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Elements of Lorentzian Geometry

Mn+1 = smooth Lorentzian manifold
= smooth manifold equipped with metric

g = 〈 , 〉 having signature (−+ · · ·+)

The null cone Vp at p ∈M is the set,

Vp = {X ∈ TpM ; 〈X,X〉 = gijX
iXj = 0}

We always assume M is time orientable , i.e. that the
assignment of a past and future cone, V−p and V+

p , can
be made in a continuous manner on M .

spacetime = time oriented Lorentzian manifold

Let,

∇ = Levi-Civita connection

For vector fields X = Xa, Y = Y b,

∇XY = Xa∇aY b
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Riemann curvature tensor. For vector fields X, Y , Z,

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

The components are determined by,

R(∂i, ∂j)∂k = R`
kij∂`

The Ricci tensor and scalar curvature are obtained by
tracing,

Rij = R`
i`j and R = gijRij

Past and Futures:

Def. For p ∈M ,

I+(p) = timelike future of p
= {q ∈M : ∃ future directed timelike

curve from p to q}

J+(p) = causal future of p
= {q ∈M : ∃ future directed causal

curve from p to q}

Note: I+(p) is always open, but J+(p) need not be
closed.
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Def. For A ⊂M ,

I+(A) = {q ∈M : ∃ future directed timelike
curve from some p ∈ A to q}

= ∪p∈AI+(p) (always open)

J+(A) = {q ∈M : ∃ future directed causal
curve from some p ∈ A to q}

= ∪p∈AJ+(p)

Prop. q ∈ J+(p) and r ∈ I+(q)⇒ r ∈ I+(p), etc.

Prop. If q ∈ J+(p) \ I+(p) then any causal curve γ from
p to q must be a null geodesic.

Note: I−(p), J−(p), I−(A), J−(A) defined time-dually.
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Global hyperbolicity:

Def. Strong Causality holds at p ∈ M provided there
are arbitrarily small neighborhoods U of p such that any
causal curve γ which starts in, and leaves, U never re-
turns to U .

Def. M is globally hyperbolic provided

• M is strongly causal

• The sets J+(p) ∩ J−(q) are compact
∀p, q ∈M

Def. A Cauchy surface for M is an achronal C0 hyper-
surface S in M which is met by every inextendible causal
curve in M .

Comment: Equivalently, an achronal hypersurface S is
Cauchy provided D(S) = M ⇐⇒ H(S) = ∅

Prop. M is globally hyperbolic iff M admits a Cauchy
surface.
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Prop. If S is a Cauchy surface for M then M is home-
omorphic to R× S.

(Moreover the homeomorphism can be arranged so that
{t} × S is Cauchy ∀t.)

Prop. If S is a compact achronal hypersurface in a glob-
ally hyperbolic spacetime M then S must be a Cauchy
surface for M .

Prop. If M is globally hyperbolic then

• J±(A) are closed ∀A ⊂M compact.

• J+(A) ∩ J−(B) is compact ∀A,B ⊂M compact.
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Geometry of Null Hypersurfaces

Def. A smooth null hypersurface in (M, g) is a smooth
co-dim one submanifold S of M , such that the pullback
of g to S is degenerate.

Such an S admits a smooth future directed null tangent
vector field K such that

[Kp]
⊥ = TpS ∀p ∈ S

Note:

• Every vector X tangent to S, and not a multiple of
K, is spacelike.

• K is unique up to a positive pointwise scale factor.

Prop. The integral curves of K, when suitably param-
eterized, are null geodesics (and are called the null gen-
erators of S).
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Proof: Suffices to show:

∇KK = λK

This follows by showing at each p ∈ S,

∇KK ⊥ TpS , i.e., 〈∇KK,X〉 = 0 ∀X ∈ TpS

Extend X ∈ TpS by making it invariant under the flow
generated by K,

[K,X] = ∇KX −∇XK = 0

X remains tangent to S, so along the flow line through p,

〈K,X〉 = 0

Differentiating,

K〈K,X〉 = 〈∇KK,X〉+ 〈K,∇KX〉 = 0

〈∇KK,X〉 = −〈K,∇XK〉 = −1

2
X〈K,K〉 = 0.

QED
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Null Weingarten Map/Null 2nd Fundamental Form.

