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Topological Censorship
for Kaluza–Klein Space-Times

Piotr T. Chruściel, Gregory J. Galloway and Didier Solis

Abstract. The standard topological censorship theorems require asymptotic
hypotheses which are too restrictive for several situations of interest. In this
paper we prove a version of topological censorship under significantly weaker
conditions, compatible, e.g., with solutions with Kaluza–Klein asymptotic
behavior. In particular we prove simple connectedness of the quotient of the
domain of outer communications by the group of symmetries for models which
are asymptotically flat, or asymptotically anti-de Sitter, in a Kaluza–Klein
sense. This allows one, e.g., to define the twist potentials needed for the
reduction of the field equations in uniqueness theorems. Finally, the meth-
ods used to prove the above are used to show that weakly trapped compact
surfaces cannot be seen from Scri.

1. Introduction

A restriction on the topology of domains of outer communications is provided
by the topological censorship principle [12], which says that causal curves origi-
nating from, and ending in a simply connected asymptotic region do not see any
non-trivial topology, in the sense that they can be deformed to a curve entirely
contained within the asymptotic region. The result is one of the key steps in
the black holes uniqueness theorems (see, e.g., [7] and references therein). Pre-
cise statements to this effect have been established in the literature under various
conditions [10,13,14,17,18,21]. Of particular relevance to our work is [14], where
topological censorship is reduced to a null convexity condition of timelike bound-
aries. The first main result of this work is the proof that the conditions of [14] can
be replaced by the considerably weaker hypothesis, that the timelike boundaries
are inner future and past trapped, as defined below.
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894 P. T. Chruściel et al. Ann. Henri Poincaré

The need for this generalisation arises when studying the topology of higher
dimensional domains of outer communications invariant under isometry groups.
Recall that for asymptotically flat stationary space-times, whatever the space-
dimension n ≥ 3, simple connectedness holds for globally hyperbolic domains of
outer communications satisfying the null energy condition. Indeed, the analysis
in [10,12–14], carried-out there in dimension 3 + 1, is independent of dimensions.
However, there exist significant higher dimensional solutions which are asymptot-
ically flat in a Kaluza–Klein sense and which are not simply connected in general,
as demonstrated by Schwarzschild ×T

m “black branes”.
Now, whenever simple connectedness fails, the twist potentials characteris-

ing the Killing vectors might fail to exist, and the whole reduction process [2,4],
that relies on the existence of those potentials, breaks down. Our next main result
is the proof that the quotient space 〈〈Mext〉〉/Gs remains simply connected for
KK-asymptotically flat, or KK-asymptotically adS models, which is sufficient for
existence of twist potentials under mild conditions on 〈〈Mext〉〉/Gs, and has some
further significant applications in the study of the problem at hand, see [6]. Here
a uniformity-in-time condition is assumed on the asymptotic decay of the metric,
which will certainly be satisfied by stationary solutions.

It turns out that the methods here are well suited to address the following: it
is a well established fact in general relativity that compact future trapped surfaces
cannot be seen from infinity. The weakly trapped counterpart of this has often
been used in the literature, without a satisfactory justification available.1 Our last
main result here is the proof that borderline invisibility does indeed hold under
appropriate global hypotheses.

2. Preliminaries

All manifolds are assumed to be Hausdorff and paracompact. We use the signature
(−,+, . . . ,+), and all space-times have dimension greater than or equal to three.

2.1. Trapped Surfaces

Let (M , g) be a space-time, and consider a spacelike manifold S ⊂ M of
co-dimension two. Assume that there exists a smooth unit spacelike vector field n
normal to S. If S is a two-sided boundary of a set contained within a spacelike
hypersurface S , we shall always choose n to be the outwards directed normal
tangent to S ; this justifies the name of outwards normal for n. If S ⊂ {r = R} in
a KK-asymptotically flat or adS space-time, as defined in Sect. 4 below, then the
outwards normal is defined to be the one for which n(r) > 0.

At every point p ∈ S there exists then a unique future directed null vector
field n+ normal to S such that g(n, n+) = 1, which we shall call the outwards future
null normal to S. The inwards future null normal n− is defined by the requirement
that n− is null, future directed, with g(n, n−) = −1.

