations, are given in Ambrosi et

al. [2012] and Capiński, M.J. and Waisieczko-Zaja̧c, A. [2017]. Here we want to consider

the higher dimensional case.

The content of this paper is as follows:

• In Section 2, we recall the theorem from Coomes et al. [2016] ensuring the existence

of homoclinic orbits in parametrized autonomous systems, given an approximate

such orbit. The main condition here was that a certain matrix L associated with
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the approximate orbit was invertible.

• In Section 3, we show how it can be verified that this orbit satisfies the four con-

ditions (D1)–(D4). It turns out that the invertibility of L together with additional

smallness conditions implies (D2). (D3) and (D4) are implied by the existence of

left inverses for two other matrices together with additional smallness conditions.

• In Section 4, we detail rigorous computations for specific parameter values of the

four dimensional example depending on two parameters in Battelli-Palmer [2011]

which is obtained from a pair of linearly coupled oscillators. We also report further

investigations of the connecting orbits in this system for additional parameter values.

• The example in Section 4 was obtained by perturbing a system satisfying (D1), (D2)

and (D4). In Section 5, we show it is also possible to write down systems which

satisfy only (D1) and (D2) or only (D1), (D2) and (D3).

• In Appendix 1, we give the explicit conditions needed to be verified in order to

apply the Existence Theorem in Section 2; in Appendix 2 we derive some technical

estimates needed in Section 3; in Appendix 3, we prove the lemmas needed for

Section 3; in Appendix 4 we give computational details for the example in Section 4.

The name Shilnikov has been spelled in different ways in the literature, variously as

Shilnikov, Shil’nikov, Šilnikov and Sil’nikov. We have decided to use the form Shilnikov

but in the bibliography we have used the forms as they are given in the journals.

2. Homoclinic orbits in parametrized autonomous systems
In this section we recall the theorem from Coomes et al. [2016], ensuring the existence

of homoclinic orbits in parametrized autonomous systems, given an approximate such

orbit. First we give the precise definition of an approximate homoclinic orbit.

Definition. Let z be an equilibrium for Eq. (1). Then we say a sequence yk, k ∈ ZZ,

with associated times hk > 0 is a δ approximate homoclinic orbit if

|φhk(yk)− yk+1| ≤ δhk, k ∈ ZZ

and yk = z and hk is constant for large |k|.

In what follows, we consider a system with real parameter a

ẋ = f(x, a) (2)
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in IRn, where f is a C2 function and we denote the corresponding flow by φt(x, a).

In preparation for the statement of our theorem, we next record the three requisite

hypotheses:

Hypothesis 1: When a = a0, we assume that the system in Eq. (2) has an equilibrium

z such that the matrix A = fx(z, a0) is hyperbolic. Let H be a matrix, the first r columns

of which form a basis for the stable subspace of A and the remaining columns a basis for

the unstable subspace of A.

Also note that by the implicit function theorem, the equation f(x, a) = 0 has a C2

solution z(a) for a near a0 such that z(a0) = z.

Hypothesis 2: We assume yk is a δ approximate homoclinic orbit of Eq. (2) for

a = a0 with associated times hk such that there exist positive integers N1, N2 and a

positive number δ1 > 0 such that

|yk − z| ≤ δ1 for k ≥ N1 and |yk − z| ≤ δ1 for k < −N2. (3)

Hypothesis 3: Let Yk = φhk
x (yk, a0), zk = φhk

a (yk, a0) and set

v = H−1A−1Prfa(z, a0) +H−1A−1(In − Pr)fa(z, a0),

where

Pr =

[
Ir 0
0 0

]
,

Ir being the r × r identity matrix. Then we assume the [(N1 + N2 + 1)n + 1]× [(N1 +
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N2 + 1)n+ 1] matrix L given below is invertible:

−Y−N2H In 0 · · · · 0 −z−N2

0 −Y−N2+1 In 0 · · · 0 −z−N2+1

...
...

...
...

...
...

...
...

...

0 · −Y−1 In 0 · · 0 −z−1

0 · 0 −Y0 In 0 · 0 −z0

...
...

...
...

...
...

...
...

...

0 · · · 0 −YN1−2 In 0 −zN1−2

0 · · · · 0 −YN1−1 H −zN1−1

Pr 0 · · · · 0 In − Pr v

0 · 0 f(y0, a0)T 0 · · · 0


Now we are ready to state the theorem.

Existence Theorem for Homoclinic Orbits. Consider the parametrized system

ẋ = f(x, a) in IRn, as in Eq. (2), with flow φt(x, a). Let z be a hyperbolic equilibrium

as in Hypothesis 1 and yk an associated δ approximate homoclinic orbit of Eq. (2) for

a = a0 and associated times hk such that the inequalities in Eq. (3) hold for some N1,

N2 and δ1, as in Hypothesis 2.

Then if L is invertible as in Hypothesis 3, there exists a constant C such that if δ1

and δ are sufficiently small, there is a unique parameter value a∗ and a unique sequence

xk such that

f(y0, a0)T (x0 − y0) = 0, (4)

|a∗ − a0| ≤ 2Cδ, |xk − yk| ≤ 2Cδ, xk+1 = φhk(xk, a
∗) for all k ∈ ZZ (5)

and

φt(x0, a
∗)→ z(a∗) as t→ ±∞. (6)

The homoclinic orbit φt(x0, a
∗) is distinct from the equilibrium z(a∗) provided that there

exists k such that |yk − z(a∗)| > 2Cδ.
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In Appendix 1, we give more information about the constant C and the conditions

which δ and δ1 need to satisfy.

3. Verification that the homoclinic orbit is Shilnikov saddle-focus
In this section we describe how it can be verified that a homoclinic orbit, found using

the Existence Theorem for Homoclinic Orbits, satisfies the conditions (D1)–(D4). First

we list the assumptions needed to apply the theorem.

We assume that when a = a0 the system in Eq. (2) has an equilibrium z such that

the matrix A = fx(z, a0) is hyperbolic and the eigenvalues of A satisfy the condition

(D1). So Hypothesis 1 is satisfied. Note in Hypothesis 1, we choose H as a matrix

[H1 H2 H3], where the first r columns H1 form a basis for the stable subspace of A, the

next two columns H2 = [u v] a basis for the two-dimensional subspace corresponding to

the eigenvalues β± iω so that Au = βu−ωv, Av = ωu+βv, and the remaining columns

H3 a basis for the subspace corresponding to the other eigenvalues.

Next we assume further that yk is an associated δ approximate homoclinic orbit of

Eq. (2) for a = a0 with associated times hk such that the inequalities in Eq. (3) hold for

some N1, N2 and δ1. So Hypothesis 2 holds.

Next we assume L from Hypothesis 3 is invertible. Finally we assume δ and δ1
are sufficiently small (see Appendix 1 for the precise conditions) so that the Existence

Theorem for Homoclinic Orbits can be applied to deduce that there is a unique parameter

value a∗ and a unique sequence xk such that Eq. (4), Eq. (5) and Eq. (6) hold. We

assume also that there exists k such that |yk− z(a∗)| > 2Cδ so that the homoclinic orbit

q(t) = φt(x0, a
∗) is distinct from the equilibrium z(a∗).

We define tk to be the sequence such that t0 = 0 and tk+1 = tk + hk for all integers

k so that xk = φtk(x0, a
∗). In particular, we define T1 = tN1 and T2 = −t−N2 . Now we

proceed with the verification of (D1), (D2), (D3) and (D4).

3.1. Verification of (D1) for z(a∗)

It follows from Eq. (44) in Appendix 2 that

|fx(z(a∗), a∗)− fx(z, a0)| ≤ 2(M2 +M4)Cδ, (7)

where M2 and M4 are as in Appendix 1. So to verify (D1), we would need to show that

if a matrix B satisfies |B − fx(z, a0)| ≤ 2(M2 +M4)Cδ, then the eigenvalues of B have

similar properties to those of A = fx(z, a0). Actually, in the example in Section 4, we
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are able to directly calculate |fx(z(a∗), a∗)−fx(z, a0)| and so can verify (D1) more easily

than in the general case.

3.2. Some preliminary estimates

Before verifying (D2)–(D4), we need to introduce some notation and make some prelimi-

nary estimates. This subsection is divided into three parts. The purpose of part (i) is to

characterize the dichotomy properties and thus locate the bounded solutions of ẏ = Ay

and ẏ = [A− ν]y and their adjoints, where A = fx(z, a0) and ν is as in (D3) and (D4).

In the second part (ii), we derive estimates for |φt(x0, a∗) − z(a∗)| for large |t|. The

conditions (D2)–(D4) for our homoclinic orbit φt(x0, a
∗) involve bounded solutions of

ẏ = fx(q(t), a∗)y and ẏ = (fx(q(t), a∗)− ν)y and their adjoints, where q(t) = φt(x0, a
∗).

These bounded solutions will be close to those of ẏ = Ay and ẏ = [A − ν]y and their

adjoints, since for |t| large, φt(x0, a
∗) is close to the equilibrium z(a∗). In (ii) we quantify

this closeness precisely. In the third part (iii), we estimate |f(y0, a0) − f(x0, a
∗)| and

|φhk
x (xk, a

∗) − φhk
x (yk, a0)|. These are needed for approximating matrices depending on

xk and a∗ with matrices depending on yk and a0. We observe that the estimates in (ii)

and (iii) follow from the Existence Theorem for Homoclinic Orbits and do not require

additional assumptions.

(i) Dichotomy properties: We are assuming that equation Eq. (1) has an equilibrium

at z such that the eigenvalues of A = fx(z, a0) satisfy (D1), where the real part of the

pair of complex eigenvalues is β. Now let α be a positive number such that −α exceeds

the real parts of the eigenvalues with negative real parts and let σ be a positive number

which is less than the real parts of the eigenvalues with positive real parts apart from β.

