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ABSTRACT

Motivated by observations of surface drifters in the Adriatic Sea, transport

in a three-gyre system is studied with the aid of dynamical systems techniques.

Particular attention is paid to the issue of intergyre transport. The velocity

field is assumed to be two-dimensional and incompressible, and composed of a

steady three-gyre background flow on which a time-dependent perturbation is

superimposed. Two systems of this type are considered: 1) an observationally-

motivated analytically prescribed model consisting of a steady background on

which a multiperiodic time-dependent perturbation is superimposed; and 2) an

observationally-based model of the Adriatic Sea consisting of the mean surface

circulation derived from surface drifter trajectories on which a time-dependent

altimetry-based perturbation velocity field is superimposed. It is shown that

for a small perturbation to the steady three-gyre background, two of the gyres

exchange no fluid with the third gyre. When the perturbation strength exceeds

a certain threshold, transport between all three gyres occurs. This behavior is

described theoretically, illustrated using the analytic model and shown to be

consistent with the observationally-based model of the Adriatic. The relevance

of the work presented to more complicated multiple gyre problems is discussed.
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1. Introduction

Figure 1 (see also Fig. 1(b) in (Poulain 2001)) shows a large ensemble of surface drifter

trajectories in the Adriatic Sea. The trajectories shown cover the period from August 1,

1990 to July 31, 1999. These and other similar measurements have motivated a number

of studies of the Lagrangian description of near-surface fluid motion in the Adriatic Sea

(Orlic et al. 1992; Falco et al. 2000; Maurizi et al. 2004; Castellari et al. 2001; Artegiani

et al. 1997a,b; Poulain 1999; Poulain et al. 2001; Poulain 2001; Lacorata et al. 2001; Haza

et al. 2007b,a). Fig. 1 gives insight into the mean surface circulation, its variability and

the complexity of the associated Lagrangian motion. A striking feature of Fig. 1 is the

robustness of the background multiple gyre flow pattern. Neglecting the small northernmost

gyre in the Adriatic basin (on the left side of the figure) there are seen to be three dominant

gyres. The average circulation in all three gyres is cyclonic. Drifters are seen to sometimes

get trapped for a long time in one of the gyres, but many examples of drifters moving from

one gyre to another can also be seen. These observations suggest the following question,

which is the central theme of this paper: what controls intergyre transport in a three-gyre

system?

The Lagrangian equations of motion are

dx

dt
= u (x, t) (1)

where u (x, t) is the Eulerian velocity field. Most of the previous work on the Lagrangian de-

scription of fluid motion in the Adriatic Sea has adopted a stochastic framework (Castellari

et al. 2001; Maurizi et al. 2004; Poulain 2001; Lacorata et al. 2001; Haza et al. 2007a). This

involves invoking the assumption that there is a separation of scales between deterministic
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and stochastic components of velocity field u = U+u′, which leads to an advection-diffusion

or Fokker-Planck equation to describe transport. Each fluid particle trajectory is then con-

trolled by two different processes: advection by the large scale velocity field U and turbulent

transport by the small scale stochastic perturbation field u′, whose influence is parametrized

by an effective diffusivity.

An alternative approach to the study of fluid transport processes and Lagrangian fluid

dynamics is to apply results associated with dynamical systems theory. Equation (1) defines

a dynamical system. We consider here the special case of a two-dimensional x = (x, y) and

incompressible velocity field. For this class of problems one can introduce a streamfunction

ψ (x, y, t) and the Lagrangian equations of motion are

dx

dt
= −∂ψ

∂y
,

dy

dt
=
∂ψ

∂x
. (2)

It is well-known that these equations have Hamiltonian form with the streamfunction play-

ing the role of the Hamiltonian. The Hamiltonian structure of Eqs. (2) will be discussed

extensively in the following section. In anticipation of that material some brief comments

will be made now. In the autonomous (steady flow) case when ∂ψ/∂t = 0 particle trajecto-

ries coincide with streamlines and the equations of motion Eqs. (2) have analytic solutions

involving integrals of functions of the streamfunction. However, in time-dependent flows,

even simple time-periodic flows, chaotic motion may occur. Chaotic transport (Wiggins

1992; Rom-Kedar and Wiggins 1990; Rom-Kedar et al. 1990; Malhotra and Wiggins 1998;

Coulliette and Wiggins 2001; Wiggins 2005; Miller et al. 1997, 2002) in flows described by

Eqs. (2) is controlled by certain special material “lines” of fluid. Two types of such curves

are particularly important: 1) stable and unstable manifolds of hyperbolic trajectories; and
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2) invariant tori predicted by the Kolmogorov-Arnold-Moser (KAM) theorem (Kolmogorov

1954; Arnold 1963; Rüssmann 1989; Jorba and Simó 1996; Sevryuk 2007). Both types of

structure are composed of material lines of fluid and thus cannot be traversed by other fluid

parcels, but the roles played by these structures in controlling transport are quite different.

Loosely speaking, stable and unstable manifolds in nonsteady flows are involved in facili-

tating efficient transport while KAM invariant tori are associated with transport barriers.

For reasons that will be discussed below, numerically computed stable and unstable mani-

folds are usually referred to as Lagrangian Coherent Structures (LCSs) (Haller 2000; Haller

and Yuan 2000; Haller 2001a,b, 2002; Shadden et al. 2005). These ideas have previously

been explored and applied to oceanographic transport problems in (Coulliette and Wiggins

2001; Wiggins 2005; Lekien et al. 2005; Olascoaga et al. 2006; Poje and Haller 1999; Koshel

and Prants 2006; Coulliette et al. 2007; Rogerson et al. 1999; Yuan et al. 2004; Samelson

and Wiggins 2006; Samelson 1992; Mancho et al. 2008; Beron-Vera et al. 2008; Olascoaga

et al. 2008). Transport in a double-gyre system has previously been studied in (Coulliette

and Wiggins 2001; Poje and Haller 1999). In this paper we show that a new transport

mechanism, that is not present in a two-gyre system, is necessary to explain transport in a

three-gyre system.

The remainder of the paper is organized as follows. In section II we present an analytical

model of a three-gyre system that is motivated by observations. Important theoretical results

are then presented and illustrated in the context of this model. We provide an overview of

relevant aspects of KAM theory, stable and unstable manifold structure and lobe dynamics,

emphasizing the complementary nature of these ideas as applied to the three-gyre system.

