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Abstract. Among the variety of multimedia formats, color images play a prominent role. A technique for lossless
compression of color images is introduced. The technique is composed of first transforming a red, green, and
blue image into luminance and chrominance domain (YCuCv ). Then, the luminance channel Y is compressed
with a context-based, adaptive, lossless image coding technique (CALIC). After processing the chrominance
channels with a hierarchical prediction technique that was introduced earlier, Burrows–Wheeler inversion coder
or JPEG 2000 is used in compression of those Cu and Cv channels. It is demonstrated that, on a wide variety of
images, particularly on medical images, the technique achieves substantial compression gains over other well-
known compression schemes, such as CALIC, M-CALIC, Better Portable Graphics, JPEG-LS, JPEG 2000, and
the previously proposed hierarchical prediction and context-adaptive coding technique LCIC. © 2019 SPIE and IS&T
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1 Introduction
The growth of data-intensive multimedia-based web applica-
tions and advancements in image sensors and processing
units of mobile devices have made compression of multi-
media content central to storage and communication tech-
nology. Efficient data and image compression algorithms are
therefore required to minimize the cost and demands espe-
cially in devices and networks with limited resources. There
are two main ways, lossy and lossless, to compress data. The
lossy compression strategy, as the name implies, involves
some loss of information, i.e., data that have been com-
pressed by a lossy technique cannot be exactly reproduced
through decompression. Depending on the application, lossy
techniques can be used to increase the channel throughput.
For example, images viewed on television have significant
loss of information with respect to the original images, but
this does not cause a problem since the human visual system
is not perfect. Good lossy compression techniques can
achieve high compression ratios on typical real-life images
and videos.

In lossless compression, while the original quality of an
image is preserved, the reduction in the file size may not be
as good as in lossy compression. A few applications of loss-
less compression are text, encoded text for the World Wide
Web, such as HTML, XML, and SHTML documents, com-
puter-generated data (executable code), and images. In some
applications, such as medical imaging where the quality of
an image is the highest priority and any loss of data is not

tolerable, lossless compression is preferred.2–8 The purpose
of this paper is to introduce a lossless compression algorithm
for color images.

In most color images, each pixel is represented by 24-bits,
or 8-bits per channels, red, green, and blue (RGB). To reduce
interchannel correlations and maximize compression gain,
the majority of image compression algorithms, when used
on color images, utilize a variety of reversible color transfor-
mations (RCT) on RGB channels, as described in, for exam-
ple, Refs. 9–14. Commonly used color transformations map
RGB channels into luminance Y and chrominance Cu and Cv
channels. The luminance channel Y is essentially a grayscale
version of the original image. Indeed, the origins of this
transformation date back to the early days of television to
ensure good reception of color transmissions on black-
and-white television sets. In lossless color image compres-
sion, care must be exercised in the choice of RCT, because
some color transformations may not be truly invertible due to
loss of precision in noninteger arithmetic operations in direct
and inverse transforms.10 The widely used lossless color
image compressor JPEG 200015 uses an invertible RCT.

Kim and Cho16 proposed a technique for lossless com-
pression of color images. In this technique, an RCT is first
applied to a color image. The luminance channel Y is com-
pressed with JPEG 2000. The chrominance channels Cu and
Cv are divided into two subimages as odd and even rows.
To improve prediction accuracy and estimation of error, the
odd subimage Xo is predicted using the even subimage Xe.
The even subimage Xe is compressed with JPEG 2000
and stored for decoding. The odd subimage Xo is encoded
with an arithmetic coder after applying a context modeling
for the prediction errors obtained from neighboring pixels.*Address all correspondence to Ziya Arnavut, E-mail: ziya.arnavut@

fredonia.edu
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Kim and Cho17 improved their previous algorithm presented
in Ref. 16 by using a different RCT similar to the one in
Ref. 11 and developed a more advanced hierarchical predic-
tion technique, which they called LCIC. They demonstrated
in the same publication that on a variety of standard color
image sets, LCIC outperformed JPEG 2000 and JPEG-XR.18