In view of (D1), we can assume that β < α, β < σ. Then we choose ν so that

β < ν < σ. (8)

Next let P be the projection with range the stable subspace and nullspace the unstable

subspace. Note that AP = PA. Let Q be the projection with range the sum of the

stable subspace and the eigenspace corresponding to the pair of complex eigenvalues

and nullspace the sum of the generalized eigenspaces corresponding to the remaining

eigenvalues with positive real parts. Note that AQ = QA. Then, from the eigenvalue

properties, we see that there exists a positive constant K such that for t ≥ 0

|etAP | ≤ Ke−αt, |e−tA(In − P )| ≤ Ke−βt

and

|et(A−νIn)Q| ≤ Ke−(ν−β)t, |e−t(A−νIn)(In −Q)| ≤ Ke−(σ−ν)t.
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Now we show how to compute K. With H = [H1 H2 H3] as defined above, we have

AH1 = H1D
s, AH2 = H2D

c, AH3 = H3D
u,

where Ds is r × r, Dc =

[
β −ω
ω β

]
and Du is (n− r − 2)× (n− r − 2) , so that

H−1AH =

Ds 0 0
0 Dc 0
0 0 Du

 .
Then in view of the assumptions on α, β and σ, there exists a positive constant K̄ such

that for t ≥ 0

|etD
s

| ≤ K̄e−αt, |e±tD
c

| = e±βt, |e−tD
u

| ≤ K̄e−σt, (9)

where here, and in the sequel unless otherwise indicated, | · | denotes the Euclidean norm.

Note if Pr =

[
Ir 0
0 0

]
, then

HPrH
−1 = P (10)

and it follows that for t ≥ 0

|etAP | = |HetDPrH−1| ≤ Ke−αt, |e−tA(In − P )| = |He−tD(In − Pr)H−1| ≤ Ke−βt,
(11)

where

K = |H−1| |H|K̄. (12)

The matrix A− νIn is also hyperbolic and if Ps =

[
Is 0
0 0

]
with s = r + 2, then

HPsH
−1 = Q (13)

and for t ≥ 0 we have

|et(A−νIn)Q| ≤ Ke−(ν−β)t, |e−t(A−νIn)(In −Q)| ≤ Ke−(σ−ν)t. (14)

(ii) Convergence of φt(x0, a
∗) to z(a∗): Here we derive estimates for |φt(x0, a∗) −

z(a∗)| and |fx(φt(x0, a
∗), a∗)− fx(z, a0)| for large |t|. In fact, we show for t ≥ T1 = tN1

and t ≤ −T2 = t−N2 that

|φt(x0, a∗)− z(a∗)| ≤ µ1 = (4Cδ + δ1)eM1hmax ,

|fx(φt(x0, a
∗), a∗)− fx(z, a0)| ≤ ρ = M2µ1 + 2(M2 +M4)Cδ,

(15)
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where the quantities C, Mi and hmax are as defined in Appendix 1. The proof can be

found in Appendix 2.

(iii) Estimates for |f(y0, a0) − f(x0, a
∗)| and |φhk

x (xk, a
∗) − φhk

x (yk, a0)|: Here we

derive the inequalities

|f(y0, a0)− f(x0, a
∗)| ≤ 2C(M1 +M3)δ (16)

and

|φhk
x (xk, a

∗)− φhk
x (yk, a0)| ≤ δ2 = 2C(M6 +M7)hmaxe

M1hmaxδ, (17)

for k = −N2 + 1, . . . , N1− 1. The quantities C, Mi and hmax are as in Appendix 1. The

proofs can be found in Appendix 2.

3.3. Verification of (D2)

To verify (D2), we need to show q̇(t), where q(t) = φt(x0, a
∗) is our homoclinic solution,

is up to a scalar multiple, the unique bounded solution of

ẋ = fx(q(t), a∗)x, q(t) = φt(x0, a
∗) (18)

First we find the subspace V1 of initial values at t = T1 of solutions which are bounded

for t ≥ T1 (see Lemma 1 below) and also the subspace V2 of initial values at t = −T2
of solutions which are bounded for t ≤ −T2 (see Lemma 2 below). Then the problem of

finding bounded solutions independent of q̇(t) is reduced to the boundary value problem

of finding the solutions x(t) with x(−T2) ∈ V2 and x(T1) ∈ V1 such that x(0) is orthogonal

to q̇(0) = fx(x0, a
∗). It turns out that x(t) is such a solution if and only if the sequence

x(tk), k = −N2, . . . N1 is in the nullspace of the [(N1 +N2 + 1)n+ 1]× [(N1 +N2 + 1)n]

matrix L̂ given by

−Ỹ−N2
In 0 · · · · 0

0 −Ỹ−N2+1 In 0 · · · 0
...

...
...

...
...

...
...

...
0 · −Ỹ−1 In 0 · · 0
0 · 0 −Ỹ0 In 0 · 0
...

...
...

...
...

...
...

...
0 · · · 0 −ỸN1−2 In 0
0 · · · · 0 −ỸN1−1 In

H−1P− 0 · · · · 0 H−1(In − P+)
0 · 0 f(q(0), a∗)T 0 · · 0


,
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where Ỹk = φhk
x (q(tk), a∗) = φhk

x (xk, a
∗), and the projections P+ and P− define the

subspaces V1 and V2. So we need to show L̂ is one to one or, equivalently, has a left

inverse. However we can only approximate this matrix by L with the last column re-

moved. Then the invertibility of L implies that this matrix has a left inverse and then

we need additional smallness conditions to conclude that L̂ has a left inverse.

Proposition 1. (D2) holds provided that

λ1 = K(α−1 + β−1 +K2β−1)ρ < 1 (19)

and

[4
√
nK4 max{1,

√
n|H|}|H−1|β−1(1− λ1)−1ρ+ δ3]‖L−1‖∞ < 1, (20)

where ρ is as in Eq. (15) and

δ3 =
√
nmax{δ2, |H|δ2, 2C(M1 +M3)δ}, δ2 as in Eq. (17), (21)

where here and in Propositions 2 and 3, ‖ · ‖∞ means the maximum row sum of the

absolute values of the entries in each row.

For the proof we need the following two lemmas, the proofs of which are deferred

to Appendix 3. In these lemmas we find the bounded solutions of (18) on the intervals

[T1,∞) and (−∞,−T2, where in these and the following Lemmas, we take T1 = tN1 and

T2 = −t−N2
. Note it follows from Eq. (15) that for t ≥ T1 and t ≤ −T2,

|fx(q(t), a∗)−A| = |fx(q(t), a∗)− fx(z, a0)| ≤ ρ.

Lemma 1. Suppose ρ in Eq. (15) satisfies

ρ < [K(α−1 + β−1 +K2β−1)]−1.

Then if ξ ∈ R(P ), there exists a unique solution x(t) = x(t, ξ) of Eq. (18) bounded on

t ≥ T1 such that Px(T1) = ξ. Moreover

sup
t≥T1

|x(t)| ≤ (1−K(α−1 + β−1)ρ)−1K|ξ|

and the set of initial values {x(T1, ξ) : ξ ∈ R(P )} is the range of a projection P+ which

has the same nullspace as P and satisfies

|P+ − P | ≤ 2K4β−1
(
1−K(α−1 + β−1 +K2β−1)ρ

)−1
ρ.
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Lemma 2. Suppose ρ in Eq. (15) satisfies

ρ < [K(α−1 + β−1 +K2α−1)]−1.

Then if ξ ∈ N (P ), there exists a unique solution x(t) = x(t, ξ) of Eq. (18) bounded on

t ≤ −T2 such that (In − P )x(−T2) = ξ. Moreover

sup
t≤−T2

|x(t)| ≤ (1−K(α−1 + β−1)ρ)−1K|ξ|

and the set of initial values {x(−T2, ξ) : ξ ∈ N (P )} is the nullspace of a projection P−
which has the same range as P and satisfies

|P− − P | ≤ 2K4α−1
(
1−K(α−1 + β−1 +K2α−1)ρ

)−1
ρ.

Proof of Proposition 1. First we approximate the matrix L from the Existence

Theorem for Homoclinic Orbits by another matrix L̄, which we then show to be invertible

and use this to show that L̂ has a left inverse, finally showing that this implies (D2).

Approximation of L by L̄: The information we have is that L as given in the Ex-

istence Theorem for Homoclinic Orbits is invertible. Replace Yk = φhk
x (yk, a0) in L by

φhk
x (xk, a

∗) and f(y0, a0) by f(x0, a
∗) to get a new matrix L̄. We first show that L̄ is

invertible by showing it is close to L.

Proof that L̄ is invertible: From Eq. (17), we have

|Yk − Ỹk| ≤ δ2

and from Eq. (16) we have

|f(y0, a0)− f(x0, a
∗)| ≤ 2C(M1 +M3)δ.

It follows that ‖L̄−L‖∞ ≤ δ3. (Note that the
√
n in δ3 comes from the fact that the `1

norm of an n-vector is bounded by
√
n times its Euclidean norm.) Then, since Eq. (20)

implies that δ3‖L−1‖∞ < 1, L̄ is invertible and

‖L̄−1‖∞ ≤ (1− δ3‖L−1‖∞)−1‖L−1‖∞.

Proof that L̂ has a left inverse: Define the matrix L̃ as L̄ minus the last column. It

follows that L̃ has a left inverse L̃−1 (which is just L̄−1 minus its last row) and

‖L̃−1‖∞ ≤ ‖L̄−1‖∞ ≤ (1− δ3‖L−1‖∞)−1‖L−1‖∞.
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L̃ is the same as L̂ except that Ỹ−N2 is multiplied by H, it has Pr = H−1PH instead of

H−1P− and In − Pr = H−1(In − P )H instead of H−1(In − P+). First we note, using

Eq. (10), that

L̃ = L1D,

where L1 is

−Ỹ−N2
In 0 · · · · 0

0 −Ỹ−N2+1 In 0 · · · 0
...

