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Abstract
We show that any vacuum initial data set containing a marginally outer trapped
surface S and satisfying a ‘no KIDs’ condition can be perturbed near S so that S
becomes strictly outer trapped in the new vacuum initial data set. This, together
with the results in Eichmair et al (2012), gives a precise sense in which generic
initial data containing marginally outer trapped surfaces lead to geodesically
incomplete spacetimes.
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1. Introduction

In [8] results were obtained concerning the topology of three-dimensional asymptotically
flat initial data sets (S , g, K). It is proven there that if the initial data 3-manifold S is not
diffeomorphic to R

3 then it contains an immersed marginally outer trapped surface (MOTS),
cf [8, theorem 4.1]. Recall that a MOTS in an initial data set (S , g, K) is a closed embedded
two-sided hypersurface S in S such that the null expansion θ+ with respect to one of the
two null normal fields �+ to S vanishes, θ+ = 0. An immersed MOTS is the image under a
finite covering map p : Ŝ → S of a MOTS Ŝ in the initial data set (Ŝ , ĝ, K̂), where ĝ and
K̂ are the pullbacks via p of g and K, respectively. By considering trivial covers, we see, in
particular, that MOTSs are immersed MOTSs. Simple examples of immersed MOTSs that are
not MOTSs are described in [8].
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A basic point of view espoused in [8] is that conditions on an initial data set that imply the
existence of an immersed MOTS (such as theorem 4.1 in [8]) should be viewed as an ‘initial data
singularity result’. This view is justified by showing that a Penrose type singularity theorem
holds for immersed MOTS cf, theorem 3.2 (for MOTSs) and corollary 3.5 (for immersed
MOTSs) in [8]. By covering arguments the proofs can be reduced to the case of a MOTS that
separates a Cauchy surface. In this situation there are several conditions on a MOTS that lead
to incompleteness, as indicated in the following proposition (see [6] for related results).

Proposition 1.1. Let (M , g) be a spacetime of dimension � 3 such that the following hold.

(i) M satisfies the null energy condition, Ric(X, X ) = Ri jXiX j � 0 for all null vectors X,
and admits a noncompact Cauchy surface S .

(ii) There exists a closed, connected hypersurface S ⊂ S that is separating: S \ S = U ∪W
where U,W ⊂ S are disjoint and open and where U, say, has noncompact closure, such
that S is a MOTS with respect to the null normal field �+ that points toward U.

(iii)

(a) Either the generic condition holds along at least one future inextendible null geodesic
η emanating from S in the direction of �+,

(b) or S is a strictly stable MOTS,
(c) or the null second fundamental form χ+ of S is not identically zero.

Then (M , g) is future null geodesically incomplete.

For the sake of completeness, we indicate the proof of proposition 1.1, together with
relevant definitions, in section 3.

The generic condition in point (iii)(a) above requires that there be a non-zero tidal
acceleration somewhere along a null geodesic η as in the statement of the theorem. More
precisely, it requires that there be a point p on η and a vector X at p orthogonal to η

such that g(R(X, η′)η′, X ) �= 0, cf [3, 10]. The condition appears in the classical Hawking–
Penrose singularity theorem [10, section 8.2, theorem 2], where it is required to hold along
all inextendible causal geodesics. While this condition may seem physically reasonable,
mathematically it is rather unsatisfactory, especially from an initial data point of view. For
example, it is not known whether the maximal globally hyperbolic development of generic
vacuum initial data satisfies the generic condition, even in the weak version of point (iii) (a)
above.

Similarly, it is not known whether the remaining alternative conditions of point (iii) are
satisfied for generic initial data sets with MOTS.

The purpose of this paper is to resolve the issue by showing that, given a vacuum initial
data set (S , g, K) that contains a MOTS S and has no local Killing Initial Data (KIDs) near
S, there exists an arbitrarily small perturbation of the data in a neighborhood of S which gives
rise to a new vacuum initial data set (S , g′, K′) in which S becomes strictly outer trapped.