In this paper, we propose a lossless color image compres-
sion technique, called BWIC_I, in part based on the frame-
work of LCIC. In BWIC_I, first, the RGB channels are
converted into YCuCv channels with an RCT. We com-
pressed the Y channels of standard test image sets with
a multitude of algorithms and determined that the context-
based, adaptive, lossless image coding (CALIC) algorithm
outperformed, on average, the other compressors, including
JPEG 2000. Therefore, in BWIC_I, the Y channel is com-
pressed with CALIC. Second, using the hierarchical predic-
tion technique from LCIC, the chrominance channels are
reduced to a quarter of their original sizes. These prepro-
cessed channels can have rather different characteristics.
Therefore, employing an appropriate compressor on each
preprocessed chrominance channel can improve the overall
compression gain. Our experiments have shown that JPEG
2000 and Burrows–Wheeler inversion coder (BWIC) are
the two best performers for this task. Hence, BWIC_I
compresses the quarter-sized preprocessed Cu and Cv and
chooses the best compressor for each channel.

Compression gains of BWIC_I over JPEG 2000 are
10.7% on Kodak, 28.4% on Medical, and 8.6% on commer-
cial digital camera image sets. Moreover, these compression
gains of the proposed technique are on average a 4.5%
improvement over the LCIC gains reported in Ref. 17, while
on medical image set, gains are over 11.1%. Admittedly,
our lossless color image compression algorithm BWIC_I is
a carefully designed ensemble of existing ideas and algo-
rithms. However, as the performance data above quantifies,
our algorithm decidedly outperforms the existing methods on
many standard test color image sets.

This paper is organized as follows: In Sec. 2, we briefly
describe each technique used in our proposed coding
scheme. In Sec. 3, the proposed technique, along with
RCT, hierarchical prediction, and context-adaptive coding
techniques, is described. In Sec. 4, the experimental results
are discussed and shown that our proposed technique, on a
wide variety of image sets particularly on medical images,
achieves better compression results than the well-known
standard compression schemes JPEG-LS, JPEG 2000, Better
Portable Graphics (BPG), and other previously proposed
techniques, such as LCIC. Finally, Sec. 5 gives a summary
of the conclusions of the present work.

2 Related Work
In this section, we briefly describe each of the methods
utilized to set the stage for discussion of the proposed coding
technique for lossless compression of color images.

2.1 Context-Based, Adaptive, Lossless Image
Coding

CALIC, proposed by Wu and Memon,19 was one of the algo-
rithms considered in the process of JPEG standardization.
It was designed to be a lossless image codec but CALIC was
not selected as the JPEG standard due to its complexity, as
stated by the authors:19 “both the current lossless JPEG and

FELICS are rather simple techniques that require minimal
memory and computation resources. CALIC, on the other
hand, is more complex and does require more resources,
although the increase in memory and computation resources
is modest.”

CALIC works in raster scan order and uses only two pre-
vious scan lines to predict the current pixel. To obtain higher
compression gain, CALIC uses two different compression
modes, binary and continuous tone, based on the previously
encoded pixel information. The encoding algorithm switches
between compression modes. When the previous two lines
have fewer than three different values, the binary encoding
mode is used in encoding the current pixel. This mode
improves compression gain on images with uniform image
areas and uses pixel values instead of prediction values. For
other cases, continuous mode is utilized by the system.
Continuous tone encoding mode consists of multiple compo-
nents: the gradient-adjusted predictor (GAP), quantization,
the context modeling, and the entropy coder. GAP is a non-
linear predictor that adjusts coefficient prediction based on
the intensity of neighboring pixels. It uses seven neighboring
pixels. The output from GAP is used in the quantization of
the error energy estimator and in encoding after calculating
the error value as the difference between estimated and pre-
dicted pixel values. The performance of the GAP is improved
further using context modeling. A schematic description of
CALIC’s encoder is shown in Fig. 1. For further details
about CALIC, the interested reader is referred to Ref. 19.

CALIC was originally designed for compression of 8-bit
grayscale images. Wu and Memon20 later developed an inter-
band version of CALIC suitable for effective compression of
multispectral images like color and remotely sensed images.
More recently, Magli et al.21 proposed a compressor for
hyperspectral images, called M-CALIC, on top of an opti-
mized CALIC-based compression engine. M-CALIC outper-
forms interband CALIC on representative test images.21

2.2 JPEG 2000
JPEG 2000 is an ISO/IEC still image compression standard
based on discrete wavelet transform. It was designed to

Fig. 1 CALIC encoding algorithm.
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replace the DCT-based original JPEG image compression
algorithm by not only improving the compression rate but
also incorporating features such as scalability and editability.
In lossless mode, JPEG 2000 uses a RCT with a Cohen–
Daubechies–Feauveau biorthogonal 5/3 integer wavelet
transform.