...
...

...
...

...
...

...
0 · −Ỹ−1 In 0 · · 0
0 · 0 −Ỹ0 In 0 · 0
...

...
...

...
...

...
...

...
0 · · · 0 −ỸN1−2 In 0
0 · · · · 0 −ỸN1−1 In

H−1P 0 · · · · 0 H−1(In − P )
0 · 0 f(q(0), a∗)T 0 · · 0


,

with D = diag(H, In, . . . , In, H). Then if L̃−1 is the left inverse of L̃ determined above,

L−11 = DL̃−1 is a left inverse of L1 and

‖L−11 ‖∞ ≤ ‖D‖∞‖L̃−1‖∞ ≤ max{1,
√
n|H|}‖L̃−1‖∞.

Since λ1 < 1 and β < α, ρ satisfies the conditions of both Lemmas 1 and 2. We replace

H−1P in L1 by H−1P−, where P− is from Lemma 2, and H−1(In−P ) by H−1(In−P+),

where P+ is from Lemma 1, to get the matrix L̂. From the lemmas,

|H−1P+ −H−1P |, |H−1P− −H−1P | ≤ θ,

where

θ = 2K4|H−1|β−1(1− λ1)−1ρ

so that

‖L̂− L1‖∞ ≤ 2
√
nθ.

Since, using Eq. (20), 2
√
nθ‖L−11 ‖∞ ≤ 2

√
nθmax{1, n|H|}‖L̃−1‖∞ < 1, it follows that

L̂ has the left inverse L−11 (I + (L̂− L1)L−11 )−1 and so is one to one.

Proof that existence of a left inverse for L̂ implies (D2): First note that

φt−sx (q(s), a∗) is the transition matrix for Eq. (18). Suppose there is a nonzero bounded
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solution x(t) of Eq. (18) which is not a multiple of q̇(t) = f(q(t), a∗). Then we may

assume f(q(0), a∗)Tx(0) = 0. Then if we set ξk = x(tk) for k = −N2, . . . , N1, we see

that ξk+1 = x(tk+1) = φhk
x (q(tk), a∗))x(tk) = Ỹkξk for k = −N2, . . . , N1 − 1. Also since

x(t) is bounded on [T1,∞) and T1 satisfies the conditions of Lemma 1, we have that

H−1(In − P+)ξN1 = H−1(In − P+)x(T1) = 0 and since x(t) is bounded on (−∞,−T2]

and T2 satisfies the conditions of Lemma 2, we have H−1P−ξ−N2
= H−1P−x(−T2) = 0.

That is, L̂ξ = 0, where ξ = (ξ−N2
, . . . , ξN1

). So ξ = 0. This implies x(t) = 0, a contra-

diction. Thus a nonzero bounded solution of Eq. (18) must be a multiple of q̇(t). This

completes the proof that (D2) holds.

3.4. Verification of (D3)

To verify (D3), we need to show q̇(t)e−νt is not bounded on IR−, where q(t) = φt(x0, a
∗)

is our homoclinic solution. Note that q̇(t)e−νt is a solution of

ẋ = [fx(q(t), a∗)− ν]x. (22)

We find the subspace V of initial values at t = −T2 of solutions of (22) which are bounded

for t ≤ −T2 (see Lemma 3 below). Then q̇(t)e−νt is bounded on IR− if and only if there

exists a solution x(t) of (22) such that x(−T2) ∈ V and x(0) = q̇(0). It turns out that

this happens if and only if the sequence x(tk), k = −N2, . . . , 0 is in the nullspace of the

[(N2 + 2)n]× [(N2 + 1)n] matrix Ĉ given by

Ĉ =



−Ỹ−N2e
−νh−N2 In 0 0 0

0 −Ỹ−N2+1e
−νh−N2+1 In 0 0

...
...

...
...

...
0 0 0 −Ỹ−1e−νh−1 In

H−1Q− 0 0 0 0
0 0 0 0 In − ẽẽT

 ,

where Ỹk = φhk
x (xk, a

∗), ẽ = f(x0, a
∗)/|f(x0, a

∗)| and Q− is a projection which deter-

mines V . This means we just have to show that the nullspace of Ĉ is 0 or, equivalently,

that Ĉ has a left inverse. We approximate Ĉ by C in the Proposition below and so need

some smallness conditions to conclude that Ĉ has a left inverse from the fact that C has

a left inverse.
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Proposition 2. (D3) holds provided the matrix

C =



−Y−N2e
−νh−N2H In 0 0 0

0 −Y−N2+1e
−νh−N2+1 In 0 0

...
...

...
...

...

0 0 0 −Y−1e−νh−1 In

Ps 0 0 0 0

0 0 0 0 In − e0eT0


, (23)

where Yk = φhk
x (yk, a0) and e0 = f(y0,a0)

|f(y0,a0)| , has a left inverse C−1, and the following

inequalities hold:

λ2 = K{(ν − β)−1 + (σ − ν)−1 +K2(ν − β)−1}ρ < 1, (24)

[2
√
nK4 max{1,

√
n|H|}|H−1|(ν − β)−1(1− λ2)−1ρ+ δ4]‖C−1‖∞ < 1, (25)

where ρ is as in Eq. (15) and

δ4 =
√
nmax{δ2, δ2|H|, 8(M1 +M3)Cδ/|f(y0, a0)|}, δ2 as in Eq. (17). (26)

For the proof we need the following lemma, in which we find the solutions of Eq. (22)

bounded on IR−. The proof is in Appendix 3.

Lemma 3. Suppose ρ in Eq. (15) satisfies

ρ < [K{(σ − ν)−1 + (ν − β)−1 +K2(ν − β)−1}]−1.

Then if ξ ∈ N (Q), there exists a unique solution x(t) = x(t, ξ) of Eq. (22) bounded on

t ≤ −T2 such that (In −Q)x(−T2) = ξ. Moreover

sup
t≤−T2

|x(t)| ≤ (1−K{(σ − ν)−1 + (ν − β)−1}ρ)−1K|ξ|

and the set of initial values {x(−T2, ξ) : ξ ∈ N (Q)} is the nullspace of a projection Q−

which has the same range as Q and satisfies

|Q− −Q| ≤ 2K4(ν − β)−1
(
1−K{(ν − β)−1 + (σ − ν)−1 +K2(ν − β)−1}ρ

)−1
ρ.
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Proof of Proposition 2. First we approximate C by another matrix C̃, prove that C̃

has a left inverse, then use this to prove that Ĉ has a left inverse from which we show

that (D3) follows.

Approximation of C by C̃ and proof that C̃ has a left inverse: Consider the matrix

C̃ where we replace Yk = φhk
x (yk, a0) in C by Ỹk = φhk

x (xk, a
∗) and f(y0, a0) by f(x0, a

∗).

From Eq. (17)

|Yk − Ỹk| ≤ δ2.

Also, using Eq. (16), note that with ẽ = f(x0, a
∗)/|f(x0, a

∗)|

|e0eT0 − ẽẽT | ≤ 2|e0 − ẽ| ≤ 4
|f(y0, a0)− f(x0, a

∗)|
|f(y0, a0)|

≤ 8(M1 +M3)Cδ

|f(y0, a0)|
.

This means that ‖C̃ − C‖∞ ≤ δ4. Since Eq. (25) implies that δ4‖C−1‖ < 1, C̃ also has

the left inverse C−1(I + (C̃ − C)C−1)−1 and

‖C̃−1‖∞ ≤ (1− δ4‖C−1‖∞)−1‖C−1‖∞.

Proof that Ĉ has a left inverse: Next note, using Eq. (13), that

C̃ = C̄D,

where

C̄ =



−Ỹ−N2
e−νh−N2 In 0 0 0
0 −Ỹ−N2+1e

−νh−N2+1 In 0 0
...

...
...

...
...

0 0 0 −Ỹ−1e−νh−1 In
H−1Q 0 0 0 0

0 0 0 0 In − ẽẽT

 ,

and

D = diag(H, In, . . . , In).

Then if C̃−1 is the left inverse of C̃ determined above, C̄−1 = DC̃−1 is a left inverse of

C̄ and

‖C̄−1‖∞ ≤ ‖D‖∞‖C̃−1‖∞ ≤ max{1,
√
n|H|}‖C̃−1‖∞.

Now since Eq. (24) implies that λ2 < 1, ρ satisfies the condition in Lemma 3. We replace

H−1Q in C̄ by H−1Q− to get the matrix Ĉ. From Lemma 3

|H−1Q− −H−1Q| ≤ θ = 2|H−1|K4(ν − β)−1(1− λ2)−1ρ
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so that

‖Ĉ − C̄‖∞ ≤
√
nθ.

Since, by Eq. (25),
√
nθ‖C̄−1‖∞ ≤

√
nθmax{1,

√
n|H|}‖C̃−1‖∞ < 1, it follows that Ĉ

has the left inverse C̄−1(I + (Ĉ − C̄)C̄−1)−1 and so is one to one.

Proof that existence of a left inverse for Ĉ implies (D3): Now x(t) = q̇(t)e−νt =

f(q(t), a∗)e−νt is a solution of Eq. (22). Set ξk = x(tk) for k = −N2, . . . , 0. Then, noting

that the transition matrix of (22) is φt−sx (q(s), a∗)e−ν(t−s), we see that

ξk+1 = x(tk+1) = φhk
x (q(tk), a∗)e−νhkx(tk) = Ỹke

−νhkξk

for k = −N2, . . . ,−1 and

ẽẽT ξ0 = ẽẽT f(q(0), a∗) = |f(q(0), a∗)|ẽẽT ẽ = |f(q(0), a∗)|ẽ = f(q(0), a∗) = x(0) = ξ0.