Limitations of these theoretical results are also discussed. In section II we emphasize the
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qualitative change of behavior that occurs when the perturbation strength exceeds a critical

value. Numerical results based on the idealized three-gyre system subject to a multiperiodic

perturbation are presented to illustrate the importance of LCSs and the manner in which

they control intergyre transport. In section III we turn our attention to a purely observation-

based model of the Adriatic Sea consisting of a surface-drifter-based estimate of the mean

circulation on which a measured time-dependent altimetry-based perturbation is superim-

posed. It is demonstrated that all of the important qualitative LCS features described in

section II can be identified in the observationally-based model. Some shortcomings of our

model are discussed. In section IV we summarize and discuss our results. Some insights

gained from the application of a dynamical-systems-based approach to transport processes

in a more general context are discussed.

2. Transport in an idealized three-gyre model

In this section we present theoretical material that relates to transport in a perturbed

three-gyre system, and we present numerical simulations in an idealized three-gyre sys-

tem to illustrate several important concepts and results. We begin by presenting a steady

streamfunction that is constructed from a time-average of measured surface velocities in

the Adriatic Sea. That observationally-based streamfunction is then used to motivate our

choice of an analytically described steady background three-gyre streamfunction. We then

use the analytically described background streamfunction with a time-dependent perturba-

tion superimposed to perform numerical simulations. The analytically described model is

well suited to this purpose, in part because dependence on parameters can be explored to
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illustrate important concepts and results. In the following section it will be shown that the

important qualitative features emphasized in this section can be identified in a fairly realistic

observationally-based time-dependent model of the surface circulation of the Adriatic Sea.

Our first task in this section is to construct an observationally-based estimate of the

steady background streamfunction. Throughout this paper we assume that the flow is two-

dimensional and incompressible so that Eqs. (2) are valid. Furthermore, we shall assume

that the streamfunction can be expressed as the sum of a steady background and a time-

dependent perturbation,

ψ (x, y, t) = ψ0 (x, y) + εψ1 (x, y, t) . (3)

The dimensionless perturbation strength ε need not be small. With the assumption that

the temporal mean of the perturbation is zero, an observationally-based estimate of ψ0 (x, y)

can be constructed from time averages of spatially binned measured velocities. This can be

done by writing a finite-difference approximation to the equations 〈u〉 = −∂ψ0/∂y, 〈v〉 =

∂ψ0/∂x, followed by a least-squares fitting procedure. Here 〈u〉 and 〈v〉 are the time-averaged

measured x- and y-components of fluid velocity. The upper left panel of Fig. 2 shows the

result of such a calculation using surface-drifter-derived estimates of averaged velocities on

a 0.1 degree grid using overlapping 0.2 degree × 0.2 degree bins. In that figure the

geographical domain of the Adriatic has been rotated counter-clockwise by about 45◦ as

was done in Fig. 1. For convenience the origin of the coordinate system has been shifted.

Note that x increases from the northwest to the southeast. Also, the domain was closed by

enforcing a no-flow condition through the Strait of Otranto (large x) and along smoothed

coastlines. The very shallow shelf at the northern end of the Adriatic (small x in Fig. 2) is
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excluded from consideration. Smoothing of the boundaries and the flow in close proximity

to the boundaries does not influence the interior flow whose qualitative features, including

the three-gyre structure, are seen to be consistent with the earlier discussion, based on Fig.

1. Additional caveats relating to ψ0 (x, y) shown in the upper-left panel of Fig. 2, including

limitations linked to the relevance of a temporal mean circulation, will be discussed in the

next section.

The following simple analytically-prescribed background streamfunction ψ0 (x, y) is con-

sidered as an approximation to the surface-drifter-derived background streamfunction:

ψ0 (x, y) = A sin (Cy) (E − cos (Bx)) (exp (D (x− Lx))− 1) (x/Lx)F . (4)

The values of the adjustable constants Lx = 600 km, Ly = 150 km, A = 2.62 × 103 m2s−1,

B = 6π/Lx, C = π/Ly, D = 30/Lx, E = 3 and F = 1/2 were chosen to mimic the

observationally-based streamfunction. With these parameters, streamlines corresponding to

Eq. (4) are shown in the upper-right panel of Fig. 2. Note that ψ = 0 at x = 0, x = Lx,

y = 0, y = Ly, so there is no flow through these boundaries. In spite of its simplicity,

this analytically prescribed background streamfunction reproduces the three-gyre structure

of the Adriatic Sea and has correct length scales and time scales (periods of motion) as is

evident from Fig. 2.

Stagnation points in a steady flow satisfy u = v = 0. Stagnation points whose local

topology is unchanged under a generic perturbation are of two types: elliptic, corresponding

to a local extremum of ψ, or hyperbolic, corresponding to a local saddle in ψ. In the back-

ground three-gyre steady flow shown in Fig. 2 there are 5 stagnation points: 3 of the elliptic

type that are located at the center of each gyre, and 2 of the hyperbolic type that separate
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adjacent gyres from each other. Associated with each of the hyperbolic stagnation points are

two trajectories, called homoclinic trajectories, that begin and end on the stagnation point.

Each such homoclinic trajectory has an infinitely long period of motion. The homoclinic

trajectories form two figure eights, one embedded inside the eastern loop of the other. The

homoclinic trajectories separate regions of qualitatively different motion. The special case in

which the two hyperbolic stagnation points fall on the same level surface of ψ0 has a different

topology consisting of two heteroclinic and two homoclinic trajectories. (In a steady flow,

a heteroclinic trajectory begins and ends on different hyperbolic stagnation points.) That

special case is not consistent with the observational data base (Figs. 1 and 2) and will not

be considered here.

Each of the lower panels of Fig. 2 shows periods of simulated trajectories, T , as a

function of initial position for a set of trajectories that spans the two homoclinic trajectories.

The lower left panel was constructed using the observationally-based streamfunction. The

lower right panel was constructed using the analytically-specified streamfunction. The initial

positions of the simulated trajectories that were used in these calculations are shown in the

upper panels of Fig. 2 with black dots (at x = 540 km and x = 500 km, respectively).

Three regions of qualitatively different motion can be identified on both panels of Fig. 2

based on the T (y0) structure shown: trajectories trapped inside the eastern gyre, trajectories

going around the central and eastern gyre, and trajectories that go around all three gyres.

Homoclinic trajectories emanating from two hyperbolic stagnation points separate these

three regions of qualitatively different motion from one another. Note that T → ∞ for

those trajectories whose initial positions y0 lie on the homoclinic trajectories. Between the

two homoclinic trajectories T (y0) has a local minimum. We will return to this point below.
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Note that the periods of simulated trajectories for our simple analytical streamfunction given

by Eq. (4) are in good quantitative agreement with those produced by the streamfunction

deduced from the drifter data.

With the preceding observations as background, we now introduce some ideas that relate

to KAM (Kolmogorov-Arnold-Moser) theory, starting with the introduction of action-angle

variables. For any steady streamfunction ψ0 (x, y) the Lagrangian equations of motion, Eq.