We proceed to a more detailed statement. Given an open set �, let K� denote the kernel
of the map

P∗(Y, N) =

⎛⎜⎜⎝
2(∇(iYj) − ∇ lYlgi j − Ki jN + tr K Ngi j)

∇ lYlKi j − 2Kl
(i∇ j)Yl + Kq

l∇qY lgi j − �Ngi j + ∇i∇ jN
+(∇ pKl pgi j − ∇lKi j)Y l − NRic(g)i j + 2NKl

iKjl − 2N(tr K)Ki j

⎞⎟⎟⎠ . (1.1)

The equations P∗(Y, N) = 0 are called the vacuum KID equations on �, and their solutions
are called KIDs. We will say that there are no local KIDs near a set S if K� = {0} for every
open neighborhood � of S. We note that the condition of non-existence of local KIDs is a
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generic property of several families of vacuum initial data sets, including the asymptotically
flat ones [4, theorem 1.3]. In particular, every vacuum asymptotically flat smooth initial data
set is the limit of a sequence of smooth such initial data sets, each of which has no local KIDs3.

We have.

Theorem 1.2. Let S be a MOTS inside, or at the boundary of, a smooth initial data set
(S , g, K) satisfying the dominant energy condition. Suppose moreover that there are no local
KIDs near S, and that (g, K) satisfies either Ji = 0 near S or μ > |J| near S. Then there exists
a family of initial data sets (S , gε, Kε ) with ε > 0 satisfying the dominant energy condition
such that

(i) S is outer-trapped within (S , gε, Kε ),
(ii) (gε, Kε ) coincides with (g, K) outside an ε-neighborhood of S, and

(iii) the data (gε, Kε ) converge to (g, K) in the C∞-topology as ε tends to zero.

If (g, K) is vacuum on a neighborhood � of S (possibly � = S ), or if Ji vanishes on �,
the pairs (gε, Kε ) can be chosen to be vacuum on �, respectively to satisfy Ji = 0 on �.

The proof of theorem 1.2 can be found in section 6.
It should be pointed out that in theorem 1.2 we allow any value of the cosmological

constant 	.
For simplicity we have assumed smoothness of all fields at hand, but an identical result

holds for metrics with finite, sufficiently high degree of differentiability.
It is clear that an analogue of the vacuum result above holds for specific matter models,

e.g. Einstein–Maxwell, or Einstein-scalar field equations, but definite claims seem to require
a case-by-case analysis which we have not attempted to carry out.

As should be clear from the proof of proposition 1.1, theorem 1.2 (together with a covering
argument from the proof of [8, theorem 3.2] when the MOTS is non-separating) implies the
following: let (S , g, K) be a vacuum initial data set, with S noncompact, and suppose S
is a MOTS in (S , g, K), without local KIDs near S. Then there exists an arbitrarily small
smooth local perturbation of the initial data to a new vacuum initial data set (S , g′, K′) whose
maximal globally hyperbolic development is null geodesically incomplete. Or, to put in more
colloquial terms, the maximal globally hyperbolic development of the vacuum initial data set
(S , g, K) is on the verge of being null geodesically incomplete, if not already so.

An outline of the proof of theorem 1.2 might be in order: let S be a MOTS within an
initial data (S , g, K) as in the theorem. We wish to show that there exists an arbitrarily small
deformation of the initial data so that S will be outer-trapped. To accomplish this, as a first step
we use the inverse function theorem and the conformal method for solving the constraints to
produce initial data in a small neighborhood of S with unchanged energy–momentum content
by imposing suitable Robin boundary conditions for the conformal factor. Supposing there are
no KIDs on this neighborhood, when S is part of the boundary of S , a gluing smoothes-out
the deformation near the other boundary of the neighborhood, preserving the outer-trapping
condition on S. When S is an interior submanifold, a subsequent deformation-and-smoothing
argument in the other direction provides the desired initial data.

2. Definitions

Let S be a spacelike hypersurface in (M , g), and consider a submanifold S ⊂ S of
codimension 1. Assume that S is two-sided in S , which means that there exists a globally
3 It is not clear that one can always arrange things so that the MOTS persists when perturbing the data. There are,
however, situations, where this occurs. The simplest such case is when S is strictly stable. Another one arises when
there are topological reasons for the existence of a MOTS.
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defined field m of unit normals to S within S . There are actually two such fields, m and
−m, we arbitrarily choose one and call it outer pointing. We let H denote the mean extrinsic
curvature of S within S ,

H := Dim
i, (2.1)

where D is the Levi-Civita connection of the Riemannian metric g induced by g on S .
Now, in the discussion above we have assumed that S is embedded into a Lorentzian

spacetime (M , g), so that the objects defined in this section have a clear spacetime meaning.
However, no such embedding is actually necessary for our purposes, and a triple (S , g, K) by
itself suffices to define all the quantities relevant for our argument. This will be our framework
for theorem 1.2.