One works mod K: For X,Y ∈ TpS,

X = Y mod K ⇐⇒ X − Y = λK

Let X denote equivalence class of X ∈ TpS and let,

TpS/K = {X : X ∈ TpS}
Then,

TS/K = ∪p∈STpS/K
is a rank n− 1 vector bundle over S (n = dimS).

Positive definite metric on TS/K:

h : TpS/K × TpS/K → R

h(X,Y ) = 〈X,Y 〉

Well-defined: X ′ = X mod K, Y ′ = Y mod K ⇒
〈X ′, Y ′〉 = 〈X + αK, Y + βK〉

= 〈X,Y 〉+ β〈X,K〉+ α〈K,Y 〉+ αβ〈K,K〉
= 〈X,Y 〉
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Weingarten Map:

b : TpS/K → TpS/K

b(X) = ∇XK

Well-defined: X ′ = X mod K ⇒
∇X ′K = ∇X+αKK

= ∇XK + α∇KK = ∇XK + αλK

= ∇XK mod K

Second Fundamental Form:

B : TpS/K × TpS/K → R

B(X,Y ) = h(b(X), Y )

= 〈∇XK,Y 〉

Prop. B is symmetric, B(X,Y ) = B(Y ,X), ∀X,Y ∈
TpS/K, and hence b is self-adjoint.

Proof. Extend X,Y to vector fields tangent to S near p.
Using X〈K,Y 〉 = 0 and Y 〈K,X〉 = 0,

B(X,Y ) = 〈∇XK,Y 〉 = −〈K,∇XY 〉

= −〈K,∇YX〉+ 〈K, [X,Y ]〉

= 〈∇YK,X〉 = B(Y ,X)
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Null mean curvature (expansion scalar):

θ = tr b
= div K (essentially)

Let Σ be the intersection of S with a hypersurface in M
which is transverse to K near p ∈ S; Σ will be an n− 1
dimensional spacelike submanifold of M .

Let {e1, e2, · · · , en−1} be an orthonormal basis for TpΣ
in the induced metric. Then {e1, e2, · · · , en−1} is an or-
thonormal basis for TpS/K.

Hence,

θ = tr b =
n−1∑

i=1

h(b(ei), ei)

=
n−1∑

i=1

〈∇eiK, ei〉

= divΣK at p
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Thus, θ measures the expansion of the null generators
of S towards the future.

θ > 0 θ < 0

Effect of scaling K:

Prop. K̃ = fK ⇒ b
K̃

= f bK, and hence θ
K̃

= f θK

Proof:

∇XK̃ = ∇X(fK) = X(f)K + f∇XK = f∇XK modK

Note: In particular, the Weingarten map b = bK at a
point p ∈ S is uniquely determined by the value of K
at p.
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Comparison theory.

Let η : I → M , s → η(s), be an affinely parameterized
null geodesic generator of S, and let

b(s) = bη′(s)

be the null Weingarten map at η(s) wrt the null tangent
vector η′(s).

The family of Weingarten maps b = b(s) along η obeys
the Ricatti equation,

b′ + b2 +R = 0, ′ = ∇η′

where, by def.,

b′(X) = b(X)′ − b(X ′), (and (Y )′ = Y ′)

R(X) = R(X, η′)η′ .

12



        

Proof:

Fix p = η(s0) on η, and scale K so that in a neighbor-
hood of p,

(i) K is geodesic, ∇KK = 0.

(ii) K = η′ along η.

Extend X ∈ TpS near p by making it invariant under the
flow generated by K,

[K,X] = ∇KX −∇XK = 0 .

Then,

R(X,K)K = ∇X∇KK −∇K∇XK −∇[X,K]K = −∇K∇KX ,

i.e., along η, X satisfies,

X ′′ = −R(X, η′)η′ .