(2), can be transformed to action-angle form: see, e.g., Landau and Lifshitz (1976) for

details. This transformation involves replacing the phase space coordinates (x, y) by action-

angle variables (I, θ), and replacing ψ(x, y) by H(I). In general, the transformation must

be done piecewise in domains that are bounded by heteroclinic or homoclinic trajectories;

there are five such domains in the steady flow shown in the upper right panel of Fig 2.

After transforming to action angle variables in each domain, the equations of motion are

dI/dt = −∂H/∂θ = 0, dθ/dt = ∂H/∂I = ω (I). By integrating these equations, one sees

that I is simply a label for a particular trajectory and that the motion is 2π-periodic in θ

with angular frequency ω (I). A geometric picture (which also applies to higher dimensional

Hamiltonian systems) is useful: phase space (x, y) is foliated by a family of tori, on which

trajectories (x (t) , y (t)) lie. The utility of this geometric picture stems, in part, from the

fact that, as discussed below, some of these tori survive in the presence of certain types of

time-dependent perturbations.

The period of motion on a particular trajectory is connected to the angular frequency

of motion in the usual fashion, T (I) = 2π/ω (I). The quantity ω′ (I) = dω/dI, which is

a measure of shear on a particular trajectory in the background flow, will be important

in our later discussion. The trajectory satisfying the condition ω′ (I) = 0 is referred to as
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shearless or twistless. For the analytical streamfunction, Eq. (4), plots of T (I), ω (I) and

ω′ (I) for trajectories lying between two homoclinic trajectories are shown in Fig. 3. Note

that in the vicinity of the homoclinic trajectories, T (I) and ω′ (I) are large, while between

the two homoclinic trajectories, T (I) has a local minimum, ω (I) has a local maximum and

ω′ (I) = 0. In other words, between the two figure eights that are formed by homoclinic

trajectories lies a shearless trajectory, while the vicinity of the homoclinic trajectories is

characterized by a large value of shear. These observations will be important in the discussion

that follows.

We shall assume that the time-dependent perturbation ψ1 (x, y, t) in Eq. (3) is a multi-

periodic function of time, which we denote symbolically as ψ1 (x, y, σ1t, σ2t, . . . , σN t). The

number of frequencies present, N , is assumed to be finite and the frequencies are all nonzero.

Without loss of generality the frequencies can be assumed to be incommensurable (not ra-

tionally related) so ψ1 is a quasiperiodic function of t. (The incommensurability assumption

can be made because if two or more frequencies are rationally related, the number of fre-

quencies can be reduced. For example, a multiperiodic function with periods 4 and 6 weeks

can be expressed as a simple periodic perturbation with period 12 weeks.) The assumption

that ψ1 is a multiperiodic function is made for two reasons. First, we note that in any

enclosed basin any zero-mean time-dependent perturbation that is measured over a finite

time interval – the perturbation streamfunction discussed in the following section, for ex-

ample – can be accurately approximated as a multiperiodic function. This can be done,

for example, by expressing ψ1(x, y, t) as a spatial empirical orthogonal expansion with time-

dependent coefficients, ψ1(x, y, t) =
∑

i fi(t)Ψi(x, y). The Ψi(x, y) can be constructed in

such a way that appropriate boundary conditions are satisfied. A harmonic decomposition
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of each fi(t) =
∑

j Aij cos(σijt + φij) then yields a multiperiodic expansion of ψ1(x, y, t)

with a finite number of terms that can be made to match measurements of ψ1(x, y, t) to

whatever finite precision is desired. (Note that in the presence of noisy measurements it is

generally not desirable to demand that misfit errors vanish.) And second, rigorous mathe-

matical results - a KAM theorem (Kolmogorov 1954; Arnold 1963; Rüssmann 1989; Sevryuk

2007), in particular - apply to this class of problems. According to the KAM theorem for

such systems (Jorba and Simó 1996; Sevryuk 2007), for a sufficiently weak perturbation and

assuming certain other technical conditions are satisfied, some of the tori of the unperturbed

system survive in the perturbed system. Those tori that survive under perturbation are

referred to as KAM invariant tori. These surviving tori serve as impenetrable transport

barriers (Rypina et al. 2007a). We will return to this point below.

The break-up of tori under perturbation is caused by the excitation and overlapping

of resonances. Resonances are excited when the frequency of motion on the unperturbed

torus ω (I) is rationally related to the vector frequency of the multiperiodic perturbation

σ = {σ1, . . . , σN}. The resonance condition is nω (I0) = m · σ, where m = {m1, . . .mN}

with n and mi, i = 1, 2, . . . , N integers. Because generically a continuum of ω (I) is present,

infinitely many resonances are exited even for a simple periodic perturbation, N = 1. Among

these many resonances the low-order resonances (such as 1 : 1 or 2 : 1) are the most im-

portant. Resonance widths are important because when neighboring resonances overlap, the

intervening tori break up; the widely used Chirikov definition of chaos is based on overlap-

ping resonances (Chirikov 1979; Chirikov and Zaslavsky 1972; Lichtenberg and Lieberman

1983). Because resonances are excited at discrete values of ω, it is the resonance width ∆ω

(rather than ∆I) that controls whether neighboring resonances overlap. A simple analysis
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reveals (Chirikov 1979; Chirikov and Zaslavsky 1972; Rypina et al. 2007b) that resonance

widths scale like

∆ω ∼ ε1/2 | ω′ (I) |1/2 (5)

provided ω′ (I) 6= 0. It follows from this expression that resonance widths ∆ω are small

near shearless tori where | ω′ (I) | vanishes. Recall from Fig. 3 that in our model of the

Adriatic Sea a shearless torus is present between the figure eights discussed earlier. Because

resonances that are excited near shearless tori have small resonance widths these resonances

are less likely to overlap than those for which | ω′ (I) | is larger. A consequence is that tori

in the vicinity of shearless tori are expected to be resistant to breaking. The arguments just

given lead to the notion of strong KAM stability near shearless (also known as degenerate)

tori (Rypina et al. 2007a,b). On shearless tori a refined estimate of ∆ω replaces Eq. (5)

(Rypina et al. 2007b), but the qualitative behavior just described is unchanged by the

refined estimate of ∆ω. It is important to emphasize, however, that the stability of tori

near a shearless torus is not absolute. These tori will break up due to a combination of two

causes: 1) a low-order resonance may be excited in close proximity to the shearless torus; or

2) the strength of the perturbation ε may be too large.