We say that S is outer-future trapped if

θ+ := H + (gi j − mimj)Ki j < 0, (2.2)

where K is the extrinsic curvature tensor of S in M . The submanifold S is said to be a
marginally future-outer trapped surface, or simply MOTS, or a MOTS, if the inequality in
(2.2) is an equality. Finally, S is said to be weakly outer trapped if strict inequality ‘<’ in (2.2)
is replaced by ‘�’.

We emphasize that marginally trapped surfaces are assumed to be compact throughout
this paper.

3. Proof of proposition 1.1

(iii)(a): We start by noting that the conclusion of proposition 1.1 follows immediately from
the proof of [8, theorem 3.2] when (iii)(a) is replaced by the requirement that the genericity
condition holds along all null geodesics in the direction of �+. Now, in the absence of the
generic condition one has a rigidity statement: if all null geodesics in the direction of �+ are
future complete then they form a totally geodesic null hypersurface emanating from S see
[8, theorem 7.1]. The claim easily follows from this.

(iii)(b): Assume that S is a strictly stable MOTS in S , by which we mean that the
principal eigenvalue of the MOTS stability operator L
 of [1, equation (1)] is strictly positive.
Then S can be perturbed within S to a strictly outer trapped (θ+ < 0) surface, and the future
null geodesic incompleteness of (M , g) follows (cf [6]).

(iii)(c): We define the null second fundamental form of S, say χ+, as

χ+(X,Y ) = g(∇X�+,Y ),

where X,Y are tangent to S. Assume that χ+ does not vanish identically. Then S can be
perturbed to an outer trapped surface in a slight deformation S ′ of S : indeed, as follows from
Raychaudhuri’s equation, by pushing S an arbitrarily small amount along the future directed
null normal geodesics of S we obtain a surface S′ ⊂ S ′ which is weakly outer trapped, θ+ � 0,
with strict inequality at some points. Then S′ can be perturbed outward in S ′ to a strictly outer
trapped surface (cf [2, lemma 5.2]), and the result follows.

We note that when (iii)(a) holds, then at least one null geodesic in the direction of �+
is future incomplete. To see that this statement does not hold in general, consider a Cauchy
surface S in the extended Schwarzschild spacetime. Then S meets the event horizon with
respect to one of the asymptotically flat ends in a MOTS S. All outward future directed null
normal geodesics to S, which correspond to the generators of the horizon, are future complete.
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4. Conformal deformations

We consider the usual conformal approach to constructing solutions of the constraint equations.
Given initial data (g, K), let L denote the trace-free part of K, and let τ be the trace of K:

Ki j = Li j + τ

n
gi j, (4.1)

where n = dim S . For any function φ and traceless symmetric tensor L̂i j we set

g̃i j = φ
4

(n−2) gi j, (4.2)

L̃i j := φ− 2(n+2)

(n−2) (Li j + L̂i j), (4.3)

K̃i j := L̃i j + τ

n
g̃i j, (4.4)

and in applications that we have in mind L̂i j will take the form

L̂i j = DiY j + DjY i − 2

n
DkY

kgi j. (4.5)

We define the momentum vector J̃ of (̃g, K̃) by the formula

8π J̃ j := D̃i(K̃
i j − tr̃gK̃g̃i j)

= D̃i(φ
− 2(n+2)

(n−2) (Li j + L̂i j)) − (n − 1)

n
D̃ jτ

= φ− 2(n+2)

(n−2) Di(L
i j + L̂i j) − (n − 1)

n
φ− 4

(n−2) Djτ. (4.6)

The energy density μ̃ of a pair (̃g, K̃) is defined as

16πμ̃ := R(̃g) − |K̃|2g̃ + (tr̃gK̃)2 − 2	, (4.7)

where 	 is the cosmological constant. If μ̃ and the matter-current J̃i have been prescribed
(e.g. in vacuum μ̃ = 0 = J̃i), we obtain a system of equations for L̂i j and φ:

DiL̂
i j = 8πφ

2(n+2)

(n−2) J̃ j + (n − 1)

n
φ

2n
(n−2) Djτ − DiL

i j, (4.8)

�gφ − (n − 2)

4(n − 1)
Rφ = −σ 2φ

2−3n
(n−2) + βφ

n+2
(n−2) − 4(n − 2)

(n − 1)
φ

n+2
(n−2) πμ̃, (4.9)

where

σ 2 := (n − 2)

4(n − 1)
|Li j + L̂i j|2g, β :=

[
(n − 2)

4n
τ 2 − (n − 2)

2(n − 1)
	

]
. (4.10)

We will need the linearizations of the partial differential operators above, including the
boundary operators to be described in section 4.1. Given (g, K) with energy and momentum
(μ, Ji) (possibly, but not necessarily, vanishing), consider a differentiable one-parameter
family of solutions (φ(λ), L̂i j(λ)) of (4.8) and (4.9) with λ-independent (μ̃, J̃i) = (μ, Ji),
with further φ(0) = 1 and L̂(0) = 0. Set

δφ := dφ(λ)

dλ

∣∣∣∣
λ=0

, δLi j := dL̂i j(λ)

dλ

∣∣∣∣
λ=0

. (4.11)

Differentiating (4.8) and (4.9) at λ = 0 we obtain

DiδLi j = 2δφ

(n − 2)
(8π(n + 1)J j + (n − 1)Djτ ), (4.12)
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�gδφ =
(

(n − 2)

4(n − 1)
R − 2 − 3n

(n − 2)
σ 2 + n + 2

(n − 2)
β − 4π(n + 2)

(n − 1)
μ

)
δφ − (n − 2)

2(n − 1)
Li jδLi j.

(4.13)

Equation (4.5) leads to fields δLi j of the form

δLi j := DiδY j + DjδY i − 2

n
DkδY kgi j, (4.14)

which turns (4.12) and (4.13) into an elliptic system for (δφ, δY ).
By assumption φ = 1 satisfies (4.9) with μ̃ = μ, which gives

− (n − 2)

4(n − 1)
R = −σ 2 + β − 4π(n − 2)

(n − 1)
μ. (4.15)

It follows that (4.13) can be rewritten as

�gδφ −
(

4
(
(n − 1)σ 2 + β

)
(n − 2)

− 16π

(n − 1)
μ

)
︸ ︷︷ ︸

=:γ

δφ = − (n − 2)

2(n − 1)
Li jδLi j. (4.16)

Taking into account (4.14), equations (4.12) and (4.16) form a homogeneous linear system of
PDEs for (δφ, δY ).

We will seek solutions (φ(λ), L̂i j(λ)) so that the MOTS S becomes future outer trapped
for λ < 0. This will be done by applying the implicit function theorem to a family of nonlinear
boundary value problems, where the solution is driven by appropriate boundary conditions
at S, see section 6. To apply the implicit function theorem it suffices to show that the map
defined by (4.12) and (4.16) is an isomorphism. Our boundary conditions will be elliptic,
which implies that the problem is Fredholm. They will also be self-adjoint, which reduces the
problem to checking that the system (4.12), (4.16) has no kernel. The boundary conditions
will be introduced in section 4.1, while uniqueness will be established in section 5.

4.1. Conformal deformations of θ+

Let θ+ be the future outer-expansion of S in an n-dimensional initial data set (M, g, K):

θ+ := H + Ki j(g
i j − mimj)︸ ︷︷ ︸
=:θK

. (4.17)

Recall that K is decomposed as Ki j = Li j + τ
n gi j, where Li j is traceless, thus trgK = τ .