Thus,

b′(X) = ∇XK ′ − b(∇KX) = ∇KX ′ − b(∇XK)

= X ′′ − b(b(X)) = −R(X, η′)η′ − b2(X)

= −R(X)− b2(X)

QED
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By tracing, we obtain along η that θ = θ(s) obeys,

dθ

ds
= −Ric (η′, η′)− tr b2 ,

or,

dθ

ds
= −Ric (η′, η′)− σ2 − 1

n− 1
θ2

Raychaudhuri’s equation

where σ is the shear scalar, σ2 = tr b̂2, b̂ = b− 1
n−1

θ · id.

Prop. Let S be a smooth null hypersurface in a space-
time M which obeys the null energy condition,

Ric (X,X) ≥ 0 ∀ null vectors X .

Then, if the null generators of S are future geodesically
complete, S has nonnegative null mean curvature, θ ≥ 0.

Proof. Suppose θ < 0 at p ∈ S. Let s→ η(s) be the null
generator of S passing through p = η(0).

Let b(s) = bη′(s), and take θ = tr b. By invariance of sign
under scaling, θ(0) < 0.
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By Raychaudhuri’s equation and the NEC,

dθ

ds
≤ − 1

n− 1
θ2 ,

and hence θ < 0 for s > 0. Dividing through by θ2 gives,

d

ds

(
1

θ

)
≥ 1

n− 1
,

which implies 1/θ → 0, i.e., θ → −∞ in finite affine
parameter time, →←.

Re: Hawking area theorem; cf., Chruściel, Delay, G.
Howard (2001).

Totally geodesic null hypersurfaces.

By def., a smooth null hypersurface S is totally geodesic
iff B ≡ 0 (or, equivalently, iff θ = σ = 0).

Prop. A null hypersurfaces S is totally geodesic iff
geodesics starting tangent to S remain in S.

Ex. Null hyperplanes in Minkowski space, the event hori-
zon in Schwarzschild are totally geodesic.
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Maximum Principle for Smooth Null hypersurfaces.

Theorem. Suppose

• S1 and S2 are smooth null hypersurfaces in M .

• S1 , S2 meet at p ∈ M , with S2 to the future side
of S1 near p.

• θ2 ≤ 0 ≤ θ1 .

Then S1 and S2 coincide near p, and θ1 = θ2 = 0.

Proof:

S1 and S2 have a common null direction at p. Let Q
be a timelike hypersurface in M passing through p and
transverse to this direction. Consider the intersections,

Σ1 = S1 ∩Q , Σ2 = S2 ∩Q

Σ1 and Σ2 are spacelike hypersurfaces in Q, with Σ2 to
the future of Σ1 near p.
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Express Σ1 and Σ2 as graphs over a fixed hypersurface
V in Q,

Σ1 = graph (u1) , Σ2 = graph (u2)

Let,

θ(ui) = θi|Σi= graph (ui)
, i = 1,2

By a computation,

θ(ui) = H(ui) + l.o.t.

where H = mean curvature operator on spacelike graphs
over V in Q. Thus θ is a second order quasi-linear elliptic
operator.

We have:

• u1 ≤ u2, and u1(p) = u2(p).

• θ(u2) ≤ 0 ≤ θ(u1).

By the strong maximum principle, u1 = u2.

Thus, S1 and S2 agree near p in Q. Now, vary Q to get
agreement on a neighborhood.
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C0 Null hypersurfaces

In GR, the null hypersurfaces of interest, e.g. horizons
of various sorts, are not smooth in general.

Such hypersurfaces often arise as the null portions of
achronal boundaries, i.e., boundaries of pasts/futures,

A ⊂M, ∂I±(A) = achronal boundary.

• Black hole event horizon: H = ∂I−(I+) ∩M

• Observer horizons: ∂I−(γ)

• Cauchy horizons: H+(S) = ∂I−(D+(S)) ∩ J+(S)
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Achronal boundaries.

Def. An achronal boundary is a set of the form ∂I+(A)
(or ∂I−(A)).

Prop. An achronal boundary ∂I+(A), if nonempty, is a
closed achronal C0 hypersurface in M .