Suppose x(t) is bounded on IR−. Then since T2 satisfies the condition in Lemma 3,

H−1Q−ξ−N2
= H−1Q−x(−T2) = 0. Then Ĉξ = 0 where ξ = (ξ−N2

, . . . , ξ0). Since Ĉ is

one to one, ξ must be 0 and hence x(t) = 0. This is a contradiction. So f(q(t), a∗)e−νt

is unbounded on IR− and (D3) follows.

3.5. Verification of (D4)

To verify (D4), we need to show that if x(t) is a continuous function which is a bounded

solution of the equation

ẋ = −[fx(q(t), a∗)T − ν]x, q(t) = φt(x0, a
∗) (27)

on IR+ and a bounded solution of the equation

ẋ = −fx(q(t), a∗)Tx (28)

on IR−, then x(0) = 0. First we find the subspace V1 of initial values at t = T1 of solutions

of Eq. (27) which are bounded for t ≥ T1 (see Lemma 4 below) and also the subspace V2
of initial values at t = −T2 of solutions of Eq. (28) which are bounded for t ≤ −T2 (see

Lemma 5 below). Then the problem of finding bounded continuous functions x(t) which

solve Eq. (27) on IR+ and Eq. (28) on IR− is reduced to the boundary value problem of

finding the solutions x(t) with x(−T2) ∈ V2 and x(T1) ∈ V1. It turns out that x(t) is
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such a function if and only if the sequence x(tk), −N2 ≤ k ≤ N1 is in the nullspace of

the [(N1 +N2 + 2)n]× [(N1 +N2 + 1)n] matrix

B̂ =



−Z̃−N2 In 0 0 0
0 −Z̃−N2+1 In 0 0
...

...
...

...
...

0 0 0 −Z̃N1−1 In
HTR− 0 0 0 0

0 0 0 0 HT (In −R+)

 ,

where we obtain Z̃k from Ỹk = φhk
x (xk, a

∗) in the same way we obtain Zk in B from

Yk = φhk
x (yk, a0) in the matrix B in the Proposition below; R+ and R− are projections

determining the subspaces V1 and V2. So to verify (D4), we just need to show this matrix

has zero nullspace or, equivalently, has a left inverse. We approximate B̂ by B in the

Proposition below and so need some smallness conditions to conclude that B̂ has a left

inverse from the fact that B has a left inverse.

Proposition 3. (D4) holds if the matrix

B =



−Z−N2
(H−1)T In 0 0 0

0 −Z−N2+1 In 0 0

...
...

...
...

...

0 0 0 −ZN1−1 (H−1)T

In − Pr 0 0 0 0

0 0 0 0 Ps


, (29)

where Zk = (Y −1k )T for k < 0 and Zk = eνhk(Y −1k )T for k ≥ 0, has a left inverse B−1,

and the following inequalities are satisfied:

λ1 < 1, λ2 < 1, M9δ2 < 1, (30)

[2nK4|H| |H−1|max{(ν − β)−1(1− λ2)−1, β−1(1− λ1)−1}ρ+ δ5]‖B−1‖∞ < 1, (31)

where λ1 and λ2 are as in Eq. (19) and Eq. (24), ρ is as in Eq. (15) and

δ5 =
√
nmax{eνhmax , |H−1|}(1−M9δ2)−1M2

9 δ2, M9 = sup |Y −1k |, δ2 as in Eq. (17).

(32)
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In the proof of Proposition 3, for q(t) = φt(x0, a
∗), we need to find the bounded

solutions of Eq. (27) on IR+ and the bounded solutions of Eq. (28) on IR−. This we do

in the two lemmas below. The proofs are in Appendix 3.

Lemma 4. Suppose ρ in Eq. (15) satisfies

ρ < [K{(σ − ν)−1 + (ν − β)−1 +K2(ν − β)−1}]−1.

Then if ξ ∈ R(In−QT ), there exists a unique solution x(t) = x(t, ξ) of Eq. (27) bounded

on t ≥ T1 such that (In −QT )x(T1) = ξ. Moreover

sup
t≥T1

|x(t)| ≤ (1−K{(σ − ν)−1 + (ν − β)−1}ρ)−1K|ξ|

and the set of initial values {x(T1, ξ) : ξ ∈ R(In −QT )} is the range of a projection R+

which has the same nullspace as In −QT and satisfies

|R+− (In−QT )| ≤ 2K4(ν−β)−1
(
1−K{(ν − β)−1 + (σ − ν)−1 +K2(ν − β)−1}ρ

)−1
ρ.

Lemma 5. Suppose ρ in Eq. (15) satisfies

ρ < [K(α−1 + β−1 +K2β−1)]−1.

Then if ξ ∈ N (In−PT ), there exists a unique solution x(t) = x(t, ξ) of Eq. (28) bounded

on t ≤ −T2 such that PTx(−T2) = ξ. Moreover

sup
t≤−T2

|x(t)| ≤ (1−K(α−1 + β−1)ρ)−1K|ξ|

and the set of initial values {x(−T2, ξ) : ξ ∈ N (In−PT )} is the nullspace of a projection

R− which has the same range as In − PT and satisfies

|R− − (In − PT )| ≤ 2K4β−1
(
1−K(α−1 + β−1 +K2β−1)ρ

)−1
ρ.

Proof of Proposition 3. First we approximate B by another matrix B̃, then prove

that B̃ has a left inverse, use this to show B̂ has a left inverse, from which we show (D4)

follows.
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Approximation of B by B̃ and proof that B̃ has a left inverse: Consider the matrix

B̃ where we replace Yk = φhk
x (yk, a0) in B by Ỹk = φhk

x (xk, a
∗) (with corresponding Z̃k).

From Eq. (17), |Yk − Ỹk| ≤ δ2. Since M9δ2 < 1, it follows that

|Y −1k − Ỹ −1k | ≤ (1−M9δ2)−1M2
9 δ2

so that

|Zk − Z̃k| ≤
{

(1−M9δ2)−1M2
9 δ2 (−N2 ≤ k < 0)

eνhmax(1−M9δ2)−1M2
9 δ2 (0 ≤ k < N1).

This means that ‖B̃−B‖∞ ≤ δ5. Since Eq. (31) implies that δ5‖B−1‖∞ < 1, B̃ also has

the left inverse B̃−1 = B−1(I + (B̃ − B)B−1)−1 and

‖B̃−1‖∞ ≤ (1− δ5‖B−1‖∞)−1‖B−1‖∞.

Proof that B̂ has a left inverse: Next note, using Eqs. (10) and (13), that

B̃ = B̄D,

where

B̄ =



−Z̃−N2
In 0 0 0

0 −Z̃−N2+1 In 0 0
...

...
...

...
...

0 0 0 −Z̃N1−1 In
HT (In − PT ) 0 0 0 0

0 0 0 0 HTQT

 ,

and

D = diag((H−1)T , In, . . . , In, (H
−1)T ).

Then if B̃−1 is the left inverse of B̃ determined above, B̄−1 = DB̃−1 is a left inverse of

B̄ and

‖B̄−1‖∞ ≤ ‖D‖∞‖B̃−1‖∞ ≤
√
n|H−1|‖B̃−1‖∞.

Next we replace HTQT in B̄ by HT (In − R+) and HT (In − PT ) by HTR− to get the

matrix B̂. Now from Lemmas 4 and 5, since λ1, λ2 < 1 by Eq. (30),

|HT (In−R+)−HTQT | = |HTR+−HT (In−QT )| ≤ θ1 = 2K4|H|(ν−β)−1(1−λ2)−1ρ

and

|HTR− −HT (In − PT )| ≤ θ2 = 2K4|H|β−1(1− λ1)−1ρ.
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Hence

‖B̂ − B̄‖∞ ≤
√
nθ =

√
nmax{θ1, θ2}.

Since, by Eq. (31),
√
nθ‖B̄−1‖∞ ≤ nθ|H−1|‖B̃−1‖∞ < 1, it follows that B̂ has the left

inverse B̄−1(I + (B̂ − B̄)B̄−1)−1 and so is one to one.

Proof that existence of a left inverse for B̂ implies (D4): Note that Z(t, s) =

(φt−sx (q(s), a∗)T )−1 is the transition matrix for Eq. (28) and Z(t, s)eν(t−s) is the transi-

tion matrix for Eq. (27). Let ξ be such that the solution x(t) of Eq. (28) with x(0) = ξ

is bounded on IR− and the solution x(t) of Eq. (27) with x(0) = ξ is bounded on

IR+. Set ηk = x(tk) for k = −N2, . . . , N1. Then ηk+1 = x(tk+1) = Z(tk+1, tk)x(tk) =

Z̃kηk for k = −N2, . . . ,−1 and ηk+1 = x(tk+1) = eνhkZ(tk+1, tk)x(tk) = Z̃kηk for

k = 0, . . . , N1 − 1. Also since |x(t)| is bounded on IR+ and T1 satisfies the condition in

Lemma 4, we have HT (In − R+)ηN1
= HT (In − R+)x(tN1

) = HT (In − R+)x(T1) = 0

and since |x(t)| is bounded on IR− and −T2 satisfies the condition in Lemma 5, we

have HTR−η−N2 = HTR−x(t−N2) = HTR−x(−T2) = 0. That is, B̂η = 0, where

η = (η−N2
, . . . , ηN1

). Since B̂ is one to one, η must be 0 and hence ξ = η0 = 0. So there

does not exist ξ 6= 0 such that the solution x(t) of Eq. (28) with x(0) = ξ is bounded

on IR− and the solution x(t) of Eq. (27) with x(0) = ξ is bounded on IR+. Hence q(t)

satisfies condition (D4).