Under the rescaling gi j = φ− 4
(n−2) g̃i j as in (4.2), we have

m̃i = φ− 2
(n−2) mi, (4.18)

H̃ = 1√
det g̃kl

∂i(
√

det g̃klm̃
i) = φ− 2n

(n−2)

√
det gkl

∂i(φ
2n

(n−2)

√
det gklφ

− 2
(n−2) mi)

= φ− 2
(n−2)

(
H + 2(n − 1)m(φ)

(n − 2)φ

)
, (4.19)

θ̃K̃ := K̃i j (̃gi j − m̃im̃ j)

=
(

L̃i j + τ

n
g̃i j

)
(̃gi j − m̃im̃ j) = −L̃i jm̃im̃ j + (n − 1)

n
τ

= − φ− 2n
(n−2) (Li j + L̂i j)mimj + (n − 1)

n
τ, (4.20)
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θ̃+ = H̃ + θ̃K̃

= φ− 2
(n−2)

(
θ+ + 2(n − 1)m(φ)

(n − 2)φ

)
+ (φ− 2n

(n−2) − φ− 2
(n−2) )θK

− φ− 2n
(n−2) L̂i jmimj + (n − 1)

n
(1 − φ− 2n

(n−2) )τ. (4.21)

As already pointed out, we will be using the implicit function theorem to solve our
problem, and so we need to find the linearized boundary operators. For this, given initial data
(g, K) consider again a one-parameter differentiable family (φ(λ), L̂i j(λ)) satisfying

(φ(0), L̂i j(0)) = (1, 0).

As before, let δ of a quantity denote a partial derivative with respect to λ at λ = 0. We find

δθ+ = − 2

(n − 2)
((θ+ + (n − 1)(θK − τ ))δφ − (n − 1)m(δφ)) − δLi jmimj, (4.22)

and, of course, all the quantities should be evaluated at S. Equivalently,

m(δφ) + Ki jm
imjδφ − (n − 2)

2(n − 1)
δLi jmimj = (n − 2)

2(n − 1)
δθ+ (4.23)

on S.

5. Integral identities and uniqueness

We wish to prove uniqueness of the solutions of the linearized boundary problem for the
equations for (δφ, δY ) above, with δθ+ prescribed at the boundary, when the domain of
interest is a sufficiently small collar neighborhood of S. This will be done via integration
by parts, using standard functional inequalities. We will be working in an exterior collar
neighborhood of S, with the normal m of the previous section pointing toward � on S, and
therefore it is convenient to choose m to be the inwards-pointing normal to ∂� throughout ∂�.

Multiply (4.16) by δφ and integrate by parts over a set with smooth boundary �:∫
�

|Dδφ|2 + γ δφ2 = (n − 2)

2(n − 1)

∫
�

Li jδLi jδφ −
∫

∂�

δφm(δφ). (5.1)

(Here, and elsewhere, the Riemannian measure associated to the metric g is used unless
explicitly stated otherwise.) Similarly multiply (4.12) by δYj and integrate by parts to obtain

1

2

∫
�

|δLi j|2 = −
∫

�

g(δY, Z)δφ −
∫

∂�

δYjδLi jmi, (5.2)

where Z j = 2
(n−2)

(8π(n + 1)J j + (n − 1)Djτ ).
Let S ⊂ ∂� be a compact hypersurface in a Riemannian manifold (S , g). Let (x, yA) be

a Gauss coordinate system near S,

g = dx2 + gAB(x, yC)dyAdyB, (5.3)

with S given as {x = 0}, and yA being local coordinates on S propagated to a tubular
neighborhood of S0 along geodesics normal to S.

Let �ε = [0, ε] × S, for some ε > 0 that will be chosen shortly. For reasons that will
become apparent in section 6, we will seek solutions of (4.12) and (4.16) with the boundary
conditions, in the adapted coordinates (x, yA) near S = {x = 0} ⊂ ∂�ε ,

δY A|S = 0, ∂xδY x|S = 0, m(δφ)|S = αδφ + βδY x + η, (5.4)

where α, β and η are smooth functions and where m = ∂x, consistently with our previous
notation. On the remaining part of ∂�ε we will assume

δY |{ε}×S = 0, δφ|{ε}×S = 0. (5.5)

7
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The integral identities (5.1) and (5.2) and the boundary conditions (5.4) and (5.5) with
η = 0 lead to ∫

�ε

|Dδφ|2 = −
∫

�ε

γ δφ2 −
∫

S
αδφ2−

∫
S
βδφδY x

= + (n − 2)

2(n − 1)

∫
�ε

Li jδLi jδφ, (5.6)

1

2

∫
�ε

|δLi j|2 = −
∫

�ε

g(δY, Z)δφ + 2

n

∫
S

H(δY x)2. (5.7)

Adding, we obtain∫
�ε

|Dδφ|2 + 1

2
|δLi j|2 = −

∫
�ε

γ δφ2 −
∫

�ε

g(δY, Z)δφ + (n − 2)

2(n − 1)

∫
�ε

Li jδLi jδφ

−
∫

S
αδφ2−

∫
S
βδφδY x + 2

n

∫
S

H(δY x)2. (5.8)

Let h be the x-independent Riemannian metric,

h := dx2 + gAB(0, yC)dyAdyB.