Discussion of proof:

Lemma. If p ∈ ∂I+(A) then I+(p) ⊂ I+(A), and simi-

larly, I−(p) ⊂M \ I+(A).

Pf: q ∈ I+(p) ⇒ p ∈ I−(q). Since I−(q) is a nbd of p,
and p is on the boundary of I+(A), I−(q) ∩ I+(A) 6= ∅,
and hence q ∈ I+(A).

Since I+(A) does not meet ∂I+(A), it follows from the
lemma that ∂I+(A) is achronal.

It also follows from the lemma that ∂I+(A) is edgeless.
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Def. The edge of a closed achronal set S ⊂ M is the
set of points p ∈ S such that every neighborhood U of p,
contains a timelike curve from I−(p, U) to I+(p, U) that
does not meet S.

Prop. A closed achronal edgeless set S ⊂ M is a C0

hypersurface in M .

As a corollary, achronal boundaries are C0 hypersurfaces.

Prop. Let A ⊂M be closed. Then each p ∈ ∂I+(A) \A
lies on a null geodesic contained in ∂I+(A), which either
has a past end point on A, or else is past inextendible
in M .
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Proof.

Choose {pn} ⊂ I+(A) such that pn → p, and let γn be
a past directed timelike curve from pn to A. By Ascoli,
and passing to a subsequence, {γn} converges to a past
directed causal curve γ ⊂ ∂I+(A) from p. Since γ is
both causal and achronal, it must be a null geodesic.

Each γn is past inextendible in M \ A, and hence so is
γ. Thus γ either has a past end point on A or is past
inextendible in M .
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C0 null hypersurfaces.

Thus sets of the form

S = ∂I+(A) \A, resp., S = ∂I−(A) \A ,
with A closed, are achronal C0 hypersurfaces, ruled by
null geodesics which are past, resp. future, inextendible
in S.

Def. A C0 future null hypersurface is a locally achronal
C0 hypersurface S, which is ruled by null geodesics that
are future inextendible in S.

Ex. S = ∂I−(A) \A, A ⊂M closed.

Ex. M = Minkowski 3-space, A = two disjoint spacelike
disks in t = 0. Then S = ∂I−(A) \ A is a C0 future null
hypersurface in M

A C0 past null hypersurface is defined time-dually: it is
ruled by null geodesics that are past inextendible within
the hypersurface.
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Mean curvature inequalities for C0 null hypersurfaces.

C0 null hypersurfaces do not have null mean curvature
in the classical sense, but may obey null mean curvature
inequalities in a support sense.

Def. Let S be a C0 future null hypersurface. S has
null mean curvature θ ≥ 0 in the support sense provided
∀p ∈ S, and ∀ε > 0, there exists a smooth (C2) null
hypersurface Wp,ε such that
• Wp,ε is a past support hypersurface for S at p.
• θp,ε(p) ≥ −ε .

(For this definition, it is assumed that the null vectors
have been uniformly scaled, e.g., have unit length wrt a
background Riemannian metric.)

Note: If S is smooth then θ ≥ 0 in the usual sense.

Ex. M = Minkowski space, S = ∂I+(p). S is a C0 future
null hypersurface having θ ≥ 0 in the support sense.
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If S is a C0 past null hypersurface, one defines θ ≤ 0
in a support sense in an analogous manner in terms of
future support hypersurfaces.

Prop. Let S be a C0 future null hypersurface in M .
Suppose,

• M obeys the null energy condition.

• The null generators of S are future geodesically
complete.

Then θ ≥ 0 in the support sense.

Proof: WLOG, may assume S is achronal. Given p ∈ S,
let η : [0,∞) → S ⊂ M , s → η(s), be a null generator of
S from p = η(0).

For any r > 0, consider small pencil of past directed null
geodesics from η(r). Forms a smooth (caustic free)
null hypersurface Wp,r containing η|[0,r], which is a lower
support hypersurface for S at p.

Let θ = θ(s), 0 ≤ s ≤ r, be the null mean curvature of
Wp,r along η|[0,r].
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By Raychaudhuri and NEC we have,

dθ

ds
≤ − 1

n− 1
θ2,

Together with θ(r) = −∞ gives,

θ(0) ≥ −n− 1

r

Maximum principle for C0 null hypersurfaces.