After the transformation, the lossless mode does not quan-
tize the values. For the entropy coder phase, original JPEG
utilizes a Huffman coder, whereas JPEG 2000 uses a context-
based adaptive binary arithmetic coder (BAC). A schematic
description of JPEG 2000 is given in Fig. 2. For further
details about JPEG 2000, the interested reader is referred to
Refs. 15 and 22–24.

2.3 BWIC
One of the most prominent transformation-based algorithms
used in data compression is the invertible Burrows–Wheeler
transformation (BWT), a lexical-sorting based transfor-
mation.25,26 Since the introduction of BWT, several authors
have proposed improvements to the original algorithm.
Schindler27 suggested a different block-sorting technique
and developed the szip coder. Arnavut28 introduced the use
of inversion coding (IC) to block-sort BWT and presented a
faster and more memory-efficient lossless data compression
algorithm and called it BWIC. When BWIC is applied to text
or image data, it achieves, on average, better compression
rates than Lempel–Ziv–Welch techniques.28

BWIC consists of four basic steps: lexical sorting
transformation, inversion coder, followed by run-length
and entropy coders. A schematic description of BWIC is

displayed in Fig. 3. The effects of BWTwith IC on the pixel
values of an image file are shown in the histograms in Fig. 4.

The first step in BWIC is BWT. The main goal of the
BWT is to collect symbols in lexically similar contexts near
to each other. It is important to note that BWT does not com-
press data. The time complexity of the BWT is Oðn log nÞ.
It is known to be a very effective transformation for text
data. Compression results of BWT-based coders are highly
related to the window (block) size used in the transformation.
While the selection of bigger window sizes helps to obtain
better compression, it requires more memory space and also
reduces the speed. For the results reported in this paper, the
maximum window (block) size is set to 8 MB. After trying
several different block sizes, we experimentally determined
that good compression can be obtained with 8 MB block size
without sacrificing speed. Hence, files bigger than 8 MB are
processed in chunks of 8 MB.

In the second step, BWIC uses IC, also called inversion
ranks or inversion frequencies.28 Most variants of BWT
based compressors, such as bzip2 and szip, employ a move-
to-front (MTF) transformation. MTF was introduced by
Bentley et al.29 (also independently discovered by Elias30).
MTF keeps the most current symbols at the beginning of
an ordered list and needs OðnmÞ time. In Refs. 28 and
31, IC and MTF were investigated. It was shown that, when
used in the second step of a Burrows–Wheeler based com-
pression scheme, IC yields better compressible sequences on
more data types than MTF. IC forms a sequence I of integers
from the range of ½0; n − 1� over an alphabet A. For each
character aj ∈ A, the algorithm scans a given sequence S and

Input
Pre-

processing RCT DWT
Entropy
Coder

Output

Fig. 2 The steps in JPEG 2000 lossless mode.

Input BWT IC RLE-0 BAC Output

Fig. 3 The steps in BWIC.

(a) (b)

Fig. 4 The cumulative effects of BWT and IC are to reduce the number of large values in a data set, as
seen in the chrominance channel Cv of image Kodak01. (a) Histogram of pixel values before processing
and (b) after processing with BWT and IC.
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whenever it discovers the first occurrence of the character aj,
it outputs its position in S. After that, it outputs the number of
characters greater than aj that occurred since the last iden-
tification of the aj. To obtain the original data, in addition to
the inversion rank sequence I, frequency fj of each aj in S
needs to be transmitted to the receiver. The interested reader
is referred to Refs. 28 and 31 for further information.

The third step is a special run-length encoding called the
zero run-length coder (RLE-0). Zero is a dominant symbol of
the sequences processed first by BWT and later by IC when
applied to commonly used data types such as text, image,
audio, and video. Thus, there are many long runs in sequen-
ces processed by IC consisting of zeros, which are called
0-runs. This may cause difficulties in probability estimations
when encoding such sequences. To overcome this problem,
a transform that treats 0-runs in a special way can be used.
Experimental results show that using an RLE-0 transform
improves the compression ratio. A detailed explanation of
RLE-0 can be found in Refs. 32 and 33.