Recall the Poincaré inequality,∫
[0,1]×S

δφ2 + |δY |2h � C
∫

[0,1]×S
(∂xδφ)2 + |∂xδY |2h, (5.9)

with some constant C, for all smooth functions δφ and vector fields δY satisfying (5.5) with
ε = 1 there. To make things clear we wrote |δY |h and |∂xδY |h for the norm of the vector fields
δY = δY i∂i and ∂xδY := (∂xδY k)∂k in the metric h, but in what follows we will simply write
|δY | instead of |δY |h, etc. In (5.9) it is convenient to use the Riemannian measure associated
with h, as then by scaling we obtain∫

[0,ε]×S
|δY |2 + δφ2 � Cε2

∫
[0,ε]×S

|∂xδY |2 + (∂xδφ)2, (5.10)

with the same constant. However, replacing C by a larger constant if necessary, (5.10) remains
true for all 0 < ε � 1 when the measure of h is replaced by that of g, which we henceforth
use until further notice.

Now, we claim that∫
[0,ε]×S

|∂xδY |2 � C
∫

[0,ε]×S
|δL|2, (5.11)

for a constant C which can be chosen independently of ε. To see this, note that∫
�ε

δLi jδLi j =
∫

�ε

|DδY |2 + DiδYjD
jδY i − 2

n
divδY 2. (5.12)

Using our boundary conditions on ∂�ε , we find∫
�ε

DiδYjD
jδY i =

∫
∂�ε

miδYjD
jδY i︸ ︷︷ ︸

=0

−
∫

�ε

δYj DiD
jδY i︸ ︷︷ ︸

=DjDiδY i+Rj
kδY k

=
∫

∂�ε

mjδYjDiδY i︸ ︷︷ ︸
=H(δY x )2

+
∫

�ε

(div δY )2 −
∫

�ε

RjkδY jδY k.

Inserted into (5.12) this gives∫
�ε

δLi jδLi j =
∫

�ε

|DδY |2 + (n − 2)

n
(div δY )2 − RjkδY jδY k +

∫
∂�ε

H(δY x)2. (5.13)

8
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The boundary term above may be handled as follows; here it is convenient to use the
product h-measure. With the current boundary conditions we have∫

∂�ε

H(δY x)2 =
∫

{0}×S
H(δY x)2 = −

∫ ε

0

d

dx

∫
{x}×S

H(δY x)2

=
∫

�ε

∂H

∂x
(δY x)2 + 2HδY x ∂δY x

∂x
.

This can be estimated in modulus by

C
∫

�ε

(δY x)2 + |δY x∂xδY x| � C
(‖δY x‖2

L2(�ε )
+ ‖δY x‖L2(�ε )‖∂xδY x‖L2(�ε )

)
� C′(ε2 + ε)‖∂xδY x‖2

L2(�ε )
, (5.14)

with some other constant C′. As before, replacing C′ by a larger constant if necessary, (5.14)
remains true when the measure of h is replaced by that of g.

Using the above estimate and (5.10) in (5.13), (5.11) easily follows for ε small enough.
We conclude that∫

[0,ε]×S
|δY |2 � Cε2

∫
[0,ε]×S

|δL|2, (5.15)

for some constant C.
To close the inequalities it remains to estimate the integrals over S in (5.8). In fact, one

of those integrals has just been estimated above, and the remaining ones may be handled
in an essentially identical manner. Using (5.10), (5.15) and these boundary estimates it is
straightforward to show now that, choosing ε small enough, the right-hand side of (5.8) is
dominated by one-half of the left-hand side. One concludes that δφ = δY = 0, whence
uniqueness.