Some of the results just described are illustrated with numerical simulations that are

shown in the upper panels of Fig. 4. These numerical simulations use the analytically

prescribed streamfunction, Eq. (4), and assume a particular form of a multiperiodic pertur-

bation, consisting of a superposition of standing waves:

ψ1 (x, y, t) =
∑
n,m

anm cos (σnmt+ φnm) sin (kn
xx) sin

(
km

y y
)

(6)

with kn
x = πn/Lx, km

y = πm/Ly so that the boundary condition ψ = 0 at x = 0, x = Lx,
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y = 0 and y = Ly is satisfied. The random phases φnm are uniformly distributed on [0, 2π).

The frequency spectrum is assumed to be red with anm ∼ σ−1
nm. The anm’s were normalized

so that when ε = 1 the time-averaged spatially-integrated kinetic energy associated with

ψ1 is equal to the spatially-integrated kinetic energy associated with ψ0. The wavenumber

spectrum is assumed to be isotropic, σ (k) = σ (| k |). The latter assumption together

with the geometrical constraint, Lx = 4Ly, leads to degenerate frequencies defined by the

condition σn1,m1 = σn2,m2 . For nmax = 8 and mmax = 2, which are used for modeling

purposes, two degenerate frequencies are present. Thus, for the perturbation considered, 14

different frequencies σnm are present. For the numerical simulations shown here, the periods

of standing waves in Eq. (6) were chosen to span the time interval from approximately 1

week to 2 months. Note that these periods are small compared to typical periods of rotation

in the background flow - recall Fig. 2.

The upper panels of Fig. 4 are Poincare sections. These plots reveal which of the original

tori survive under perturbation and what structures are formed when tori are broken. For

the class of flows considered here, the construction of a Poincare section requires that the

perturbation ψ1 be a simple periodic function of t; the Poincare section is then constructed

by plotting the positions of trajectories at integer multiples of the period of the perturba-

tion. To satisfy the periodicity condition, the 14 standing wave periods were chosen to be

commensurable with a common period of 60 days. This choice was made for the convenience

of allowing Poincare sections to be constructed. It should be emphasized, however, that all

of the KAM theory results described in this paper (the theorem itself, resonance width esti-

mates and arguments relating to strong KAM stability, and the absence of Arnold diffusion,

as described below) hold for a general multiperiodic perturbation. We have chosen to show
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Poincare sections primarily because these figures nicely illustrate the phenomenon of strong

KAM stability that we have described.

Consistent with the discussion above, Fig. 4 shows that for small ε some invariant tori

(one such torus is shown in green in the upper left panel) in close proximity to the shearless

torus provide an impenetrable transport barrier that separates the western gyre from the

central and eastern gyres. There are seen to be two figure-eight-shaped chaotic bands, a

large outer band and a smaller inner band inside the eastern loop of the outer band, that

do not overlap. Consistent with our discussion of resonance widths and the “strong KAM

stability” argument, the surviving tori (on which trajectories are nonchaotic) are observed

in the vicinity of the shearless torus which lies between the two figure eight bands. For

large ε the barrier between these figure-eight bands is broken and a large chaotic region that

includes portions of all three gyres is present. This is illustrated in the upper right panel

of Fig. 4. Again we emphasize that, because the KAM theorem and the discussion above

relating to resonances holds for a general multiperiodic perturbation, the relative robustness

of the tori in the vicinity of the shearless torus holds for this larger class of perturbations.

In the Poincare sections shown in Fig. 4 the (x, y)-plane is seen to be partitioned into

chaotic and nonchaotic (also known as “regular”) regions. This partitioning is maintained

even when the perturbation is sufficiently strong that all of the tori of the unperturbed

system are broken. The regular regions form structures, often referred to as “islands”, in

an otherwise chaotic sea. Island chains can be identified with resonances, e.g., a dominant

5:1 resonance produces a 5 island chain. When many resonances are excited, a complicated

island structure results. This partitioning of phase space into islands surrounded by a chaotic

sea holds at arbitrarily small scales, i.e., when small regions of the (x, y)-plane are blown
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up. For a general multiperiodic perturbation to a steady streamfunction, a Poincare section

cannot be constructed, but for this class of problems (x, y) at any t is partitioned into chaotic

and regular regions in the same way that a Poincare section is partitioned into chaotic and

regular regions. This partitioning is a consequence of: 1) the applicability of KAM theory

to multiperiodically perturbed systems, and, in particular, the observation that for this

class of problems the excitation of resonances leads to both torus destruction and island

formation; and 2) the absence of Arnold diffusion in such systems. Arnold diffusion is the

process by which chaotic trajectories circumvent boundaries formed by collections of regular

trajectories in autonomous Hamiltonian systems with three or more degrees of freedom (see,

e.g., (Wiggins 1992)). The relevance of Arnold diffusion to our problem stems from the fact

that a multiperiodically perturbed system of the type considered here with N perturbation

frequencies can be transformed to an autonomous system with N+1 degrees of freedom. The

reason that Arnold diffusion does not occur in such systems is discussed in (Rypina et al.

2007a; Brown 1998). With the foregoing comments and the last sentence of the previous

paragraph in mind, the Poincare sections shown in Fig. 4 should be seen as illustrative of

qualitative properties that are common to the larger class of multiperiodic perturbations.

We turn our attention now to a different, but complementary, set of concepts and tools

from dynamical systems theory - stable and unstable manifolds and associated lobe structure

- to provide additional insight into transport in our idealized three-gyre model. In nonsteady

flows chaotic transport of fluids is controlled by stable and unstable manifolds of hyperbolic

trajectories (Rom-Kedar and Wiggins 1990; Rom-Kedar et al. 1990; Wiggins 1992; Malhotra

and Wiggins 1998; Coulliette and Wiggins 2001; Wiggins 2005). Stable and unstable man-

ifolds are invariant curves (corresponding physically to material lines of fluid), so particle
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trajectories cannot cross these curves. Particle trajectories that start on the stable manifold

approach the hyperbolic trajectory at an exponential rate as t → ∞; particle trajectories

that start on the unstable manifold approach the hyperbolic trajectory at an exponential

rate as t→ −∞. In steady flows, stable and unstable manifolds of hyperbolic points coincide

with each other forming homoclinic or heteroclinic trajectories. In nonsteady flows, stable

and unstable manifolds may intersect each other. Regions enclosed by segments of stable

and unstable manifolds are called lobes. Lobes are important because fluid particles that

are originally located inside the lobe are constrained to remain within the lobe as the flow

evolves. When approaching one of the hyperbolic trajectories from which the stable or un-

stable manifold forming the lobe boundary emanates, the shape of the lobe becomes highly

convoluted while the enclosed area remains unchanged (in a 2D incompressible flow). The

stable and unstable manifolds of hyperbolic trajectories, together with their intersections

and associated lobes, provide a template for fluid exchange. These ideas will be illustrated

below.