The last step of BWIC is an entropy coder. Analysis of
probability distributions of IC shows that zero is a dominant
symbol, and the probability of higher symbols usually
decreases monotonically. Fenwick, who studied the sequen-
ces generated by the MTF coder after BWT has been applied,
developed a hierarchical model32 in which symbols are di-
vided into some classes, where within a class the differences
in probabilities of occurrence of symbols are relatively small.
He has shown that for the best compression, it is necessary to
use an adaptive arithmetic coder.34 In our implementation of
BWIC, we have chosen a BAC, as described by Deorowicz
in Ref. 35. Overall, BWIC completes the entire compression
process in Oðn log nÞ time.

3 Proposed Coding Scheme BWIC_I
The overall structure of our proposed lossless compression
scheme for color images is depicted in Fig. 5.

As the first step in the proposed coding process, the RGB
channels of an image are transformed into the luminance
channel Y, and the chrominance channels, Cu and Cv, using
the following invertible RCT:11

EQ-TARGET;temp:intralink-;e001;326;752

Forward transform∶ Cu ¼ B − round

�
87

256
Rþ 169

256
G

�
;

Cv ¼ R − G;

Y ¼ Gþ round

�
86

256
Cv þ

29

256
Cu

�
:

(1)

EQ-TARGET;temp:intralink-;e002;326;643

Inverse transform∶ G ¼ Y − round

�
86

256
Cv þ

29

256
Cu

�
;

R ¼ Cv þ G;

B ¼ Cu þ round

�
87

256
Rþ 169

256
G

�
;

(2)

where the floating-point numbers are rounded to the nearest
integer.

The luminance channel Y is a grayscale version of the
image. After applying an RCT transformation, Kim and
Cho17 used JPEG 2000 to compress Y. We tried several cod-
ing techniques, such as CALIC, JPEG 2000, JPEG-LS,36

BWIC, and concluded that CALIC yields the best compres-
sion. Hence, we used CALIC to compress Y.

Before compression, the chrominance channels Cu and
Cv are preprocessed with a hierarchical decomposition
scheme proposed by Kim and Cho.16,17 (This scheme is sim-
ilar to the one proposed by Roman in Ref. 37.) Pixels of
a chrominance channel are first decomposed into two sub-
images: Xo consisting of the odd rows and Xe consisting
of the even rows. For the compression of Xo, Xe are used
in the prediction algorithm. While Xe are stored, Xo are pre-
dicted using Xe, and error values are encoded using an arith-
metic coder. The subimage Xe is further decomposed into
odd and even columns using the same approach. To reduce
large prediction errors near edges, a directional prediction
technique is utilized. For each pixel xoði; jÞ in Xo, the hori-
zontal (left neighbor) and the vertical (average of upper and
lower neighbors) predictors are calculated:

Fig. 5 Proposed lossless compression scheme BWIC_I.

Journal of Electronic Imaging 053007-4 Sep∕Oct 2019 • Vol. 28(5)

Koc et al.: Technique for lossless compression of color images. . .



EQ-TARGET;temp:intralink-;e003;63;327

x̂hði; jÞ ¼ xoði; j − 1Þ

x̂vði; jÞ ¼ round

�
xeði; jÞ þ xeðiþ 1; jÞ

2

�
: (3)

Based on the values of jxoði; jÞ − x̂hði; jÞj and
jxoði; jÞ − x̂vði; jÞj, a mode selection is made; the vertical
predictor is used for most pixels, and the horizontal predictor
is used when there is a “strong” horizontal edge. The details
of the hierarchical decomposition and pixel prediction proc-
esses are presented in Algorithms 1 and 2 of Ref. 17.

Although the prediction method summarized above pro-
duces small errors, near the edges and in highly textured
regions, they can be relatively large. To further reduce such
prediction error values, statistical properties of prediction
errors are used and error values are quantized based on local
activity, as stated by the authors of Ref. 17:

We model the prediction error as a random variable with pdf
PðejCnÞ, where Cn is the coding context that reflects the mag-
nitude of edges and textures. Specifically, Cn is the level of
quantization steps of pixel activity σði; jÞ defined as follows:

EQ-TARGET;temp:intralink-;sec3;63;87σði; jÞ ¼ jxeði; jÞ − xeðiþ 1; jÞj:

Note that the local activity and its quantization steps are cal-
culated with the pixels in Xe, because all the pixels of Xe are
available and its statistical property would be almost the same
as that of Xo.