1 This fact has been first brought to our attention by David Maxwell.
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We define the null future inwards and outwards mean curvatures θ± of S as

θ± := trγ(∇n±), (2.1)

where γ is the metric induced on S. In (2.1) the symbol n± should be understood
as representing any extension of the null normals n± to a neighborhood of S, and
the definition is independent of the extension chosen.

We shall say that S is weakly outer future trapped if θ+ ≤ 0. The notion of
weakly inner future trapped is defined by requiring θ− ≤ 0. A similar notion of
weakly outer or inner past trapped is defined by changing ≤ to ≥ in the defining
inequalities above. We will say outer future trapped if θ+ < 0, etc. One can also
think of such conditions as mean null convexity conditions.

Let T be a smooth timelike hypersurface in M with a globally defined
smooth field n of unit normals to T . We shall say that T is weakly outer past
trapped with respect to a time function t if the level sets of t on T are weakly
outer past trapped. A similar definition is used for the notion of weakly outer future
trapped timelike hypersurfaces, etc.

2.2. Space-Times with Timelike Boundary

A space-time (M , g) with timelike boundary T will be said globally hyperbolic if
(M , g) is strongly causal and if for all p, q ∈ M the sets J+(p) ∩ J−(q) are empty
or compact. In this case a hypersurface S is said to be a Cauchy surface if S is
met by every inextendible causal curve precisely once. A smooth function t is said
to be a Cauchy time function if it ranges over R, if ∇t is timelike past directed,
and if all level sets are Cauchy surfaces.

As an example, let T be any sufficiently distant level set of the usual radial
coordinate r in Schwarzschild space-time. Then T is both inner future and past
trapped, see (4.6) below.

The causal theory of space-times with timelike boundary has been studied
in detail in [27]. Many important results are shown to be valid in this context.
For instance, chronological future and past sets are open and global hyperbolicity
as defined above implies causal simplicity. The following basic property of Cauchy
surfaces holds as well, and is stated for future reference.

Proposition 2.1. If S is a Cauchy surface and K is a compact subset of M then
J+(K) ∩ J−(S ) and J+(K) ∩ S are compact. �

3. Topological Censorship for Space-Times with Timelike
Boundary

We have the following generalisation of [14, Theorem 1]:

Theorem 3.1. Let t be a Cauchy time function on a space-time (M , g) with timelike
boundary T = ∪α∈ΩTα, and satisfying the null energy condition (NEC):

RµνX
µXν ≥ 0 for all null vectors Xµ. (3.1)
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Suppose that there exists a component T1 of T with compact level sets t|T1 such
that

T1 is weakly inner future trapped

with respect to t. If

all connected components Tα, α 
= 1, of T are inner past trapped

with respect to t, then

J+(T1) ∩ J−(Tα) = ∅ for Tα 
= T1.

Remarks 3.2. 1. Nothing is assumed about the nature of the index set Ω.
2. The condition that at least one of the defining inequalities is strict is nec-

essary. Indeed, let M ′ = R × S1 × · · · × S1

︸ ︷︷ ︸

nfactors

with a flat product metric, let t

be a standard coordinate on the R factor, and let ϕ ∈ [0, 2π] be a standard
angular coordinate on the first S1 factor, then M = {0 ≤ ϕ ≤ π} ⊂ M ′

satisfies the hypotheses above except for the strictness condition, and does
not satisfy the conclusion.

Let t be a time function on M , and let γ : [a, b] → M be a future directed
causal curve. The time of flight tγ of γ is defined as

tγ = t(γ(b)) − t(γ(a)).

As a step in the proof of Theorem 3.1, we note:

Proposition 3.3. Let (M , g) be a globally hyperbolic space-time satisfying the null
energy condition containing a past inwards trapped hypersurface T . Let S ⊂ M
be future inwards weakly trapped. Then there are no future directed causal curves,
starting inwardly at S, meeting T inwardly, and minimising, amongst nearby
causal curves, the time of flight between S and T .