4. Example
In this section we carry out the detailed rigorous computations for a particular example.

As in Battelli and Palmer [2011], consider the following 4−dimensional system depending

on two parameters κ and γ:

ẋ1 = x2

ẋ2 = −x1 + x2 + κx3

ẋ3 = x4

ẋ4 = −g(x3) + x1 + γx4,

(33)

with g(y) = 2y3 − y, which corresponds to the system of coupled oscillators

ẍ− ẋ+ x = κy

ÿ − γẏ + g(y) = x.

The second order equation ÿ + g(y) = 0 has the homoclinic orbit (ζ0(t), ζ̇0(t)) with

ζ0(t) = sech(t) associated with the saddle point (0, 0). The equilibrium (0, 0, 0, 0) is
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a saddle-focus for the unperturbed system (that is, κ = γ = 0) satisfying (D1) and

(0, 0, ζ0(t), ζ̇0(t)) is a homoclinic orbit satisfying (D2) and (D4) but not (D3). Note

that the origin is an equilibrium for all values of the parameters κ and γ.

Battelli and Palmer [2011] showed the existence of a smooth curve γ(κ) with γ(0) =

0 along which for κ 6= 0 small, the system possesses a saddle-focus homoclinic orbit

satisfying all the conditions (D1)–(D4). We increase κ and use numerical continuation

to follow the evolution of this orbit until we reach κ = 1.0 and obtain a value γ = γ0 =

−0.53237259116071756 for which a homoclinic orbit appears to exist. The graph of the

corresponding parameter curve γ(κ) for κ ∈ [0, 1.0] is shown in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

κ

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

γ

Figure 1. Curve in the parameter space (κ, γ) for which there is a numerically

generated approximate homoclinic orbit. This curve is obtained by a continu-

ation of the homoclinic orbit at the origin for κ ∈ [0, 1]. We will refer to this

curve as the “standard curve.”

The projections of the approximate homoclinic orbits for four values of κ set to 0,

0.4, 0.7, 1, with the corresponding γ values 0, −0.271336, −0.415845, −0.532373, into

the (x3, x4)-plane are plotted in Figure 2. The picture on the right in Figure 2 depicts

a three-dimensional view of these four orbits in the (x2, x3, x4)-space.

Two three-dimensional views of the approximate homoclinic orbit for κ = 1.0 are

shown in Figure 3. Note that the existence of a true homoclinic orbit near this ap-

proximate homoclinic orbit does not follow from Battelli and Palmer [2011] as there the

existence was only verified for small κ. What we want to do now is to use the theory de-
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Figure 2. Evolution of the approximate homoclinic orbits as the parameters

are varied along the standard curve in Fig 1 from (κ, γ) = (0, 0) to (κ, γ) =

(1, −0.53237259116071756). The four pictures on the left are the projections

of the approximate homoclinic orbits onto the (x3, x4)-plane. Their parameter

values on the standard curve are marked in Fig 1. The picture on the right

depicts the three dimensional views of the same four approximate homoclinic

orbits in the (x2, x3, x4)-space.

veloped in this paper to verify rigorously that for κ = 1.0, a true homoclinic orbit exists

for some value of γ near −0.53237259116071756 and that the orbit satisfies (D1)–(D4).

4.1. Verification of the existence of the homoclinic orbit

First we verify the existence of the homoclinic orbit using the Existence Theorem for

Homoclinic Orbits given in Section 2. The definitions of the relevant quantities can be

found in Appendix 1 and more computational details are provided in Appendix 4. With

κ fixed at 1.0, the system under consideration is

ẋ1 = x2

ẋ2 = −x1 + x2 + x3

ẋ3 = x4

ẋ4 = x3 − 2x33 + x1 + γx4.

(34)

We write this vector field in (33) as f(x, γ) and the corresponding flow as φt(x, γ).

From the preliminary calculations made earlier, we determine for γ = γ0, an ap-

proximate homoclinic orbit yk, k = −N2, . . . , N1, of (34), to the origin with associated
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Figure 3. Three-dimensional views of the approximate homoclinic orbit for

(κ, γ) = (1, −0.53237259116071756). The figure on the left is the projection

into the (x1, x2, x3)-space, and the figure on the right is the projection into the

(x2, x3, x4)-space. A rigorous verification of the existence a Shilnikov homo-

clinic orbit near this approximate orbit along with the conditions (D1)–(D4) is

demonstrated.

times hk, k = −N2, . . . , N1 − 1, and determine δ1. The projections of the yk into the

(x2, x3, x4)-space are depicted in Figure 4. More information about the computations

involved here and in the calculation of δ can be found in Appendix 4 (i).

We calculate a rigorous containment region U =
⋃
k B2Rk

(yk) around the homoclinic

orbit, in which we obtain upper bounds for the constants Mi and M and which we also

employ in order to calculate δ. Here the issues regarding rigor in the calculation of the

Mi are handled as in subsection 6.4 in Coomes et al. [2016]. The projection of U into

the three-dimensional (x2, x3, x4)-space is depicted in Figure 5.

Next we determine the eigenvalues and eigenvectors of the linearization fx(0, γ0) of

(34) with γ = γ0 at the origin and thus are able to determine the dichotomy constants

K, α and β and bounds on |H| and |H−1|, where H is the matrix of eigenvectors. More

information about the computations involved can be found in Appendix 4 (ii).

Then we find that the matrix L defined in Hypothesis 3 of the Existence Theorem

is invertible and obtain an upper bound for ‖L−1‖. Here v = 0. We determine the errors

in the calculation of Yk and zk as in the first part of subsection 6.7 in Coomes et al.

[2016]. Next we follow the procedure in subsection 6.7 in Coomes et al. [2016] to verify
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Figure 4. The numerically computed approximate homoclinic orbit in Fig 3

for (κ, γ) = (1, −0.53237259116071756) actually consists of 1562 points. There

exists a true homoclinic orbit to the origin within 4.4566093099211481× 10−11

of this approximate orbit for a pair of parameter values κ = 1.0 and γ ∈
[−0.53237259120528369, −0.53237259111615143].

the invertibility of L. We find that L is invertible and obtain an upper bound for ‖L−1‖.
It is important to note here that we regard L as a linear operator mapping a vector

(ξ−N2
, . . . , ξN1

, b) on to a vector (g−N2
, . . . , gN1−1, q, α), where b and α are scalars and

q, the ξ’s and g’s are vectors in IRn. The norm in the domain space is max{sup |ξk|, |b|}
and the norm in the range space is max{sup(|gk|/hk), |q|, |α|}, where | · | is the Euclidean

norm in IRn. ‖L−1‖ means the corresponding operator norm. We list all the quantities

and the inequalities needed to verify the conditions of the Theorem in Table 1; further

details are given in Appendix 1.

The inequalities are all satisfied and the Existence Theorem for Homoclinic Orbits

applies. So there exists γ∗ within a distance

2Cδ = 4.4566093099211481× 10−11

from γ0 and hence in the interval [−0.53237259120528369,−0.53237259111615143], and

a point x0 such that φt(x0, γ
∗) → z∗ as |t| → ∞, where f(z∗, γ∗) = 0. However, the

system (34) has three equilibria (0, 0, 0, 0), (1, 0, 1, 0) and (−1, 0, −1, 0). Now, we
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Figure 5. The rigorous containment region U about the approximate homo-

clinic orbit in Fig 4 that contains the true homoclinic orbit.

show that z∗ = (0, 0, 0, 0). Observe that yk = (0, 0, 0, 0) for large k and also

|yk − z∗| ≤ |yk − xk|+ |xk − z∗| ≤ 2Cδ + |xk − z∗| → 2Cδ as k →∞.

So |z∗| ≤ 2Cδ. Since 2Cδ < 2, we must have z∗ = (0, 0, 0, 0). We easily verify there is

a k such that |yk| > 2Cδ so that the homoclinic orbit does not coincide with the equilib-

rium. In fact, y0 = (0.810316, −0.540278, 0.999121, 1.08659). Hence we have verified the

existence of a γ∗ in the interval [−0.53237259120528369,−0.53237259111615143], and a

point x0 such that φt(x0, γ
∗) is distinct from z∗ = (0, 0, 0, 0) and → z∗ as |t| → ∞.

4.2. Verification of (D1)–(D4)

Here we verify that the homoclinic orbit whose existence was established above satisfies

all the Silnikov conditions (D1)–(D4). More computational details of these verifications

are given in Appendix 4 (ii) and (iii).

The four eigenvalues of fx(z∗, γ∗) are −α1, σ1, β1 ± iω1, where α1 ≥
1.4059364945327910, σ1 ≥ 1.1282487656074565, 0.37265756884438972 ≤ β1 ≤
0.37265756895644164, and ω1 ≥ 1.0592283643324152. So these eigenvalues satisfy (D1).

(D2) is automatic here because the dimension of the stable manifold is one.