For flows with periodic time-dependence (which need not be composed of a steady back-

ground plus a time-dependent perturbation) hyperbolic trajectories and their stable and

unstable manifolds can be unambiguously defined in terms of the eigenvalues of a linearized

stability matrix (see, e.g., (Wiggins 1992)). For flows with general time-dependence (which

need not be multiperiodic or composed of a steady background plus a perturbation) hyper-

bolic trajectories and their stable and unstable manifolds can be defined by making use of

a property known as “exponential dichotomy” (Yi 1993; Malhotra and Wiggins 1998). It

is difficult to establish rigorously that this property is satisfied in flows with aperiodic time

dependence. Owing to this difficulty, structures referred to as Lagrangian Coherent Struc-
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tures (LCSs), that can be computed numerically, have been defined (Haller 2000; Haller

and Yuan 2000; Haller 2001a,b, 2002; Shadden et al. 2005) in a way that is consistent with

the exponential dichotomy property. Specifically, attracting (repelling) LCSs are defined

(Shadden et al. 2005) as ridges of finite-time Lyapunov exponent (FTLE) fields computed in

forward (backward) time. (The Lyapunov exponent is a measure of the rate at which neigh-

boring trajectories diverge from one another.) Attracting and repelling LCSs serve as proxy

stable and unstable manifolds, respectively. That FTLE-based estimates of LCSs serve as

proxy stable and unstable manifolds can be tested numerically by computing the evolution

of a dense set of trajectories that at some t0 surround a hyperbolic trajectory; in forward

(backward) time these trajectories follow the unstable (stable) manifold. Throughout this

paper we use both FTLE calculations and the latter “direct manifold integration method”

to numerically identify stable and unstable manifolds.

We return now to a discussion of our idealized three-gyre model of the Adriatic Sea,

focusing on manifold structure. The qualitative change in the behavior of the perturbed

three-gyre system associated with the breakup of the last surviving KAM torus that separates

the central and eastern gyres from the western gyre when ε exceeds a certain threshold is

accompanied by a qualitative change in the stable and unstable manifold structure. This is

illustrated in the middle and lower panels of Fig. 4. In that figure, segments of stable and

unstable manifolds of hyperbolic trajectories are shown for the system (2, 3, 4, 6) for two

values of ε: small ε (ε = 0.05) on the left and large ε (ε = 0.3) on the right. The segments of

stable and unstable manifolds shown in the middle and lower panels of Fig. 4 were computed

using the “direct manifold integration method” described above. The two middle panels of

Fig. 4 correspond to a periodic perturbation ψ1; the systems used to produce those plots
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are identical to those used to produce the Poincare sections shown in the upper panels. The

two lower panels of Fig. 4 correspond to a quasiperiodic perturbation ψ1 comprised of a

superposition of 14 standing waves whose frequencies are not commensurable. Note that on

both the left and right sides of Fig. 4 there is no qualitative difference in manifold structure

between the periodically perturbed system and the quasiperiodically perturbed system.

In each of the four lower subplots of Fig. 4, four stable/unstable manifold pairs are seen;

two stable/unstable manifold pairs are associated with each hyperbolic trajectory. In the

middle left and lower left panels of Fig. 4, which correspond to small ε, stable and unstable

manifolds associated with the same hyperbolic trajectory are seen to intersect each other.

Manifold intersections of this type are called homoclinic intersections. The term homoclinic

tangle is used to describe segments of manifolds that contain multiple homoclinic intersec-

tions. Homoclinic tangles are seen in the middle left and lower left panels of Fig. 4. Each

homoclinic tangle provides a template for chaotic mixing within the corresponding figure-

eight-shaped chaotic band. Intersections between stable and unstable manifolds associated

with different hyperbolic trajectories are called heteroclinic intersections. No heteroclinic

intersections are seen in the middle left and lower left panels of Fig. 4, corresponding to

small ε. This is consistent with the upper left panel of Fig. 4, which shows two chaotic

figure-eight bands that are separated by an impenetrable barrier. That barrier is seen to

prevent heteroclinic manifold intersections from occurring. In the middle right and lower

right panels of Fig. 4 ε is sufficiently large that this barrier is broken; both homoclinic and

heteroclinic intersections between stable and unstable manifolds are present. Heteroclinic

tangles and associated heteroclinic lobes provide a template for fluid exchange between all

three gyres. This is consistent with the upper right panel of Fig. 4 where one well-mixed
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chaotic region is seen that includes portions of all three gyres.

Due to time-periodicity of the perturbation, the manifold structure in the middle panels

of Fig. 4 repeats itself after each period of the perturbation 2π/σ. This is not true for the

two lower panels of Fig. 4 where the manifold structure evolves in an aperiodic fashion. In

spite of this difference, the qualitative similarity between the middle and lower panels of

Fig. 4 strongly suggests that qualitative features of the manifold structure in the perturbed

system are largely controlled by the background streamfunction, rather than details of the

perturbation.

In this section we have discussed the theory and application of dynamical systems tools

to the study of transport in an idealized, analytically-prescribed three-gyre system. A quali-

tative change in transport properties of the perturbed three-gyre system was shown to occur

when the perturbation strength exceeds a certain threshold. This change is associated with

the breakup of the last surviving KAM invariant torus in the vicinity of the shearless torus

and the corresponding appearance of heteroclinic manifold intersections. For ε less than

the critical value, KAM invariant tori near the shearless torus serve as a transport barrier

between two figure-eight-shaped bands associated with the chaotic motion driven by stable

and unstable manifolds of the two hyperbolic trajectories; under such conditions, all man-

ifold intersections are of the homoclinic type. When ε exceeds the critical value, there are

no remaining KAM invariant tori in the vicinity of the unperturbed shearless torus and a

large chaotic region is formed that includes both hyperbolic trajectories and portions of all

three gyres; under such conditions, heteroclinic manifold intersections are formed and the

associated lobe structure provides a template for transport within portions of all three gyres.

These qualitative features are illustrated schematically in Fig. 5. The critical value of ε at

19



which the bifurcation occurs depends on details of both the background structure ψ0 (x, y)

and the perturbation ψ1 (x, y, t). Because of this, numerical simulations are in general re-

quired to estimate the critical perturbation strength. In spite of this, knowledge that the

qualitative features that we have described are robust (this is discussed in more detail in the

following section) and that the critical value of ε is finite are both important.

3. Transport in an observationally-based three-gyre model

In this section an observationally-based model of the surface circulation of the Adriatic

Sea is used to test in a more realistic setting the robustness of the qualitative features that

were emphasized in the previous section. The streamfunction used has the form of Eq.