As a result of this hierarchical preprocessing, the size of each
chrominance channel is reduced to a quarter of its original
size. In Fig. 6, the luminance Y channel and the preprocessed
chrominance channels Cu and Cv with the hierarchical
decomposition scheme of an image from the Kodak set
(Kodak01) are shown.

The hierarchical decomposition process is reversible for
images with an even number of rows and columns, and the
complete chrominance channels can be recovered without
loss of information in decoding. To ensure the reversibility
of the hierarchical decomposition scheme for images with
an odd number of rows or columns, we temporarily apply
appropriate padding to such images during compression and
decompression.

Kim and Cho17 used JPEG 2000 to compress the pre-
processed chrominance channels as well. It is possible to
achieve better compression gains on these channels. Indeed,
the distribution of pixel values in Cu and Cv can differ
considerably, as evident in Fig. 7, where the histograms of

Fig. 6 The luminance Y and the preprocessed chrominance Cu and Cv channels with the hierarchical
decomposition scheme of Kodak01 from the Kodak image set. (The MATLAB function mat2gray() that
converts a matrix to grayscale image is used to make the negative pixel values visible.)
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these channels for the Kodak01 image in Fig. 6 are plotted.
Therefore, it behooves one to employ different compression
algorithms appropriate for each chrominance channel. To
this end, we experimented with various compression algo-
rithms (including CALIC, M-CALIC, PNG, JPEG-LS, BPG,
JPEG 2000, BWIC) on standard image sets and decided
that JPEG 2000 and BWIC were the two top performers.
However, for a given particular image, despite trying various
statistical sampling techniques, it does not seem possible to
determine a prioriwhich of the two compressors will prevail.
While on some images, the difference between the two com-
pressors is negligible, on others, the differential is substan-
tial. Therefore, in BWIC_I, we try both JPEG 2000 and BWIC
on each preprocessed channel and select and record the one
with the best compression gain (see Fig. 5). This double
processing, which is easily parallelizable, results in small over-
head since only the hierarchically preprocessed quarter-sized
image, not the entire chrominance channel, needs to be com-
pressed. Moreover, it is possible to predict with high proba-
bility the most effective algorithm (JPEG 2000 versus BWIC)
by examining a much smaller sized subimage of appropriately
sampled pixels, as we will report in Sec. 4. Decompressing is
done only once with the already selected compressor. Thus,
there is no computational overhead in decompressing.

4 Experimental Results
This section presents quantitative results on the performance
of the proposed lossless image compression technique
BWIC_I versus those of the lossless compression schemes
interband CALIC, M-CALIC, BPG (based on HEVC
intra-frame encoder), JPEG-LS, JPEG 2000, BWIC, and
LCIC using a collection of test images. In Ref. 17, it is
demonstrated experimentally that LCIC currently achieves
the best average compression ratios among these schemes.
Therefore, for a fair comparison of the proposed scheme
BWIC_I with LCIC, we have used the same set of test
images Kodak, Medical, Commercial Digital Camera, and
Classic used by Kim and Cho.17

For the convenience of the reader, Table 1 lists the refer-
ences to the publicly available executable codes of most of
these compressors and the parameters used. The compres-
sion results of these schemes on the test image sets are tabu-
lated in Tables 2–5. The compression results of interband
CALIC and M-CALIC on select images are indicated in the
text. The performance of compressors on the test images is
given in bits per pixel (bpp), which is defined as follows:

EQ-TARGET;temp:intralink-;e004;326;556bpp ¼ Compressed file size × 8

Number of pixels
: (4)

Before delving into the details of performance tables,
we present a brief experimental result on interband CALIC.
We were informed by the authors of interband CALIC that
the executable program is no longer available. Therefore,
to measure the performance of BWIC_I against interband
CALIC, we used the two ITU-standardized RGB images,
cats and water,45 used by Wu and Memon.20 As listed in
Table 1 of the aforementioned publication, while interband
CALIC yielded 1.81 bpp on cats and 1.51 bpp on water,
our algorithm achieved 1.53 bpp on cats and 1.31 bpp on
water—a 17.2% improvement on average.