Proof. Suppose that the result is wrong, thus there exists a future directed causal
curve γ : [a, b] → M with γ(a) ∈ S, γ(b) ∈ T , locally minimising the time of
flight. Standard considerations show that γ is a null geodesic emanating orthogo-
nally from S without S-conjugate points on [a, b). In particular J̇+(S) is a smooth
null hypersurface near γ([a, b)). Let t+ = t(γ(b)), set S+ = {t = t+} ∩ T , then
J̇−(S+) is a smooth null hypersurface near S+, that contains a segment γ([b−ε, b]).
Moreover, J̇−(S+) lies to the causal past of J̇+(S) close to γ since otherwise we
could construct a timelike curve from S to S+ close to γ, thus violating the minimi-
sation character of γ. Since γ̇(a) is inwards pointing and γ̇(b) outwards pointing,
the Raychaudhuri equation shows that the null divergence of J̇+(S) along γ is
non-positive whereas the null divergence of J̇−(S+) is positive near S+. For points
γ(s), with s 
= b but close to b, this contradicts the maximum principle for null
hypersurfaces [15,16], establishing the result. �
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Example 3.4. An example to keep in mind is the following: let p, q ∈ R
n+1 be two

spatially separated points in Minkowski space-time R
1,n. Let S = J̇−(p) ∩ J̇−(q).

The null generators of J̇−(p) and J̇−(q) are converging, when followed to the
future, and they meet S normally, which shows that S is an outwards and inwards
future trapped (non-compact) submanifold of R

1,n. Of course, in this case the
choice of “inwards” and “outwards” is a pure matter of convention.

Let n = 3, choose p = (2, 2, 0, 0), q = (2,−2, 0, 0), let T be the timelike
surface T = {r = 1}, which is both future and past inwards trapped. The null
achronal geodesic segments γ±(t) = (t,±t, 0, 0), 0 ≤ t < 2, are in J̇+(S) and, by
symmetry considerations, maximise the time of flight between S and T . Since
J̇+(S) lies below J̇−({t = 0}∩T ), the argument in the proof below, when applied
to γ±, does not lead to a contradiction. But the example shows that the exis-
tence of an achronal null geodesic segment between S and T is compatible with
the hypotheses above. In particular “locally minimising” cannot be replaced by
“extremising”.

Proof of Theorem 3.1: Let S be a weakly inner trapped compact Cauchy surface
of T1. Suppose there exists a causal curve c from S to a point p in a different
component T2. Let S be the Cauchy surface {t = t(p)} for M . We want to con-
struct a fastest null geodesic from S to T \T1; for this we need to show that only
finitely many components, Ta, of T \ T1 meet the set A = J+(S) ∩ S , which is
compact by Proposition 2.1. Suppose to the contrary, there are infinitely many of
these components that meet A. Then we obtain an infinite sequence of points {xn}
in A, each point in a different component. Since A is compact we can pass to a
convergent subsequence, still called {xn}, such that xn → x ∈ A. Since T ∩ S is
closed, x is in T . But this contradicts the half-neighborhood property of manifolds
with boundary.

The time function t on M restricts to a time function on T . By the observa-
tion in the preceding paragraph, the set (T \T1)∩J+(S)∩J−(S ) is compact and
thus we can now minimize t on causal curves from S to T \ T1 contained in the
aforementioned compact set to obtain a fastest causal curve γ from S to ∪a�=1Ta.
Since t has been minimized, γ meets T only at its endpoints, and hence must be a
null geodesic. This contradicts Proposition 3.3, and establishes the result. See [27]
for a more detailed exposition. �

We now proceed to establish a general topological censorship result for glob-
ally hyperbolic space-times with timelike boundary.

Theorem 3.5. Let (M , g) be a space-time with a connected timelike boundary T .
Let

〈〈T 〉〉 := I+(T ) ∩ I−(T )

be the domain of communications of T . Further assume 〈〈T 〉〉 has a Cauchy time
function such that the level sets t|T are compact. If the NEC holds on 〈〈T 〉〉, and
if T is inner past trapped and weakly inner future trapped with respect to t, then
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topological censorship holds, i.e., any causal curve included within 〈〈T 〉〉 with end
points on T can be deformed, keeping end points fixed, to a curve included in T .