(3) where ψ0 (x, y) is the surface-drifter-derived mean streamfunction shown in Fig. 2 and

ψ1 (x, y, t) = (g/f)h (x, y, t) where h (x, y, t) is a measured altimetry-based perturbation

to sea level height, g is gravitational acceleration and f is the local Coriolis parameter.

Knowledge of both ψ0 (x, y) and ψ1 (x, y, t) allows dependence on the perturbation strength

ε in Eq. (3) to be explored. In our simulations ε = 1 corresponds to the true perturbation

strength. The measured altimetry-based perturbation field covers the time interval of one

year (from t = 0 on 6 January 1993 to t = 365 days on 5 January 1994) with ∆t = 7 days.

Measured height fields were modified in a thin boundary layer around the perimeter of the

domain to enforce the condition ψ1 = 0 on the smoothed coastline. For the true perturbation

strength, ε = 1, the ratio of the time-averaged integrated kinetic energy associated with ψ1

to the integrated kinetic energy associated with ψ0 is 1.05. Thus, to a good approximation,

ε can be thought of as the ratio of transient (or “eddy”) kinetic energy to mean kinetic
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energy).

Before proceeding, it should be noted that in spite of the fact that both ψ0 (x, y) and

ψ1 (x, y, t) are observationally-based, their sum has some rather obvious shortcomings as

a model of the surface circulation of the Adriatic. First, the surface circulation in the

Adriatic Sea is strongly influenced by intense short-lived Bora and Sirocco wind forcing events

(Ursella et al. 2007). During these events the decomposition Eq. (3) might be questioned.

Second, the measured velocity field associated with the altimetry-based perturbation need

not coincide with near-surface currents. Third, the gridded altimetry-based perturbation

height field h(x, y, t) on which our calculations are based is sampled at approximately 6 km

spatially and 1 week temporally. Variability with shorter length and time scales (including

submesoscale and possibly also some short mesoscale structure) is not resolved. Fourth,

tide removal from altimetry-based observations is difficult in enclosed basins such as the

Adriatic, leading unavoidably to some aliasing of tidal energy into mesoscale fields. And

fifth, our smoothing of the coastlines and neglect of transport through the Strait of Otranto

are rather severe approximations. For these reasons the velocity field described by the sum

ψ0 (x, y) + ψ1 (x, y, t) should not be thought of as an accurate deterministic description of

the surface circulation of the Adriatic Sea within the relevant time window. Rather, this

velocity field should be thought of as describing typical mostly-mesoscale near-surface current

variability throughout the interior of the Adriatic Sea.

The altimetry-based perturbation field ψ1 (x, y, t) is not a periodic function of t, so it is

not possible to construct a Poincare section for the flow described by ψ0 (x, y) + εψ1 (x, y, t).

But ψ1 can be expanded as a multiperiodic function of time (using the method described

in the previous section, for example), so the KAM-theory-based arguments presented in the
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previous section are still applicable. With this in mind, we expect that all of the important

qualitative features of the perturbed three-gyre system that were discussed in the preceding

section should hold for the observationally-based system considered here. In particular, we

seek to test whether the following qualitative features of the manifold and lobe structure,

which were emphasized in the previous section, can be reproduced using the measured veloc-

ity fields: 1) for small ε all manifold intersections are of the homoclinic type and manifolds

form two non-overlapping figure-eight-shaped bands, each with a crossing region that cov-

ers one of the hyperbolic trajectories; and 2) for large ε the transport barrier between the

two figure eight bands is broken and heteroclinic manifold intersections are formed, thereby

allowing transport between all three gyres.

Before proceeding we wish to emphasize that our concern in this section is with the

manifold structure associated with the basin-scale circulation in the Adriatic. This structure

is linked to the two dominant hyperbolic trajectories in proximity to the two hyperbolic

stagnation points in the background steady flow (recall the upper left panel of Fig. 2).

(Note, however, that the hyperbolic trajectories from which stable and unstable manifolds

emanate need not coincide with hyperbolic stagnation points that appear in snapshots of the

streamfunction, as the locations of stagnation points are sensitive to the choice of reference

frame.) We exclude from consideration in this section localized structures associated with

hyperbolic trajectories near the northwestern end of the smoothed Adriatic domain that

we are using, and the localized structures near the centers of the three main gyres. The

structures that we neglect are important locally but they do not influence the larger scale

intergyre transport that is the focus of our study.

Numerical simulations based on the observationally-based model described above are
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shown in Figs. 6, 7 and 8. For two values of ε, small ε (ε = 0.1) on the left and large

ε (ε = 1) on the right, stable and unstable manifolds of hyperbolic trajectories are shown

in Fig. 6. The upper four subplots in this figure show finite-time Lyapunov exponent

(FTLE) estimates computed in forward (upper two subplots) and backward (middle two

subplots) time as a function of initial condition. (Recall that FTLEs are a measure of the

rate at which neighboring passively advected fluid particles separate from each other over

a finite time interval.) Regions of most intense red in the upper two subplots and in the

middle two subplots of Fig. 6 correspond to stable and unstable manifolds, respectively,

of hyperbolic trajectories. The lower two subplots of Fig. 6 show segments of stable and

unstable manifolds constructed using the “direct manifold integration method” described

above. Unstable manifolds of the two hyperbolic points are shown using red and pink curves;

stable manifolds are shown using blue and light blue curves. Note that manifold estimates

computed as maximizing ridges of the FTLE field are in excellent agreement with manifolds

computed using the direct manifold integration method.

Consistent with the behavior of the previously described idealized three-gyre system

under perturbation and in qualitative agreement with Fig. 4, both methods serve to confirm

that in the small ε case (left three panels of Fig. 6) all manifold intersections are of the

homoclinic type. This strongly suggests the existence of two non-overlapping figure eight

bands of chaotic motion, each with a crossing region that covers one of the hyperbolic

trajectories. Chaotic motion inside each figure eight band is governed by lobes produced by

homoclinic intersections of stable and unstable manifolds of the corresponding hyperbolic

trajectory. The absence of heteroclinic intersections indicates that the two figure-eight bands

do not exchange fluid with each other and suggests the existence of a barrier to transport
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between the two figure-eight bands. In the large ε case, which is illustrated in the three

right panels of Fig. 6, both the FTLE field and the direct manifold integration calculation

indicate the presence of manifold intersections of the heteroclinic type. Associated with these

intersections and the associated lobes is one large chaotic region that includes portions of all

three gyres. Lobes formed by heteroclinic intersections of manifolds provide a template for

gyre-to-gyre-to-gyre transport within this large chaotic region.