Theorem. Suppose

• S1 is a C0 future null hypersurface, and S2 is a C0

past null hypersurface in M .

• S1 , S2 meet at p ∈ M , with S2 to the future side
of S1 near p.

• θ2 ≤ 0 ≤ θ1 in the support sense.

Then S1 and S2 coincide near p, and form a smooth null
hypersurface with θ = 0.
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Comments on the proof:

Although there are some technical issues, the proof pro-
ceeds essentially as in the smooth case.

Can show p is an interior point of a null generator com-
mon to both S1 and S2 near p. As before, intersect S1

and S2 with a timelike hypersurface Q through p, trans-
verse to this generator.

Σ1 and Σ2 will be C0 spacelike hypersurfaces in Q, with
Σ2 to the future of Σ1 near p.

Can express Σ1 and Σ2 as graphs over a fixed hypersur-
face in Q,

Σ1 = graph (u1) , Σ2 = graph (u2)

One has:
• u1 ≤ u2, and u1(p) = u2(p).
• θ(u2) ≤ 0 ≤ θ(u1) in the support sense.

Need a suitable weak version of the strong maximum
principle: Andersson, Howard, G. (’98, Comm. Pure
Appl. Math.)

For further details, see: G., Ann. Henri Poincaré 1
(2000) 543.
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The Null Splitting Theorem

Lines in Spacetimes.

A timelike line is an inextendible timelike
geodesic each segment of which is maximal.

The standard Lorentzian splitting theorem describes the
rigidity of spacetimes containing a timelike line:

Theorem. Suppose

• M is timelike geodesically complete.

• M obeys the strong energy condition, Ric(X,X) ≥
0, for timelike X.

• M has a timelike line.

Then M splits isometrically along the line, i.e., (M, g) is
isometric to (R×V,−dt2⊕h), where (V, h) is a complete
Riemannian manifold.

Comment:

• Precise analogue of the Cheeger-Gromoll splitting
theorem of Riemannian geometry.

• Recall, posed as a problem by Yau in the early 80’s
as an approach to removing the genericity assump-
tions in the Hawking-Penrose singularity theorems.
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A null line in a spacetime M is an inextendible null
geodesic which is achronal, i.e. no two points can be
joined by a timelike curve. (Thus each segment of a
null line is maximal.)

• Global condition.

• Null lines arise naturally in causal arguments: E.g.,
recall sets of the form,

∂I±(A) \A , A closed

are ruled by null geodesics which must be achronal.
• Null lines have arisen in many situations, e.g., the

Hawking-Penrose singularity theorems, topological
censorship, Penrose-Sorkin-Woolgar approach to pos-
itive mass, and related results of Gao-Wald on grav-
itational time delay, etc.

• Examples: Minkowski space, de Sitter, anti-de Sit-
ter, Schwarzschild

One expects some rigidity in spacetimes which contain
a null line and which obey the null energy condition.

The NEC tends to focus congruences of null geodesics,
which can lead to the occurence of null conjugate points.
A null geodesic containing a pair of null conjugate points
can’t be achronal.
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Theorem (Null Splitting Theorem). Suppose,
• M is null geodesically complete.
• M obeys the null energy condition,

Ric (X,X) ≥ 0 for all null X.
• M contains a null line η.

Then η is contained in a smooth closed achronal totally
geodesic null hypersurface S.

(1) Ex. Minkowski space - each null geodesic is con-
tained in a unique null hyperplane.

(2) The ”splitting” is in S: B = 0 ⇐⇒ θ = σ = 0 ⇐⇒
metric h on TS/K is invariant under flow generated
by K.

(3) The proof is an application of the maximum principle
for C0 null hypersurfaces. To motivate, consider the
situation in Minkowski space:

Π = lim
x→−∞

∂I+(x) = ∂I+(η)

= lim
y→∞

∂I−(y) = ∂I−(η)
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Proof: Set,

S+ = ∂I+(η) , S− = ∂I−(η)

Since η is achronal, η ⊂ S+ ∩ S−.