Proof. First notice that the inclusion j : T ↪→ 〈〈T 〉〉 induces a homomorphism of
fundamental groups j∗ : π1(T ) → π1(〈〈T 〉〉). Thus there exists a covering π : M →
〈〈T 〉〉 associated to the subgroup j∗(π1(T )) of π1(〈〈T 〉〉). This covering is charac-
terized as the largest covering of 〈〈T 〉〉 containing a homeomorphic copy T0 of T ,
that is, π|T0 is a homeomorphism onto T [19]. Furthermore, this covering has the
property that the map i∗ : π1(T0) → π1(M) induced by the inclusion i : T0 → M
is surjective. Endowing M with the pullback metric π∗(g) we get a globally hyper-
bolic space-time with timelike boundary π−1(T ). Now, let γ : [a, b] → 〈〈T 〉〉 be a
causal curve with endpoints in T . Lift γ to γ0 : [a, b] → M with γ0(a) ∈ T0. By
Theorem 3.1 we know that T0 can not communicate with any other component
of π−1(T ), hence γ0(b) ∈ T0. As a consequence, γ0 is homotopic to a curve in T0

and the result follows. �

As noted in [17], topological censorship can be viewed as the statement that
any curve in 〈〈T 〉〉 with endpoints in T is homotopic to a curve in T , or equiva-
lently that the map j∗ : π1(T ) → π1(〈〈T 〉〉) is surjective. We reproduce here the
argument for completeness.

Theorem 3.6. With the same hypotheses as above, the map j∗ : π1(T ) → π1(〈〈T 〉〉)
induced by the inclusion j : T → 〈〈T 〉〉 is surjective.

Proof. Let π : M → 〈〈T 〉〉 be the universal cover of 〈〈T 〉〉 and let {Iα}, α ∈ A,
be the collection of connected components of the timelike boundary π−1(T ). Let
us define 〈〈I〉〉α,β := I+(Iα)∩ I−(Iβ). We claim that the collection of sets 〈〈I〉〉α,β

forms an open cover of M . Indeed, let p ∈ M ; since π(p) ∈ 〈〈T 〉〉 there exists a
causal curve through π(p) which starts and ends in T . Then γ lifts to a causal
curve through p which starts in some Iα and ends in some Iβ , hence the result.
Now, by Theorem 3.5 the sets I+(Iα) ∩ I−(Iβ) are empty if α 
= β. It follows
that the sets 〈〈I〉〉α,α are pairwise disjoint, cover M , and since M is connected
we conclude that |A| = 1 and hence π−1(T ) is connected. The result now follows
from the following topological result [17, Lemma 3.2]: �

Proposition 3.7. Let M and S be topological manifolds, ı : S ↪→ M an embedding
and π : M∗ → M the universal cover of M . If π−1(S) is connected then the induced
group homomorphism ı∗ : π1(S) → π1(M) is surjective.

4. Kaluza–Klein Asymptotics

In the sections that follow we shall apply Theorem 3.5 to obtain topological infor-
mation about space-times with Kaluza–Klein asymptotics: we shall say that Sext

is a Kaluza–Klein asymptotic end, or asymptotic end for short, if Sext is diffeo-
morphic to Rr ×N ×Q, where N and Q are compact manifolds. The notation Rr

is meant to convey the information that we denote by r the coordinate running
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along an R factor. Let m̊r be a family of Riemannian metrics parameterized by r,
let k̊ be a fixed Riemannian metric on Q, let finally λ̊ and ν̊ be two functions on
R, the reference metric g̊ on Rt × Sext is defined as

g̊ = −e2λ̊(r)dt2 + e−2ν̊(r)dr2 + m̊r + k̊
︸ ︷︷ ︸

=:̊γ

. (4.1)

The reason for treating N and Q separately is that the metrics m̊r are allowed to
depend on r (in the examples below we will actually have m̊r = r2m̊, for a fixed
metric m̊), while k̊ is not. The manifold Rt ×Rr ×N will be referred to as the base
manifold, while Q can be thought of as the internal space of Kaluza–Klein theory
(see, e.g., [11]).