A lobe formed by heteroclinic intersections of stable and unstable manifolds is readily

identifiable in the lower right plot in Fig. 6. The evolution of this lobe in forward and

backward time is shown in Fig. 7. In forward time that portion of the boundary of the lobe

that is comprised of a segment of the stable manifold dramatically shrinks as the manifold is

pulled toward the western hyperbolic trajectory. Similarly, in backward time that portion of

the boundary of the lobe that is comprised of a segment of the unstable manifold dramatically

shrinks as the manifold is pulled toward the eastern hyperbolic trajectory. As these segments

of the boundary of the lobe contract or expand, the area enclosed within the lobe remains

constant. (This is a consequence of the assumption of 2d incompressible flow.) Lobes

formed by homoclinic intersections of stable and unstable manifolds are also present in the

flow; portions of the boundary of these lobes approach the same hyperbolic trajectory in

forward and backward time.

Intergyre transport is illustrated in Fig 8 which shows how initially compact distributions

of passive tracers evolve in time for both small and large ε. For small ε tracer particles do

not cross the transport barrier and the central and eastern gyres are seen to be isolated

from the western gyre. For large ε, however, the transport barrier is broken and there is a

significant exchange of fluid between the central and eastern gyres and the western gyre.
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Note that because of the complicated time dependence of ψ1 (x, y, t), the results shown in

Figs. 6, 7 and 8 depend on the starting time chosen. Numerical simulations have shown that

the qualitative behavior that we have emphasized throughout this section is not sensitive to

the start time chosen.

Consistent with the results presented in the previous section, we have seen in this section

that lobes formed by intersecting stable and unstable manifolds are present in the flows

shown on both the left (small ε) and right (large ε) sides of Fig. 6. Associated with these

lobes is chaotic transport, subject to the caveat noted in the final section. There is a

fundamental difference, however, between the small and large ε flows. For small ε the

transport barrier surrounding the central and eastern gyres isolates these gyres from the

western gyre. Under these conditions all manifold intersections are of the homoclinic type.

For large ε the transport barrier is broken and heteroclinic manifold intersections are formed.

It is the presence of these heteroclinic manifold intersections and the associated lobes that

facilitates transport between the central and eastern gyre, and the western gyre.

4. Summary and discussion

Motivated by observations of surface drifter trajectories in the Adriatic Sea, we have

studied fluid transport in a steady three-gyre system subject to a time-dependent perturba-

tion. Our study has relied heavily on dynamical systems tools and concepts: KAM theory,

stable and unstable manifolds and lobe structure and evolution. An analytically speci-

fied model was introduced to illustrate the importance of KAM invariant tori, stable and

unstable manifolds, and the manner by which these structures control transport. A fully
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observationally-based model of the Adriatic Sea surface circulation was used to demonstrate

the robustness of the important qualitative features that were observed in the analytical

model.

It was shown using both the analytic model and the observationally-based model that

the perturbed three-gyre system has qualitatively different behavior for small and large

perturbation. For small perturbation: 1) a transport barrier consisting of KAM invariant

tori isolates the central and eastern gyres from the western gyre; 2) all stable and unstable

manifold intersections are of the homoclinic type; and 3) there is no gyre-to-gyre-to-gyre

transport. For large perturbation: 1) the transport barrier, composed of a thin band of

KAM invariant tori, that separates the central and eastern gyres from the western gyre is

broken; 2) both homoclinic and heteroclinic manifold intersections are present; and 3) it is

the lobe structure associated with heteroclinic manifold intersections that facilitates gyre-

to-gyre-to-gyre transport. We note also that there is a close connection and consistency

between the KAM theory arguments that we have presented and the arguments based on

manifolds and lobes.

The simulations that we have performed in the observationally-based model of the Adri-

atic Sea indicate that the true perturbation strength (ε = 1) corresponds to the strongly

perturbed regime in which transport between all three gyres occurs. This statement is con-

sistent (superficially, at least) with Fig. 1, which strongly suggests that transport between

all three gyres occurs. It is not surprising that the surface circulation of the Adriatic Sea

corresponds to the strongly perturbed regime in our models. The utility of our study lies

in the insight that is provided into the underlying dynamical processes that allow gyre-to-

gyre-to-gyre transport to take place in the Adriatic Sea or any other perturbed three-gyre
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system. We have shown that critical elements of these dynamics are the breaking of a trans-

port barrier and the formation of heteroclinic manifold intersections when the perturbation

strength exceeds a certain threshold. These dynamical elements play no role in a perturbed

double-gyre system (Coulliette and Wiggins 2001; Poje and Haller 1999).

There is a growing appreciation that dynamical systems tools and concepts are extremely

useful and insightful in studies involving fluid transport when the velocity field (in our case,

the streamfunction) is known. Under such conditions the space-time structure of stable

and unstable manifolds and the associated lobe structure can be computed (recall Figs. 6

and 7), and transport can be quantified. What is less appreciated is that, even when only

qualitative information about the velocity field is known, the same dynamical systems tools

can provide critically important qualitative information about transport. The qualitative

properties described in the previous paragraphs illustrate this point.

Our interpretation of the numerical results that we have presented rests on the relevance

of two sets of mathematical results to the oceanographic problem that we have investigated.

These mathematical results relate to Kolmogorov-Arnold-Moser (KAM) theory and the sta-

ble and unstable manifolds of hyperbolic trajectories. As noted previously, both sets of

results have shortcomings. KAM theory has two principal shortcomings: 1) it is a pertur-

bation theory, based on the assumption that the decomposition (3) is valid with ε small;

and 2) the least restrictive form of the theorem proved to date (Sevryuk 2007) assumes

that the perturbation streamfunction has quasiperiodic time-dependence. (No KAM the-

orem has been proved for general aperiodic time dependence.) Because our focus was on

understanding the qualitative difference in behavior between small and large ε, the small

ε restriction was not, for our purposes, critical. (Note also that numerical simulations in
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many systems reveal that some invariant tori that are predicted by the theorem persist for

ε ' 1, so the small ε is less restrictive that one might expect.) The restriction to quasiperi-

odic time-dependence necessitated that we argue that the perturbation be expressible as a

multiperiodic function of time. In contrast to KAM theory, results relating to stable and

unstable manifolds of hyperbolic trajectories are valid for flows with general aperiodic time

dependence. For this class of flows, the exponential dichotomy property provides a rigorous

basis for defining hyperbolic trajectories and their stable and unstable manifolds. Unfor-

tunately, apart from this defining property, few rigorous results have been established for

general aperiodic flows. (Note, for example, that the term “chaos” is used in a very restricted

fashion by mathematicians and that only very restricted classes of systems have been shown

rigorously to poses chaotic dynamics; see, for example, section 1.2.2 of Mancho et al. 2006

and references therein, Wiggins 1999, and Palmer and Stoffer 1989.) It is precisely this void

that has provided the stimulation for recent work relating to LCSs (Haller 2000; Haller and

Yuan 2000; Haller 2001a,b, 2002; Shadden et al. 2005). This type of analysis has proven to

be extremely useful in applications (Lekien et al. 2005; Olascoaga et al. 2006; Mathur et al.