On the Kodak set in Table 2, the proposed technique sur-
passed BPG 63.6%, JPEG-LS 52.5%, BWIC 29.7%, JPEG
2000 10.7%, and LCIC 3.0%. Additionally, it was reported
in Table 1 of Ref. 16 that M-CALIC yielded, on average,
10.4954 bpp on the Kodak image set; our proposed algo-
rithm achieves 8.6042 bpp, which is 21.9% improvement
over M-CALIC.

In Table 2, each image file was compressed in its entirety
with the indicated scheme. It is also possible to preprocess
RGB channels with an invertible RCT similar to one in
Sec. 2 before employing a compressor. Our experimental
results on the Kodak set showed mixed results when RCT
preprocessing was used. While the compression of RGB
channels improved in JPEG-LS 32.1% from 13.1239 to
9.9370 bpp, BWIC 16.4% from 11.1625 to 9.5890 bpp,
and in JPEG 2000, the preprocessing of images has resulted
8.7% decrease in coding performance from 9.5254 to
10.4377 bpp. BPG results are not available since it does not
support 16 bits/channel coding. In any case, the average
8.6042 bpp of BWIC_I remains the smallest.

The gains of the proposed technique were most substan-
tial for the medical image set as seen in Table 3, where the
proposed technique surpassed BPG, JPEG-LS, JPEG 2000,
and LCIC more than 10%. We note that although BWIC is a
universal compressor, as reported in Ref. 28, it yields good
compression on medical images. Yet, except with the images
with a low number of different colors, the proposed BWIC_I
yields 6.7% gain over BWIC on average.

On the commercial digital camera image set in Table 4,
the proposed technique bettered BPG, JPEG-LS, and BWIC
more than 31%, while it surpassed JPEG 2000 by 8.6% and
LCIC by 2.7%. For the classic image set in Table 5, while the

(a) (b) (c)

Fig. 7 (a)–(c) Histograms of pixel values of Y and the preprocessed Cu and Cv channels of images from
Fig. 6.
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proposed technique outperformed JPEG-LS by 2.6%, BPG
by 11%, BWIC by 31%, and LCIC by 1.2%, it did no better
than JPEG 2000.

The average encoding and decoding times of the proposed
algorithm BWIC_I are benchmarked against JPEG 2000 and
LCIC with an Intel Core Processor i7-940; the results for
all the image sets used in this paper are tabulated in Table 6.
It is evident that LCIC requires more time than JPEG 2000,
as already stated in Ref. 17: “Since our method employs
JPEG 2000 and needs additional steps for hierarchical pre-
diction and context modeling, it needs slightly more time
than the JPEG 2000.” An inspection of Table 6 shows that
the encoding and decoding times of our algorithm are
slightly slower than LCIC, except for the decoding times of
the commercial digital camera image set containing high-
resolution pictures.

It is possible to shorten the encoding times of the pro-
posed algorithm by using an iterative sampling technique.
Our algorithm employs two different compression tech-
niques, JPEG 2000 and BWIC, on the preprocessed chromi-
nance channels and selects the best one. To determine the
best such algorithm, one can construct a smaller image
consisting of the pixels Pij with i; j even of the original
image, as shown in Fig. 8, and select the best compression
techniques for the preprocessed chrominance channels of
the sampled subimage, which is only a quarter of the
original image. Our numerical experiments on the test image
sets showed that the choice of the best compressor for the
preprocessed chrominance channels of the sampled sub-
image agreed with 95.5% accuracy with the choices for the
original larger image. When we iterated the same sampling
process on the quarter-sized subimage, we observed 86.4%

Table 1 Codec list and parameter settings.

Codec Version Parameters Options

CALIC38 N/A -in kodak01_Y.pgm -out kodak01_Y.calic Use default options

Binary mode enabled

BPG39 0.9.8 -lossless kodak01.png -o kodak01.bpg Use default options

q 0

f 444

c ycbcr

b 8

lossless

e x265

m 8

JPEG-LS40 JLS Encode 1.0 N/A (GUI) (kodak01.ppm) Use default options

Lossless compression

Error value: 0

Interleaved mode for color images

Line interleaved mode advance settings

Use default reset value: 64

Use default threshold values

T1 value: 3

T2 value: 7

T3 value: 21

JPEG 200041 libjasper 1.900.1 –input kodak01.ppm –output kodak01.jp2 N/A

BWIC42 N/A kodak01.ppm kodak01.bwic N/A

LCIC43 N/A -e kodak01.ppm kodak01.bin N/A

Proposed BWIC_ I44 N/A -e kodak01.ppm kodak01.bwici N/A
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agreement. This sampling process shortens the encoding
times of our proposed algorithm by avoiding the need to try
two compressors on the preprocessed chrominance channels
of the much larger original image.