6. Proof of theorem 1.2

We start with a preliminary result.

Proposition 6.1. Let (S , g, K) be an initial data set with energy–momentum (μ, Ji) and with a
marginally trapped boundary component S. Let �ε ≈ [0, ε]×S denote a collar neighborhood
of S extending a g-distance ε from S. There exist real numbers ε0 > 0 and s0(ε) > 0 with the
following property: for all 0 < ε < ε0 and for all s ∈ (−s0(ε), s0(ε)) there exist smooth fields
(̃gs, K̃s) defined on �ε , satisfying the constraint equations with s-independent sources (μ, Ji),
with the future expansion scalar θ̃+(s) of S within (̃gs, K̃s) satisfying

θ̃+(s) = s. (6.1)

Furthermore, for every k ∈ N the fields (̃gs, K̃s) converge to (g, K) in Ck(�ε ) as s approaches
zero.

Proof. Given a function φ and a vector field Y let (̃g, K̃) be given by (4.2)–(4.5) with, as
elsewhere, Ki j = Li j + τ

n gi j.
Let β ∈ (0, 1), k ∈ N. Consider a Banach manifold E1 ⊕ E2 defined as follows: as E1 we

take the space of all functions in Ck+2,β (�̄ε ) equal to one on {ε} × S. As E2 we take the space
of Ck+2,β (�̄ε ) sections of the bundle of vectors tangent to S over �ε satisfying the boundary
conditions

Y A|S = 0, ∂xY
x|S = 0, Y |{ε}×S = 0, (6.2)

in adapted coordinates as in (5.3).
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Let

E1 × E2 � (φ,Y ) �→ C (φ,Y ) := (μ̃, J̃i, θ̃+) ∈ Ck,β (�̄ε ) × Ck,β (�̄ε ) × Ck+1,β (S)

be the differentiable map which to (φ,Y ) ∈ E1 × E2 assigns the energy and momentum
(μ̃, J̃i) of the pair (̃g, K̃), as in (4.6)–(4.7), and the outer-future expansion θ̃+ of S in (̃g, K̃).
The derivative of C with respect to (φ,Y ) at φ = 1 and Y = 0 is the operator which has
been studied in section 5, and has been shown to be injective there when ε is chosen small
enough. This linear operator is formally self-adjoint. It is Fredholm by standard theory (see,
e.g., the a priori estimates of [9, theorem 6.30], and the comments at the end of section 6.7
there) hence a linear isomorphism. We can apply the inverse mapping theorem [11, theorem
5.9] to conclude that C is a diffeomorphism near (g, K). The pair (̃gs, K̃s) with the required
properties is obtained as the image by C −1 of (μ, Ji, s). �

We are ready to pass to the proof of our main result.

Proof of theorem 1.2 Let ε > 0. Suppose, first, that S is a component of the boundary of
S . Let si ↗ 0 and, replacing ε by a smaller number if necessary, consider the corresponding
sequence of data (̃gsi , K̃si ) → (g, K) on a small tubular neighborhood �ε of S, as given by
proposition 6.1. Using the results in [5] (compare [7]), the hypothesis that there are no local
KIDs near S allows us to glue, for i large enough, (̃gsi , K̃si ) with (g, K), in a way such that the
resulting initial data set coincides with (g, K) outside of �ε , and with (̃gsi , K̃si ) near S, and
has the same energy–momentum content (μ, Ji). In particular we have θ̃+ = si < 0, and S is
outer-trapped in the new initial data set. The energy conditions μ = 0 = Ji, or μ � 0 and
Ji = 0, or μ > |J| will be satisfied (at least for i large enough in the last case) by construction,
which establishes our claim when S ⊂ ∂S .

Suppose, next, that S is a submanifold of S . The construction just done on the outer
side of S makes S outer-trapped in each of the resulting data sets, labeled by si. Increasing
i if necessary, the construction described in [5, section 8.6] allows us to find smooth pairs
(gi, Ki) which coincide with the data sets already constructed on the outer side of S, and
which are equal to (g, K) outside of a small inner tubular neighborhood of S, with μ and Ji

unchanged. �
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[4] Beig R, Chruściel P T and Schoen R 2005 KIDs are non-generic Ann. Henri Poincaré 6 155–94
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