To apply our previous results, we will need the hypothesis that the hypersur-
faces

TR := {r = R}
are inner future and past trapped for the reference metric g̊. We define the out-
wards pointing g̊-normal to TR to be n := eν̊∂r, and the two null future normals
n± to {t = const, r = const′} are given by n± = e−λ̊∂t ± n. The requirement of
“mean outwards null g̊-convexity” of TR reads

± θ̊± =
eν̊−λ̊

√
det m̊r

∂r(
√

det m̊re
λ̊) > 0. (4.2)

We will be interested in metrics g which are asymptotic, as r goes to infinity, to
metrics of the above form. The convergence of g to g̊ should be such that the
positivity of ±θ± holds, for R large enough, uniformly over compact sets of the t
variable. Two special cases seem to be of particular interest, with asymptotically
flat, or asymptotically anti-de Sitter base metrics.

4.1. Asymptotically Flat Base Manifolds

A special case of the above arises when Sext is diffeomorphic to
(

R
n \B(R)

)×Q,
where B(R) is a closed coordinate ball of radius R, thus the manifold N is an
(n − 1)-dimensional sphere. In dimension n ≥ 3 we take g̊ = −dt2 ⊕ γ̊, where
γ̊ = δ ⊕ k̊, and where δ is the Euclidean metric on R

n. If n = 2, in (4.1) we take
λ̊ = ν̊ = 0 and m̊r = r2dϕ2, where ϕ is a coordinate on S1 which does not neces-
sarily range over [0, 2π]. Thus, for all n ≥ 2 we have λ̊ = ν̊ = 0 and m̊r = r2dΩ2,
where dΩ2 is the round metric on Sn−1; strictly speaking, Rr is then (R,∞), a set
diffeomorphic to R. Metrics g which asymptote to this g̊ as r tends to infinity will
be said to have an asymptotically flat base manifold. Equation (4.2) gives

± θ̊± =
n− 1
r

(4.3)

which is positive, as required.
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We shall say that a Riemannian metric γ on Sext is Kaluza–Klein asymp-
totically flat, or KK-asymptotically flat for short, if there exists α > 0 and k ≥ 1
such that for 0 ≤ 
 ≤ k we

D̊i1 . . . D̊i�
(γ − γ̊) = O(r−α−�), (4.4)

where D̊ denotes the Levi-Civita connection of γ̊, and r is the radius function in R
n,

r :=
√

(x1)2 + . . . (xn)2, with the xi’s being any Euclidean coordinates of (Rn, δ).
We shall say that a general relativistic initial data set (Sext, γ,K) is Kaluza–Klein
asymptotically flat, or KK-asymptotically flat, if (Sext, γ) is KK-asymptotically
flat and if for 0 ≤ 
 ≤ k − 1 we have

D̊i1 . . . D̊i�
K = O(r−α−1−�). (4.5)

A space-time (M , g) will be said to contain a Kaluza–Klein asymptotically
flat region if there exists a subset of M , denoted by Mext, and a time function t
on Mext, such that the initial data (g,K) induced by g on the level sets of t are
KK-asymptotically flat.

All this reduces to the usual notion of asymptotic flatness when Q is the man-
ifold consisting of a single point; a similar comment applies to the next section.

Let TR = {r = R} be a level set of r in Mext. Then the unit outwards
pointing conormal n� to TR is n� = (1 +O(r−α))dr. This implies that the future
directed null vector fields normal to the foliation of TR by the level sets of t take
the form n± = ∂t ± xi

r ∂i +O(r−α), leading to [compare (4.3)]

± θ± =
n− 1
r

+O(r−α−1) > 0 for r large enough. (4.6)

4.2. Asymptotically Anti-de Sitter Base Manifolds

We consider, now, manifolds with asymptotically anti-de Sitter base metrics. The
base reference metric is taken of the form