For (D3) and (D4), we first verify that C (see Eq. (23)) has a left inverse C−1 and

B (see Eq. (29)) has a left inverse B−1, and we determine upper bounds for their norms.
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γ0 = −0.53237259116071756

N2 = 1221

hmax = 0.075000000000002842

δ1 = 2.4647560945643079× 10−15

Rk ≤ 0.29428927321473447

δ = 3.3237220276132601× 10−14

M0 = 12.777479198229464

M2 = 22.951480250413660

M4 = 1.0

M6 = 224.58646912291854

M8 = 0.53073919008341075

K = 2.2608982925794296

β = 0.37265756890039831

|H| ≤ 1.1608562757978054

‖L−1‖ ≤ 8.1541017311549702

C = 670.42449291726803

∆0 = 0.02

∆1 = 6.5432609319166310× 10−5

N1 = 340

M1 = 30.411711504022588

M3 = 1.4129950679529282

M5 = 0.0

M7 = 12.900233994987197

M = 2455.2976255375606

α = 1.4059364946668425

|H−1| ≤ 1.9476125853957360

fγ(0, γ0) = 0

µ = 1.4192114116877699× 10−3

∆2 = 9.2402122741189533× 10−4

The inequalities to be verified:

(i) 2MC2δ = 7.3359874417271812× 10−5 < 1

(ii) δ1 ≤ ∆2

(iii) 2Cδ = 4.4566093099211481× 10−11 < min{∆1,∆2}
(iv) 2CeM1hmax(1 +M3hmax)δ = 4.8230594468091724× 10−10 ≤ µ
(v) C(M6 +M7)eM1hmaxδ1 = 3.8400422852203796× 10−9 < 1

Table 1. The requisite constants and inequalities for the verification of the

homoclinic orbit using the Existence Theorem for Homoclinic Orbits. Defini-

tions of the constants are given in Appendix 1.
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Next, we determine the constants listed in Table 2, where H is the matrix of eigenvectors

of fx(z, γ0), σ is a lower bound for σ1 and ν is a number between β1 and σ1. Finally,

we establish the inequalities in Propositions 2 and 3, as listed in Table 2, thus verifying

that our homoclinic orbit satisfies the Shilnikov conditions (D3) and (D4).

4.3. Further study of connecting orbits

We study Eq. (33) in the parameter range κ > 0 and −1 < γ < 0. It turns out that the

orbit we have studied is just one among many.

First we make some general remarks about this system. Since the vector field is an

odd function, system Eq. (33) with g(y) = 2y3 − y, has reflection symmetry, that is, if

x(t) is a solution so also is −x(t).

When κ > 0, the system has three equilibria

(0, 0, 0, 0), (κ
√

(κ+ 1)/2, 0,
√

(κ+ 1)/2, 0), −(κ
√

(κ+ 1)/2, 0,
√

(κ+ 1)/2, 0).

When −1 < γ < 0, the derivative of the vector field at the origin always has a pair of

complex eigenvalues with positive real parts and two nonzero real eigenvalues of opposite

sign. At the other two equilibria, the vector field has the same derivative and there are

two pairs of complex eigenvalues with real parts of opposite sign.

As mentioned earlier, we found the orbit studied in detail in sections 4.1 and 4.2 by

starting with the homoclinic orbit in the system when γ = κ = 0 and increasing κ until

we reached κ = 1. If we continue the standard curve in Figure 1 further in the parameter

plane (κ, γ), we obtain the curve depicted in Figure 6.

Figure 7 shows ten representative homoclinic orbits along the extended standard

curve as the curve converges towards a certain point. We have rigorously verified that

all these homoclinic orbits exist, although not all the conditions (D1)-(D4) have been

verified. As the point of convergence is approached, these homoclinic orbits appear to

evolve into a heteroclinic cycle, that is, two heteroclinic connections between the origin

and one of the other equilibria going opposite ways. Indeed, we have found numerically

such a heteroclinic cycle between the origin and one of the other equilibria for parameter

values near the point of convergence. However, the existence of this cycle, which is de-

picted in Figure 8, is yet to be rigorously verified. The point of convergence resembles a

T -point as studied by Glendinning and Sparrow [1986], Kokubu [1993] and Knobloch et

al. [2018]. We have also found several other parameter values (κ, γ), not on the extended

standard curve, at which heteroclinic cycles appear to exist; for example,

(1.3028800206343, −0.721055813230436), (1.00514637752089, −0.425294310240785),

(1.19897676718663, −0.70363368227532).



30 Coomes, Koçak, and Palmer

ν = 0.75045316730285982

σ = 1.1282487657052955

|H| ≤ 1.1608562757978054

|H−1| ≤ 1.9476125853957360

‖C−1‖∞ ≤ 99.573180337289486

‖B−1‖∞ ≤ 194.92669801482472

ρ = 2.1085860433082737× 10−8 (see (15))

δ2 = 7.7674418729513060× 10−9 (see (17))

λ1 = 8.1575516263319998× 10−7 (see (19))

λ2 = 8.9740092255911929× 10−7 (see (24))

δ4 = 1.5534883745902612× 10−8 (see (26) with n = 4)

M9 = 1.4021856000798298

δ5 = 2.7230347931865971× 10−5 (see (32) with n = 4))

The inequalities to be verified for (D3):

(i) λ2 < 1

(ii)
[
4K4 max{1, 2|H|}|H−1|(ν − β)−1(1− λ2)−1ρ+ δ4

]
‖C−1‖∞ < 1

The inequalities to be verified for (D4):

(i) λ1 < 1

(ii) λ2 < 1

(iii) M9δ2 < 1

(iv)
[
8K4|H| |H−1|max{(σ − ν)−1(1− λ2)−1, β−1(1− λ1)−1}ρ+ δ5

]
‖B−1‖∞ < 1

Table 2. The requisite constants and the inequalities for the verification of

Shilnikov conditions (D3) and (D4) using Propositions 2 and 3.

We have identified other curves in the parameter space along which homoclinic orbits

exist. These curves are depicted in Figure 9. At several points on these curves we have
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Figure 6. Extension of the “standard curve” from Figure 1 in the parameter

space (κ, γ) for which there is an approximate homoclinic orbit.

been able to verify rigorously that a homoclinic orbit to the origin exists satisfying (D1).

(D2) is automatic here and mostly also we have been able to verify (D3). However,

in many cases we cannot verify (D4). One of the orbits for which everything has been

verified is shown in Figure 10.

On one of the other parameter curves, at a point very close to the parameter values

for the orbit we have studied in detail, we found a double-pulse homoclinic orbit. We

could verify rigorously that this orbit is shadowed by a true orbit satisfying (D1)-(D3)

but not (D4). We suspect that (D4) could be verified with calculations in higher order

precision. This orbit is depicted in Figure 11.

5. Systems not satisfying all of (D1)–(D4)
Note that in our detailed example the unperturbed system satisfied (D1), (D2) and (D4)

hold but not (D3). We can also easily construct systems where (D1) and (D2) hold but

neither (D3) nor (D4) and also systems where (D1), (D2) and (D3) hold but not (D4).

First, let f : IR2 → IR2 and g : IR2 → IR2 be C1 functions such that f(x0) = 0,

A = f ′(x0) has eigenvalues β ± iω; g(y0) = 0, g′(y0) has eigenvalues −λ1 < 0 < λ2 with

ω > 0, 0 < β < min{λ1, λ2}; also ẏ = g(y) has a solution ζ(t) 6= y0 such that ζ(t)→ y0
as |t| → ∞. Then z = (x0, y0) is an equilibrium for

ẋ = f(x), ẏ = g(y)
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Figure 7. Evolution of approximate homoclinic orbits to an apparent hetero-

clinic cycle as the parameters are varied along the standard curve in Figure 6

towards the point of convergence. A three-dimensional view of this cycle is

depicted in Figure 8.
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Figure 8. A putative heteroclinic cycle between the origin and one of

the other equilibria for the parameter values κ = 1.273569335850322 and

γ = −0.6554219936232768. These parameter values are approximately the

coordinates of the point to which the extended standard curve in Figure 6 is

converging. The existence of this cycle is yet to be rigorously verified.
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Figure 9. Other curves in the parameter space along which homoclinic orbits

may exist.
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Figure 10. An approximate homoclinic orbit at the point (κ, γ) =

(1.0,−0.2930607170242212) on a nonstandard curve. Near this computed orbit,

there exists a true Shilnikov homoclinic orbit satisfying the conditions (D1)-

(D4).

satisfying (D1) with associated homoclinic orbit q(t) = (x0, ζ(t)) and it is easily verified

that (D2) holds but neither (D3) nor (D4) holds.

Next suppose we take f(x) = Ax and x0 = 0, and let A, g, y0 and ζ(t) be as in

the preceding paragraph. In addition, let h : IR2 → IR2 be a C1 function satisfying

h(y0) = 0. Then z = (0, y0) is an equilibrium for

ẋ = Ax+ h(y), ẏ = g(y)

satisfying (D1) with associated homoclinic orbit q(t) = (u(t), ζ(t)), where u(t) is the

unique bounded solution of ẋ = Ax+ h(ζ(t)). Then it is easily verified that (D2) holds

but (D4) does not and if
∫∞
−∞ e−tAh′(ζ(t))ζ̇(t)dt 6= 0, that (D3) holds. An explicit

example is the system ẍ− 2aẋ+ x = y, ÿ − y + 2y3 = 0, where 0 < a < 1.

System Eq. (33) in our detailed example corresponded to the case where (D1),

(D2), (D4) hold but not (D3). There is a more general class of systems which has

this property. Let f , A, g, x0, y0 and ζ(t) be as in the first paragraph of this section

and suppose h : IR2 → IR2 is a C1 function satisfying h(x0) = 0. Then provided∫∞
−∞ ψ∗(t)h′(x0)etAdt 6= 0, where ψ(t) is, up to a scalar multiple, the unique nontrivial
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Figure 11. An approximate “double pulse” homoclinic orbit for the parameter

values (κ, γ) = (1.0, −0.5322792300363889). Near this computed orbit, we can

prove the existence of a Shilnikov homoclinic orbit satisfying the conditions

(D1)-(D3) but not (D4).

bounded solution of ẏ = −g′(ζ(t))∗y, (D1), (D2) and (D4) hold for the equilibrium

(x0, y0) and associated homoclinic orbit (x0, ζ(t)) of the system

ẋ = f(x), ẏ = g(y) + h(x)

but not (D3).

Appendix 1: Constants and inequalities needed for Existence Theorem

A complete proof of the Existence Theorem for Homoclinic orbits stated in Section 2 is

available in Coomes et al. [2016]. For the convenience of the reader, in this Appendix we

collect certain quantitative information about the constant C in the Existence Theorem

and the conditions which δ and δ1 need to satisfy.