Claim. S+ is a C0 past null hypersurface whose null
generators are past inextendible in M . (Similarly for S−.)

Pf: As an achronal boundary, S+ is an achronal C0 hy-
persurface.

Now, for simplicity assume M is strongly causal. Then
η is closed as a subset of M .

By property of achronal boundaries, each point p ∈ S+\η
is on a null geodesic which is either past inextendible
in M or else has past endpoint on η. The latter is
impossible:

This violates the achronality of S+ .
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Claim. The null mean curvature of S− and of S+ satisfy,

θ+ ≤ 0 ≤ θ− in the support sense.

Pf: By the completeness assumption, and the previous
claim, the generators of S+ are past complete, and the
generators of S− are future complete. Thus, the claim
follows from a previous proposition.

At each point of the intersection p ∈ S+ ∩ S−, S+ lies
locally to the future of S−. Thus be the maximum prin-
ciple S+ and S− agree near p, and form a smooth null
hypersurface with vanishing null mean curvature.

It follows that S+ ∩ S− is both open and closed in S+

and in S−. Thus,

S+ = S+ ∩ S− = S− ,

and S = S+ = S− is a smooth null hypersurface with
θ = 0.

Raychaudhuri’s equation,

dθ

ds
= −Ric (η′, η′)− σ2 − 1

n− 1
θ2

and the NEC now imply that S is totally geodesic.

Note: With regard to the completeness assumption, the
proof only requires that the generators of ∂I+(η) be
past complete and the generators of ∂I−(η) be future
compete.
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Applications

• Re: the null splitting theorem: If M is null geodesi-
cally complete, obeys the null energy condition, and
contains a null line η then η is contained a smooth
closed achronal totally geodesic null hypersurface.

• Re: the rigidity philosophy.

• Re: the proof. Use the max prin for C0 null hyper-
surfaces to show that

S+ = ∂I+(η) and S− = ∂I−(η)

agree, and form a smooth totally geodesic null hy-
persurface.

• Re: the completeness assumption. Proof only re-
quires null generators of S+ to be past complete,
and null generators of S− to be future complete.

• NEC and the Einstein equations: If the Einstein
equations with cosmological constant hold,

Rij −
1

2
Rgij + Λgij = 8πTij

then

Ric (X,X) = 8πTijX
iXj

for all null vectors X.

Hence the NEC is insensitive to the sign of the
cosmological constant. In particular in the vacuum
case, Tij = 0, the NEC is always satisfied, regardless
of the sign of Λ.
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Consider now some global results for solutions to the
Einstein equations with prescribed asymptotics.

Use Penrose’s notion of conformal infinity to treat the
asymptotics.

Based on the conformal imbeddings of Minkowski space,
de Sitter space and anti-de Sitter space into the Einstein
static universe:

Minkowki de Sitter anti-de Sitter

We are going to focus primarily on spacetimes which are
asymptotically de Sitter, i.e., for which the conformal
boundary I is spacelike.
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Def. (M, g) is a spacetime of de Sitter type provided
there exists a smooth spacetime-with-boundary (M̃, g̃)
and a smooth function Ω on M̃ such that

• M is the interior of M̃ ; hence M̃ = M ∪ I, I = ∂M̃ .

• g̃ = Ω2g, where (i) Ω > 0 on M , and (ii) Ω = 0,
dΩ 6= 0 along I.

• I is spacelike.

I decomposes into two disjoint sets,

I = I+ ∪ I−

where, I+ ⊂ I+(M, M̃) and I− ⊂ I−(M, M̃).

Def. A spacetime M of de Sitter type is asymptotically
simple provided each inextendible null geodesic in M has
a future end point on I+ and a past end point on I−.