At the expense of negligible additional encoding times, it
is possible to improve the compression gains of our proposed
technique by enhancing the efficiency of BWIC. While
JPEG 2000 is a two-dimensional image compressor, BWIC
is a general-purpose compressor for one-dimensional data.
Therefore, the choice of the scanning technique to convert
a two-dimensional image to a one-dimensional sequence
can have a substantial effect on the performance of BWIC,
as investigated in Refs. 46 and 47.

We have experimented with four different scanning tech-
niques, as depicted in Fig. 9, on the chrominance channels of
the test image sets. On average, choosing the best scanning
technique for BWIC resulted in an additional compression
gain of 0.4% on Kodak and 0.6% on the medical image set.
There is a large number of possible scanning paths48,49 and
the prediction of the optimal one without trying them all
appears to be difficult. The compression gains can be further
improved when coding schemes in Refs. 50–52 are utilized
at the expense of a considerably significant encoding time.
These compression algorithms require more computation
time to better predict the pixel values compared to JPEG
2000, for example, as the authors state in Ref. 50: “when

Table 2 Results of various compression techniques in bpp for Kodak image set.44

Size BPG (HEVC)39 JPEG-LS (LOCO-I)40 JPEG 200041 BWIC42 LCIC43 Proposed BWIC_ I44

Kodak01 768 × 512 17.0877 15.8493 10.3844 11.3110 9.5626 9.2833

Kodak02 768 × 512 13.0859 12.1827 9.1628 8.4586 8.4401 8.0753

Kodak03 768 × 512 11.0538 10.5267 8.0917 8.4873 7.3870 7.1228

Kodak04 768 × 512 13.4017 12.6077 9.1116 10.9012 8.3412 8.1542

Kodak05 768 × 512 16.8107 15.5738 10.8167 14.7568 10.2784 9.9278

Kodak06 768 × 512 15.0310 13.7333 9.5911 10.8477 8.9725 8.8295

Kodak07 768 × 512 11.7865 10.9859 8.5039 9.3731 7.7329 7.4525

Kodak08 768 × 512 17.2057 15.8642 11.1389 14.7589 10.6289 10.2662

Kodak09 768 × 512 12.5061 12.0051 8.9045 9.5114 7.9530 7.6783

Kodak10 768 × 512 12.5541 12.0296 9.0564 10.2927 8.1953 7.9259

Kodak11 768 × 512 14.2856 13.2320 9.2918 11.1251 8.5929 8.3059

Kodak12 768 × 512 12.3141 11.5165 8.6577 8.9579 7.8234 7.6286

Kodak13 768 × 512 19.3857 17.8546 11.8608 14.4810 11.3189 11.0565

Kodak14 768 × 512 16.1841 14.7745 10.1605 12.7430 9.5039 9.2534

Kodak15 768 × 512 12.2268 11.7120 8.9967 10.3740 8.3183 8.0809

Kodak16 768 × 512 13.4354 12.2641 8.7748 8.4977 7.9816 7.8081

Kodak17 768 × 512 13.1573 12.4618 9.0644 9.5929 8.1645 7.8597

Kodak18 768 × 512 16.4933 15.2824 10.7706 14.1720 10.3275 10.0852

Kodak19 768 × 512 14.4711 13.5989 9.6655 11.0480 8.9783 8.7657

Kodak20 768 × 512 9.6847 9.2185 8.0769 8.2231 7.8672 7.6284

Kodak21 768 × 512 14.6310 13.6095 9.7621 11.1269 9.1786 8.9921

Kodak22 768 × 512 14.9288 13.6449 10.0939 13.8337 9.7349 9.5373

Kodak23 768 × 512 11.4152 10.6474 8.5047 12.6672 7.8049 7.6823

Kodak24 768 × 512 14.7175 13.7982 10.1673 12.3583 9.5231 9.1009

Average 14.0772 13.1239 9.5254 11.1625 8.8587 8.6042

Normalized 1.636 1.525 1.107 1.297 1.030 1.000
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Table 3 Results of various compression techniques in bpp for medical image set.44

Size BPG (HEVC)39 JPEG-LS (LOCO-I)40 JPEG 200041 BWIC42 LCIC43 Proposed BWIC_ I44