For each k ∈ ZZ, Rk is a positive number such that if 0 ≤ t ≤ hk, then |φt(yk, a0)−
yk| ≤ Rk. Then the rigorous containment region is

U =
⋃
k

{x ∈ IRn : |x− yk| ≤ 2Rk}.
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∆0 is a positive number such that if |x − z| ≤ ∆0, then x ∈ U , and the constants M1,

M2, M3, M4, M5 are bounds on the norms of the derivatives fx, fxx, fa, fxa, faa in

x ∈ U , |a− a0| ≤ ∆0. Next we have the quantities

hmax = sup hk, M6 = M2e
M1hmax , M7 =

1

2
M2M3hmaxe

M1hmax +M4,

M8 =
1

3
M2M

2
3h

2
max cosh(M1hmax) +M3M4hmax +M5,

M = (M6 + 2M7 +M8)eM1hmax .

(35)

In view of the eigenvalue assumptions in Hypothesis 1, there exist positive constants

K, α and β such that for t ≥ 0

|etAP | ≤ Ke−αt, |e−tA(In − P )| ≤ Ke−βt. (36)

Next, we have the quantities

µ = min{∆0, [4K(α−1 + β−1)M2]−1},
∆1 = min{∆0, [2K(α−1 + β−1)M3]−1µ, [4K(α−1 + β−1)M4]−1},

(37)

and ∆2 as the largest positive number ≤ ∆0 such that for all k

[1 +M3hk]eM1hk∆2 ≤ Rk. (38)

Recall that H is the matrix of the eigenvectors of A, and let

N = max{1,K|H−1|(β−1 + α−1eαhmax)}, fa = fa(z, a0). (39)

Then the constant C is given by

C = 2 max
{
N‖L−1‖,K

[
N‖L−1‖((α−1 + β−1)|fa|+ |H|) + α−1eαhmax + β−1

]}
. (40)

Finally, we list the inequalities that δ and δ1 must satisfy:

2MC2δ < 1, 2Cδ ≤ ∆1, 2Cδ < ∆2 (41)

2CeM1hmax(1 +M3hmax)δ ≤ µ, δ1 ≤ ∆2, C(M6 +M7)eM1hmaxδ1 ≤ 1. (42)

Appendix 2: Proofs of inequalities (7), (15), (16) and (17) for Section 3.

In these proofs we refer to Appendix 1 for the definitions of the quantities which appear.
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First we prove (7). Since yk = z for large k, xk → z(a∗) as k → ±∞ and |xk−yk| ≤
2Cδ for all k, it follows that

|z(a∗)− z| ≤ 2Cδ (43)

also. Next since by Eq. (38) and Eq. (41), 2Cδ < Rk for all k and yk = z for large |k|, it

follows that z(a∗) is in the ball of radius Rk, centre yk = z, for large |k| and so we can

use the bounds Mi defined before Eq. (35). Then it follows that

|fx(z(a∗), a∗)− fx(z, a0)| ≤M2|z(a∗)− z|+M4|a∗ − a0| ≤ 2(M2 +M4)Cδ, (44)

So inequality (7) is proved.

Inequalities (15) require us to show that for t ≥ T1 = tN1
and t ≤ −T2 = t−N2

|φt(x0, a∗)− z(a∗)| ≤ µ1 = (4Cδ + δ1)eM1hmax ,

|fx(φt(x0, a
∗), a∗)− fx(z, a0)| ≤ ρ = M2µ1 + 2(M2 +M4)Cδ.

(45)

The main problem here is controlling what happens to |φt(x0, a∗) − z(a∗)| when t is

between tk and tk+1 = tk + hk. Note since by Eqs. (5) and (41),

|xk − yk| ≤ 2Cδ < ∆2, |a∗ − a0| ≤ 2Cδ < ∆2,

it follows from Lemma 1 in Coomes et al. [2016] that for all k

|φt(xk, a∗)− yk| ≤ 2Rk for 0 ≤ t ≤ hk.

Next, using Eqs. (43), (3), (38), (41) and (42), we get

|z(a∗)− yk| ≤ |z(a∗)− z|+ |yk − z| ≤ 2Cδ + δ1 ≤ 2∆2 ≤ 2Rk (46)

if k ≥ N1 or k < −N2. It follows that for tk ≤ t ≤ tk+1 with k ≥ N1 and k < −N2,

the points φt(xk, a
∗) and z(a∗) belong to a ball of radius 2Rk centered at some yk and

therefore we may use the Mi defined before Eq. (35) to obtain for these k and t that

|f(φt(xk, a
∗), a∗)− f(z(a∗), a∗)| ≤M1|φt(xk, a∗)− z(a∗)|,

|fx(φt(xk, a
∗), a∗)− fx(z(a∗), a∗)| ≤M2|φt(xk, a∗)− z(a∗)|. (47)

Then if k ≥ N1 and 0 ≤ t ≤ hk, it follows that

|φt(xk, a∗)− z(a∗)| =
∣∣∣∣xk − z(a∗) +

∫ t

0

[f(φs(xk, a
∗), a∗)− f(z(a∗), a∗)]ds

∣∣∣∣
≤ |xk − z(a∗)|+M1

∫ t

0

|φs(xk, a∗)− z(a∗)|ds
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and hence, by Gronwall’s lemma and using Eqs. (5) and (46), we obtain for 0 ≤ t ≤ hk

|φt(xk, a∗)− z(a∗)| ≤ |xk − z(a∗)|eM1t ≤ (4Cδ + δ1)eM1hmax .

It follows that for t ≥ tN1 , and similarly for t ≤ t−N2 that

|φt(x0, a∗)− z(a∗)| ≤ µ1 = (4Cδ + δ1)eM1hmax .

Hence we have derived the first inequality in Eq. (45). Also we conclude that for the

same t, using Eq. (47), that

|fx(φt(x0, a
∗), a∗)− fx(z(a∗), a∗)| ≤M2µ1

and hence, using Eq. (7), that for t ≥ T1 = tN1
and t ≤ −T2 = t−N2

|fx(φt(x0, a
∗), a∗)− fx(z, a0)| ≤ ρ = M2µ1 + 2(M2 +M4)Cδ.

Thus we have derived the second inequality in Eq. (45).

Next we prove inequality (16). First since |y0 − x0| ≤ 2Cδ < ∆2 < Rk, y0 and x0
are both in the ball of radius 2R0, centre y0. Also |a∗ − a0| ≤ 2Cδ ≤ ∆1 ≤ ∆0. So we

may use M1 and M3 as Lipschitz constants to get

|f(y0, a0)− f(x0, a
∗)| ≤M1|y0 − x0|+M3(a0 − a∗| ≤ 2C(M1 +M3)δ,

thus proving inequality (16).

Finally we prove inequality (17). In fact, using Lemma 2 in Coomes et al. [2016],

we obtain for k = −N2 + 1, . . . , N1 − 1

|φhk
x (xk, a

∗)− φhk
x (yk, a0)| ≤M6hke

M1hk |xk − yk|+M7hke
M1hk |a∗ − a0| ≤ δ2,

where

δ2 = 2C(M6 +M7)hmaxe
M1hmaxδ,

thus establishing Eq. (17).

Appendix 3: Proofs of lemmata

Here we give the proofs of Lemmas 1 to 5 in Section 3.
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Proof of Lemma 1. Let E be the Banach space of continuous IRn−valued functions

x(t) on [T1,∞) equipped with the supremum norm ‖ · ‖∞. We define T : E → E

according to

(Tx)(t) = e(t−T1)Aξ +

∫ t

T1

e(t−s)APB(s)x(s)ds−
∫ ∞
t

e(t−s)A(In − P )B(s)x(s)ds, (48)

where B(t) = fx(q(t), a∗)−A. We see that Tx is continuous and, using the inequalities

(11), we find that

‖Tx‖∞ ≤ K|ξ|+K(α−1 + β−1)ρ‖x‖∞ <∞ (49)

so that Tx is in E. Moreover, if x and y are in E, then

‖Tx− Ty‖∞ ≤ K(α−1 + β−1)ρ‖x− y‖∞.

Thus T is a contraction and its unique fixed point is the desired solution. The inequality

for supt≥T1
|x(t)| follows from Eq. (49) taking Tx = x. We denote this solution by x(t, ξ).

From Eq. (48) with Tx = x and t = T1, we see that

x(T1, ξ) = R+ξ = ξ −
∫ ∞
T1

e(T1−s)A(In − P )B(s)x(s, ξ)ds.

R+ is linear since, by uniqueness, x(t, ξ) is linear in ξ. Then

|R+ξ − ξ| ≤ K2αρ(αβ −K(α+ β)ρ)−1|ξ| = ρ1|ξ|.

Define

S = R+P + In − P.

Then

|Sξ − ξ| = |R+Pξ − Pξ| ≤ ρ1|Pξ| ≤ Kρ1|ξ|.

Since Kρ1 < 1, S is invertible and

|S − In| ≤ Kρ1, |S−1| ≤ (1−Kρ1)−1, |S−1 − In| ≤ (1−Kρ1)−1Kρ1.

The projection

P+ = SPS−1
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has the same nullspace as P and its range is the range of R+. This means that the

solutions x(t) of Eq. (18) bounded on [T1,∞) are exactly those with x(T1) in the range

of P+. Note that

|P+ − P | ≤ |S − In| |P | |S−1|+ |P | |S−1 − In| ≤ 2(1−Kρ1)−1K2ρ1.

This completes the proof of the lemma.

Proof of Lemma 2. This follows from Lemma 1 by reversing time, that is, by applying

Lemma 1 to the equation ẏ = −fx(q(−t), a∗)y, replacing A, α, β by −A, β, α.

Proof of Lemma 3. This follows from Lemma 2 with fx(q(t), a∗), A, P , α, β replaced

by fx(q(t), a∗)− νIn, A− νIn, Q, ν − β, σ − ν, respectively.