Ex. De Sitter space, which can be expressed in global
coordinates as,

M = R× Sn, ds2 = −dt2 + cosh2 t dΩ2

Ex. Schwarzschild-de Sitter space (dim 4).

ds2 = −(1− 2m

r
− Λ

3
r2) dt2 + (1− 2m

r
− Λ

3
r2)−1dr2 + r2dω2 ,

where Λ > 0 (and 9Λm2 < 1).
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Penrose diagram:

SS-DeS is a spacetime of de Sitter type, but is not
asymptotically simple.

Ex. FRW spacetime,

M = R×Σ , ds2 = −dt2 + a2(t)dσ2

which is a solution to the Einstein equations with perfect
fluid source and Λ > 0.

Starts from a big bang but behaves like de Sitter to the
far future.

For such models, I = I+, i.e., there is a future conformal
infinity, but no past conformal infinity. Shall also refer
to such spacetimes as being of de Sitter type.
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Asymptotic simplicity can be related to the causal struc-
ture of of spacetime.

Prop. Let M be a spacetime of de Sitter type with
future conformal infinity I+.

(1) If M is future asymptotically simple then M is glob-
ally hyperbolic.

(2) If M is globally hyperbolic and I+ is compact then
M is future asymptotically simple.

In either case, the Cauchy surfaces of M are homeomor-
phic to I+.

Comments on proof.

(1): Extend M ∪ I+ a little beyond I+ to obtain a
spacetime without boundary Q such that I+ is a future
Cauchy surface in Q:

i.e. such that D+(I+, Q) = J+(I+, Q) ⇐⇒ H+(I+, Q) = ∅.

We claim H−(I+, Q) = ∅, as well, and hence I+ is a
Cauchy surface for Q.
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Suppose H−(I+, Q) 6= ∅:

By asymptotic simplicity, null generators of H−(I+, Q)
must meet I+ →←.

Thus I+ is Cauchy for Q, and Q is globally hyperbolic.
One can then construct a Cauchy surface for Q lying
entirely in M . This is easily seen to be a Cauchy surface
for M , as well, and hence M is globally hyperbolic.

Finally, since all Cauchy surfaces are homeomorphic, the
Cauchy surfaces of M are homeomorphic to I+.

(2): Similar arguments involved. Uses the basic fact:

Prop. If S is a compact achronal hypersurface in a glob-
ally hyperbolic spacetime M then S must be a Cauchy
surface for M .
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Uniqueness results for spacetimes of de Sitter type.

Every null geodesic in de Sitter space is a null line (in-
extendible achronal null geodesic).

This is related to the fact that the observer horizon
∂I−(γ) of every observer (future inextendible timelike
curve) γ is eternal, i.e. extends from I+ to I−.

Theorem. Suppose M4 is an asymptotically simple
spacetime of de Sitter type satisying the vacuum Ein-
stein equation,

Ric = λg

with λ > 0. If M contains a null line then M is isometric
to de Sitter space.

Comment: This can be interpreted in terms of the initial
value problem, due to Friedrich’s results on the nonlinear
stability of asymptotic simplicity, in the case Λ > 0.

• In general, a small perturbation of the initial data
in de Sitter space destroys all the null lines, i.e.,

• in the perturbed spacetime, there are no eternal
observer horizons.
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Proof. The main step is to show M has constant cur-
vature.

η is contained in a smooth totally geodesic null hyper-
surface S. Focus on situation near p:

S = ∂I+(η,M) = ∂I+(p, M̃) ∩M

Thus, Np = S ∪ {p} is a smooth null cone in M̃ . Since
the shear σ is a conformal invariant, the null generators
of Np have vanishing shear.

The trace free part of the Ricatti equation then implies,

C̃aKbK = 0 (⇐⇒ ψ̃0 = 0)
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By an argument of Friedrich ’86,

Ci
jkl = 0 on D+(Np, M̃) ∩M

Argument makes use of the conformal field equations,
specifically,

∇̃idijkl = 0, dijkl = Ω−1Ci
jkl

Time-dually, Ci
jkl vanishes on D−(Nq, M̃)∩M , and hence

on all of M .

Thus M has constant curvature. It can be further shown
that M is geodesically complete and simply conncted,
and so M is isometric to de Sitter space.

Comments.