2007; Koshel and Prants 2006; Coulliette et al. 2007; Yuan et al. 2004; Rogerson et al. 1999;

Beron-Vera et al. 2008; Olascoaga et al. 2008), but it relies heavily on numerical calculations

and has its own limitations (Shadden et al. 2005). In this study we have shown that, in

spite of some shortcomings associated with both KAM theory and LCSs, both sets of ideas

provide critically important insight into the problem we have studied – transport in a three

gyre system.

The qualitative features of the three-gyre problem that we have described are expected

to hold for a large class of multi-gyre steady flows ψ0 (x, y) subject to a time-dependent
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perturbation εψ1 (x, y, t). For small ε transport barriers of the strong KAM stability type

are expected to be present and isolate some gyres from the remainder of the flow. As ε is

increased barriers of this type will break and heteroclinic intersections of manifolds will form,

thereby facilitating intergyre transport. These heteroclinic intersections are critically impor-

tant in facilitating efficient long-range transport of fluid. The more strongly the background

flow is perturbed, the more prevalent heteroclinic intersections of manifolds will become

as transport barriers break. This suggests that, quite generally, one might identify turbu-

lent transport (Mathur et al. 2007) as being characterized by an abundance of heteroclinic

manifold intersections.
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Fig. 1. Tracks of 201 surface drifters in the Adriatic Sea between 1 August 1990 and 31

July 1999. (figure adapted from (Poulain 2001))
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Fig. 2. (Upper left) Level surfaces of the streamfunction ψ0 (x, y) that describes the mean

surface circulation in the Adriatic Sea inferred from surface drifter trajectories. The thick

brown line shows the smoothed boundary of the Adriatic basin. Black dots at x = 545 km

show the initial positions of the trajectories that were used to produce the lower left plot.

(Upper right) Level surfaces of the analytically-specified streamfunction ψ0 (x, y) given by

Eq. (4). Black dots at x = 500 km show the initial positions of the trajectories that were

used to produce the lower right plot. (Lower panels) Periods of simulated trajectories, T ,

for a family of trajectories with variable initial position, y0. (The period of a trajectory T

is the time taken for a trajectory to return to its initial position.) The initial positions of

trajectories are marked in the plots above.

43



I
[k

m
2
]

T [d] ω [1/d] ω′ [d−1 km−2]

×10−4−0.5 0 0.50.054 0.058 0.062100 110 120 130

4500

5000

5500

Fig. 3. Plots of T (I) (left), ω (I) (middle), and ω′ (I) (right) for trajectories lying between

the two homoclinic trajectories for the analytically described streamfunction, Eq. (4).
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Fig. 4. Simulations based on the system described by Eqs. (2, 3, 4, 6) for two values of ε:

ε = 0.05 on the left and ε = 0.3 on the right. (Upper plots) Poincare sections for systems with

a periodic perturbation comprised of a superposition of 14 standing waves whose frequencies

are commensurable with a common period of 60 days. A KAM invariant torus is shown in

green on the upper left subplot. Note that this closed curve serves as a transport barrier for

the color-coded trajectories whose initial positions are inside (red dots) and outside (black

dots) the closed curve. (Middle plots) Stable (blue and light blue curves) and unstable (red

and pink curves) manifolds of hyperbolic trajectories for the same systems that were used

to produce the upper plots. (Lower plots) Stable (blue and light blue curves) and unstable

(red and pink curves) manifolds of hyperbolic trajectories for systems with a quasiperiodic

perturbation comprised of a superposition of 14 standing waves whose frequencies are not

commensurable.
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Fig. 5. Schematic diagram showing those structures that control transport in a perturbed

three-gyre system. Upper panel: the unperturbed system, ε = 0. Homoclinic trajectories

are shown as dashed red-blue curves. The shearless torus, on which ω′ (I) = 0, is shown in

green. Middle panel: the weakly perturbed system, ε < εcr. Stable and unstable manifolds

are shown in blue and red, respectively. All manifold intersections are of the homoclinic

type. A KAM invariant torus in proximity to the shearless torus is shown in green. This

structure serves as a transport barrier that: 1) prevents heteroclinic manifold intersections

from forming; and 2) isolates the western gyre from the central and eastern gyres. Lower

panel: the strongly perturbed system, ε > εcr. All KAM invariant tori in the vicinity of

the shearless torus are broken, thereby allowing heteroclinic manifold intersections to form,

which, in turn, facilitate gyre-to-gyre-to-gyre transport.
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Fig. 6. Simulations of stable and unstable manifolds using the observationally-based model

of the Adriatic Sea for two values of the perturbation strength: ε = 0.1 in the left panels and

ε = 1 in the right panels. (Upper panels) FTLE estimates computed in forward time relative

to t = 182 days. Ridges of intense red correspond to stable manifolds. (Middle panels)

FTLE estimates computed in backward time relative to t = 182 days. Ridges of intense red

correspond to unstable manifolds. (Lower panels) Stable (blue and light blue curves) and

unstable (red and pink curves) manifolds computed using the direct manifold integration

method relative to t = 182 days. Note that stable and unstable manifolds computed using

FTLEs and the direct manifold integration method are in excellent agreement.
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Fig. 7. Simulations of the evolution of a heteroclinic lobe in forward and backward time

relative to t = 182 days using the observationally-based model of the Adriatic Sea with the

true value of the perturbation strength, ε = 1. The boundary of the heteroclinic lobe is

shown at the times indicated in the three panels. The portion of the boundary of the lobe

that is comprised of a segment of the unstable manifold is shown in pink; the portion of the

boundary of the lobe that is comprised of a segment of the stable manifold is shown in blue.

Positions of the two (eastern and western) hyperbolic trajectories are shown with asterisks.

In the middle subplot, the stable and unstable manifolds which form the heteroclinic lobe are

shown by dashed blue and dashed pink lines. Arrows on the manifolds indicate the direction

of attraction/repulsion.
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Fig. 8. Initial (at t = 182 days) and final (at t = 302 days) position of two sets of

passive tracers in the observationally-based model of the Adriatic Sea for two values of the

perturbation strength: (left) ε = 0.1; (right) ε = 1. The two sets of tracers are color-coded:

one set is shown in red, the other set is shown in blue. The initial positions of the two sets

of tracers lie inside two circles. Note that for ε = 0.1 there is no mixing (in a coarse-grained

sense) of red and blue tracers, while for ε = 1 there is strong mixing.
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