Proof of Lemma 4. This is proved as Lemma 1, replacing fx(q(t), a∗), A, P , α, β by

−(fx(q(t), a∗)T − ν), −(AT − νIn), In−QT , σ− ν, ν−β respectively, and using the fact

that with A1 = A− νIn, taking transposes in Eq. (14) and using AQ = QA, we have for

t ≥ 0,

|et(−A
T
1 )(In −QT )| ≤ Ke−(σ−ν)t, |e−t(−A

T
1 )QT | ≤ Ke−(ν−β)t.

Proof of Lemma 5. This is proved as Lemma 2, replacing fx(q(t), a∗), A, P , α, β by

−fx(q(t), a∗)T , −AT , In−PT , β, α respectively and using the fact that taking transposes

in Eq. (11) and using AP = PA, we have for t ≥ 0,

|et(−A
T )(In − PT )| ≤ Ke−βt, |e−t(−A

T )PT | ≤ Ke−αt.

Appendix 4: Computational details for the example

Here we supply more details concerning the computations in the example in Section 4.

First in (i) we describe how the approximate homoclinic orbit is found, and how the

rigorous containment region and the quantities δ and δ1 are determined. Next in (ii)

we show how the eigenvalues and dichotomy constants are determined, and how (D1) is

verified. Finally in (iii) we describe how to verify that C from Propsition 2 (hence also

B from Proposition 3) has a left inverse and calculate an upper bound on its norm.

(i) Determination of the approximate homoclinic orbit and parameter value, the

rigorous containment region, and δ1 and δ: To obtain the approximate homoclinic orbit

and parameter value in Eq. (33), we set κ to a small positive value and use Beyn’s

method (see Eqs. (4.1a), (4.1b), (4.1c), (3.6) in Beyn [1990]) with (0, 0, ζ0(t), ζ̇0(t))
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as our initial orbit and parameter value γ = 0 as an initial guess for the BVP solver,

padding the initial orbit with copies of the appropriate equilibrium at each end as needed

so that the output of Beyn’s method is suitably close to the equilibrium at each end.

The BVP solver we use is the 2012 version of the Fortran 90/95 software developed by

Boisvert et al. [2012]. Then Beyn’s method yields the corresponding value of γ and the

new approximate homoclinic orbit. Then we use these as initial guesses for a slightly

higher value of κ. And so on until we reach κ = 1.0. The raw output of the BVP solver

is in general a variable step size orbit. We then use the solver’s interpolating routines to

produce two constant step size orbits, one for forward time and one for backward time

since the time scaling for the BVP is different in these two directions. Because the solver

produces times instead of steps and because of round off errors, the step size hk ends up

being not quite uniform.

Thus we obtain finite sequences yk, −N2 = −1221 ≤ k ≤ N1 = 340 and hk,

−N2 ≤ k < N1 and a parameter value

γ = −0.53237259116071756

such that

hmin = 0.074999999999988631 ≤ hk ≤ 0.075000000000002842 = hmax.

Then if we define yk = z+ for k > N1, hk = hmax for k ≥ N1 and yk = z−, hk = hmax for

k < −N2, we obtain infinite sequences yk, hk as required in the definition of approximate

homoclinic orbit. Moreover we have

|yN1
| ≤ δ1 = 2.4647560945643079× 10−15.

so that Eq. (3) holds.

We follow the procedure described in subsection 6.3 in Coomes et al. [2016] with

m = 3 to compute the sequence of positive numbers {Rk}N1

k=−N2
and hence the rigorous

containment region U =
⋃
k{x ∈ IRn : |x− yk| ≤ 2Rk}.

We determine δ in Hypothesis 2 following the procedure given in the last paragraph

in subsection 6.2 in Coomes et al. [2016]. The only difference here is that we work in

each ball center yk, radius Rk, rather than in the trapping region which is not available

here.

(ii) Eigenvalues, dichotomy constants and verification of (D1): For the matrix

A = A(γ0) = fx(0, γ0) =


0 1 0 0
−1 1 1 0
0 0 0 1
1 0 1 γ0

 ,
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we use a standard linear algebra routine to compute approximations for the eigen-

values −α̃ = 1.4059364946668556, σ̃ = 1.1282487657053040, β̃ ± iω̃ with β̃ =

0.37265756890041568, ω̃ = 1.0592283643884413. The eigenvectors corresponding to −α̃,

σ̃ and β̃ + iω̃ are approximately ũ1, ũ2, ṽ + iw̃, where H̃ = [ũ1 ṽ w̃ ũ2], is given by

H̃ =


0.128939 −0.201547 0.572869 0.436384
−0.18128 −0.681907 0 0.492349
0.565086 0.226242 −0.149426 0.499527
−0.794475 0.242587 0.183958 0.563591

 .
Now, using the approximate eigenvalues and eigenvectors just found, we want to rigor-

ously estimate the eigenvalues and eigenvectors of A but we also want to estimate the

eigenvalues of the matrix A(γ), noting that |A(γ) − A|∞ ≤ 2Cδ. To this end, we use a

similar method to that used in Symm and Wilkinson [1980] and Yamamoto [1980, 1982]

and apply the Newton method Lemma 4.1 of Coomes et al. [1994] to, in the case of a

real eigenvalue λ, the function G from IR× IR4 to IR4, given by

G(λ, v) = A(γ)v − λv,

and in the case of a complex eigenvalue α+ iβ to the function G from IR× IR× IR4× IR4

to IR4 × IR4 given by

G(α, β, w, v) = [A(γ)v − αv + βw A(γ)wβv − αw ] .

We conclude that A(γ) has eigenvalues −α1, σ1, β1 ± iω1, where α1 ≥
1.4059364945327910, σ1 ≥ 1.1282487656074565, 0.37265756884438972 ≤ β1 ≤
0.37265756895644164, ω1 ≥ 1.0592283643324152. So these eigenvalues satisfy (D1).

In particular, we conclude that A has eigenvalues −α2, σ2, β2±iω2, where α2 ≥ α =

1.4059364946668425, σ2 ≥ σ = 1.1282487657052955, β2 ≥ β = 0.37265756890039831,

ω2 ≥ 1.0592283643884237. The corresponding eigenvectors are u1, u2, v ± iw where if

H = [u1 v w u2], using a standard a posteriori technique applied to an approximate

inverse of H̃, we verify that H is invertible and obtain the rigorous upper bounds

|H| ≤ 1.1608562757978054, |H−1| ≤ 1.9476125853957360.

Next, with a view to obtaining the dichotomy constants, note that

AH = HD, where D =


−α2 0 0 0

0 β2 −ω2 0
0 ω2 β2 0
0 0 0 σ2

 ,
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so that etAH = HetD and hence for t ≥ 0,

|etAP | = |HetDP1H
−1| ≤ Ke−αt, |e−tA(I − P )| = |HetD(I − P1)H−1| ≤ Ke−βt,

where P = HP1H
−1 (recall that Pr =

[
Ir 0
0 0

]
) and

|H−1||H| ≤ K = 2.2608982925794296,

and

|et(A−νI)Q| ≤ Ke−(ν−β)t, |e−t(A−νI)(I −Q)| ≤ Ke−(σ−ν)t,

where Q = HP3H
−1. So our dichotomy constants are

α = 1.4059364946668425, β = 0.37265756890039831,
σ = 1.1282487657052955, K = 2.2608982925794296.

(iii) Verification that C has a left inverse and calculation of an upper bound on its

norm: Here we show how we verify that C has a left inverse and we find an upper bound

for the norm of a left inverse. Denote by Ĉ the computed C. We have a rigorous upper

bound for |Ĉ − C| ≤ E, where here if A is a matrix [aij ], then |A| = [|aij |] is the matrix

of absolute values, E is a matrix and ≤ is to be interpreted entrywise. We perform a

QR factorization Ĉ = QR, where R is square upper triangular, and set T = R−1QT as

computed. We obtain a rigorous upper bound |T | ≤ F and hence also a rigorous bound

for ‖T‖∞. Proceeding as we do with L in subsection 6.7 in Coomes et al. [2016], we find

a rigorous ρ1 such that ‖TĈ − I‖∞ ≤ ρ1. Then we estimate

|TC − TĈ| = |T (Ĉ − C)| ≤ |T | |Ĉ − C| ≤ EF

and hence, by obtaining an upper bound for ‖EF‖∞, get a rigorous ρ2 such that

‖TC − TĈ‖∞ ≤ ρ2.

Then

‖TC − I‖∞ ≤ ρ = ρ1 + ρ2.

If ρ < 1, then we conclude that TC is invertible and |(TC)−1| ≤ (1− ρ)−1. Then

(TC)−1TC = I
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so that (TC)−1T is a left inverse for C (implying that C is injective) and its infinity norm

is bounded by (1− ρ)−1‖T‖∞ which is a bound for ‖C−1‖∞.

References

Ambrosi, D., Arioli, G. and Koch, H. [2012]. A homoclinic solution for excitation waves

on a contractile substratum, SIAM. J. Appl. Dyn. Sys. 11, 1533–1542.

Battelli, F. and Palmer, K.J. [2011]. A remark about Sil’nikov saddle-focus homoclinic

orbits, Comm. Pure Appl. Anal. 10, 817–830.

Belykh, V. N. and Pankratova, E. V. [2014]. Shilnikov chaos in oscillators with Huygens

coupling, Intern. J. Bif. Chaos 24, 144007.

Beyn, W.-J. [1990]. The numerical computation of connecting orbits in dynamical systems,

IMA J. Numer. Anal. 10, 379–405.

Boisvert, J.J., Muir, P.H. and Spiteri, R.J. [2012]. BVP SOLVER-2.

http://cs.stmarys.ca/∼muir/BVP SOLVER Webpage.shtml
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