(1) The assumption of asymptotic simplicity cannot be
removed, cf., SS-deS space. But it appears it can be
substantially weakened.

¿Theorem? Suppose M is a maximally globally hyper-
bolic spacetime of de Sitter type satisying the vacuum
Einstein equation,

Ric = λg

with λ > 0. If M contains a null line with end points on
I then M is isometric to de Sitter space.
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(2) Analogous result holds for Minkowski space.

Theorem. Suppose M4 is an asymptotically simple
spacetime satisying the vacuum Einstein equation,

Ric = 0 .

If M contains a null line then M is isometric to Minkowski
space.

Remarks:

• Due to Corvino-Chrusćiel-Delay, this result is not
vacuous!

• Asymptotic simplicity assumption is not so easily
weakened in this case.

• This result should continue to hold in the nonva-
cuum case for certain fields (matter fields, EM,
Yang-Mills).
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Results on the topology of spacetimes of de Sitter type.

Q. What are the allowable spatial topologies within the
class of asymptotically simple and de Sitter solutions of
the Einstein equations?

Theorem (Andersson, G.) Let Mn+1, n ≥ 2, be a space-
time of de Sitter type with past and future conformal
boundaries I±. Assume that M is asymptotically simple
either to the past or future. Assume further that M
obeys the null energy condition.

Then M is globally hyperbolic, and the Cauchy surfaces
for M are compact with finite fundamental group.

Comments.

(1) Thus, in 3 + 1, the Cauchy surfaces are homotopy
3-spheres, perhaps with identifications.

(2) In particular, the Cauchy surfaces cannot have topol-
ogy S2×S1. Or, put another way if the Cauchy sur-
face topology is S2×S1, then M cannot be asymp-
totically simple, either to the future or the past; cf.,
SS-deS.

Proof. We show the Cauchy surfaces of M are compact.

Can extend M a little beyond I± to obtain a spacetime
P ⊃ M̃ such that any Cauchy surface for M is a Cauchy
surface for P .

Suffices to show the Cauchy surfaces of P are compact.
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Fix p ∈ I−, and consider ∂I+(p, P ):

If ∂I+(p, P ) is compact then ∂I+(p, P ) is a compact CS
for P and we are done.

If ∂I+(p, P ) is noncompact then can construct null geodesic
generator γ ⊂ ∂I+(p, P ) which is future inextendible
in P .

By future asymptotic simplicity, γ meets I+ at q, say.
γ0, the portion of γ from p to q is a null line in M .

By the null splitting theorem, γ0 is contained in a totally
geodesic null hypersurface S. By previous arguments,
N = S ∪ {p, q} is a compact achronal hypersurface in P :

Hence, N is a compact Cauchy surface for P . Thus the
Cauchy surfaces for M are compact.
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We consider a related result which is an application of
the Penrose singularity theorem,

Theorem (Penrose). Let M be a globally hyperbolic
satisfying the null energy condition. Then the following
conditions cannot all hold.
• The Cauchy surfaces of M are non-compact.
• M contains a past-trapped surface.
• M is past null geodesically complete.

Theorem (Andersson, G.) Suppose Mn+1, 2 ≤ n ≤ 7, is
a globally hyperbolic spacetime of de Sitter type, with
future conformal boundary I+, which is compact and ori-
entable. Suppose further that M obeys the null energy
condition.

If the Cauchy surfaces of M have positive first Betti
number, b1 > 0, then M is past null geodesically incom-
plete.

Discussion of proof.

In the far future, can choose a CS N for M , with sec-
ond fundamental form which is positive definite wrt the
future pointing normal.
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Now, b1(N) > 0 ⇐⇒ Hn−1(N,Z) 6= 0.

Minimizing area in homology class, obtain a homologi-
cally nontrivial smooth compact orientable minimal hy-
persurface surface W ⊂ N :

The preimage of W in the covering spacetime consists of
infinitely many copies of W each past trapped, contained
in a noncompact CS. Thus M ′, and hence M must be
past null geodesically complete.

Comment: Further results on the topology of space-
times of de Sitter type may be found in: Andersson and
G., hep-th/0202161.
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