PET1 256 × 256 4.8594 4.5022 6.7390 1.1975 5.6453 4.6204

PET2 256 × 256 5.5095 4.8088 7.3403 1.3191 6.1598 5.0226

PET3 256 × 256 5.1495 4.4931 7.0232 1.2716 5.8768 4.7799

Eye1 3216 × 2136 7.2370 5.9600 5.7498 5.9360 4.6208 4.4629

Eye2 3216 × 2136 6.4587 5.2964 5.4467 5.0913 4.3350 4.1568

Eyeground 1600 × 1216 5.7181 4.3317 3.2763 3.8550 2.9656 2.6873

Endoscope1 603 × 552 11.3375 8.0832 7.3532 12.1131 7.0917 6.9229

Endoscope2 568 × 506 7.1962 4.8612 5.1304 9.1321 4.8968 4.7718

Average 6.6832 5.2921 6.0074 4.9895 5.1990 4.6781

Normalized 1.429 1.131 1.284 1.067 1.111 1.000

Table 4 Results of various compression techniques in bpp for commercial digital camera image set.44

Size BPG (HEVC)39 JPEG-LS (LOCO-I)40 JPEG 200041 BWIC42 LCIC43 Proposed BWIC_ I44

Berry 4288 × 2848 10.5564 9.0748 7.2468 11.0263 6.8917 6.6871

Ceiling 4288 × 2848 11.6345 10.2694 7.5571 11.9231 7.2080 7.0403

Fireworks 4032 × 3024 8.0156 6.5926 5.7797 7.3418 5.2855 5.1709

Flamingo 4288 × 2848 8.6922 7.9900 7.0366 8.3427 6.6371 6.4789

Flower 4032 × 3024 10.0319 7.9303 6.4141 15.6980 6.0655 5.9508

Locks 4288 × 2848 11.0121 9.8343 7.4574 10.5541 7.1623 6.9365

Park 4032 × 3024 9.0735 7.8993 5.8977 7.4954 5.5622 5.4509

Sunset 4288 × 2848 8.4887 7.3256 6.3586 6.9975 5.9700 5.7550

Average 9.6881 8.3645 6.7185 9.9224 6.3478 6.1838

Normalized 1.567 1.353 1.086 1.605 1.027 1.000

Table 5 Results of various compression techniques in bpp for classic image set.44

Size BPG (HEVC)39 JPEG-LS (LOCO-I)40 JPEG 200041 BWIC42 LCIC43 Proposed BWIC_ I44

Lena 512 × 512 14.4364 13.5519 13.5848 17.5698 13.6461 13.4594

Peppers 512 × 512 15.0658 14.2113 14.8000 19.0659 15.2102 15.0028

Mandrill 512 × 512 20.2404 18.5386 18.0939 21.5096 18.5305 18.3218

Barbara 640 × 512 14.7933 13.3149 11.1612 18.0198 11.4575 11.3425

Average 16.1340 14.9042 14.4100 19.0413 14.7111 14.5316

Normalized 1.110 1.026 0.992 1.310 1.012 1.000
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the size of images is 512 × 512 pixels, for example, our
codec takes 10 to 25 min for encoding and at most 0.2 s for
decoding on a computer with the 3.06 GHz Xeon processor.”
In our proposed compression algorithm, the encoding time is
on average less than 5 s for an image file.

5 Conclusions
In this study, we proposed a coding technique BWIC_I
for lossless compression of color images that extends the
hierarchical prediction technique LCIC of Kim and Cho.17

We demonstrated that, after transforming an image in RGB
domain into ðYCuCvÞ channels, the use of CALIC on Y,
and a BWIC or JPEG 2000, along with a hierarchical pre-
diction technique on Cu and Cv improves compression gain.
We reported the compression ratios, encoding and decoding
runtimes of the proposed technique for a multitude of image

sets. Compression gains over JPEG 2000 were 10.7% on
Kodak, 28.4% on medical, and 8.6% on commercial digital
camera image sets. These compression gains with the pro-
posed technique were on average a 4.5% improvement over
the gains reported in Ref. 17; on the medical image set, in
particular, this improvement increased to 11.1%. In addition,
we have shown that the compression gain in the proposed
compression scheme can be further improved by another
0.4% to 0.6% by using a suitable scanning technique.
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