− e2λ̊(r)dt2 + e−2ν̊(r)dr2 + m̊r, m̊r = r2m̊, (4.7)

which can be thought of as being a generalised Kottler metric, where m̊ is an
Einstein metric on the compact (n−1)-dimensional manifoldN, n≥2. Furthermore,

e2λ̊(r) = e2ν̊(r) = α̊r2 + β̊,

for some suitable constants α̊ > 0 and β̊ ∈ R, which can be chosen so that (4.7) is
an Einstein metric: Indeed, if Q has dimension k, then g̊ will satisfy the vacuum
Einstein equations with cosmological constant Λ if k̊ is an Einstein metric with
scalar curvature 2kΛ/(n + k − 1), while α̊ = −2Λ/n(n + k − 1), and β̊ = R(m̊)/
(n − 1)(n − 2) for n > 2, while β̊ is arbitrary if n = 2, where R(m̊) is the scalar
curvature of the metric m̊ (compare [1,3]).

In a manner somewhat analogous to the previous section, with decay require-
ments adapted to the problem at hand, we shall say that a Riemannian metric
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γ on Sext is KK-asymptotically adS if there exist a real number α > 1 and an
integer k ≥ 1 such that for 0 ≤ 
 ≤ k we have

|D̊i1 . . . D̊i�
(γ − γ̊)|̊γ = O(r−α), (4.8)

where | · |̊γ is the norm of a tensor with respect to γ̊, and r is a “radial coordinate”
as in (4.7). We shall say that a general relativistic initial data set (Sext, γ,K) is
KK-asymptotically adS, if (Sext, γ) is KK-asymptotically adS and if for 0 ≤ 
 ≤
k − 1 we have

|D̊i1 . . . D̊i�
K |̊γ = O(r−α). (4.9)

Finally, a space-time (M , g) will be said to contain a Kaluza–Klein asymptotically
adS region if there exists a subset of M , denoted by Mext, and a time function t
on Mext, such that the initial data (g,K) induced by g on the level sets of t are
KK-asymptotically adS.

The fact that KK-asymptotically adS metrics have the right null convex-
ity properties is easiest to see using the conformal compactifiability properties of
the base metric. Suppose, to start with, that Q consists only of one point, so
that k̊ = 0. Suppose further that g has a conformal compactification in the usual
Penrose sense, so that the unphysical metric g̃µν = Ω−2gµν extends smoothly to a
conformal boundary at which Ω vanishes; this is certainly the case for the reference
metrics g̊ of (4.7), and will also hold for a large class of asymptotically adS metrics
as defined above. We define the outwards directed g̃-unit normal to the level sets
of Ω to be

ñµ = − g̃µν∂νΩ
√

g̃αβ∂αΩ∂βΩ

(the minus sign being justified by the fact that Ω decreases as the conformal bound-
ary {Ω = 0} is approached). Let, finally, t be a time function on the conformally
completed manifold ˜M such that the g̃-unit timelike vector field T̃ normal to the
level sets of t is tangent to the conformal boundary; thus T̃ (Ω) = Ωψ for some
function ψ which is smooth on ˜M . Then nµ = Ωñµ and Tµ = ΩT̃µ are unit and
normal to {t = const,Ω = const′}. So, in space-time dimension n+ 1,

± θ± = ∇µ(±Tµ + nµ)

=
1

√|det g|∂µ

(
√

|det g|(±Tµ + nµ)
)

=
Ωn+1

√|det g̃|∂µ

(

Ω−n−1
√

|det g̃|Ω(±T̃µ + ñµ)
)

= n|dΩ|g̃ +O(Ω), (4.10)

which is positive for Ω small enough (in the last equation n is the space-dimension,
not to be confused with the unit normal to the level sets of Ω). It is now a simple
exercise to check that, for KK-asymptotically adS metrics, the correction terms
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arising from k̊, and from the error terms in (4.8)–(4.9) will not affect positivity of
±θ± whenever α > 1, as required above.

4.3. Uniform KK-asymptotic Ends

We shall say that a KK-asymptotically flat region, or a KK-asymptotically adS
region, is uniform of order k if there exists a time function t such that the estimates
(4.4)–(4.5), or (4.8)–(4.9), hold with constants independent of t.

5. Topological Censorship for Uniform KK-asymptotic Ends

In this section we shall consider manifolds with KK-asymptotically flat or KK-
asymptotically adS regions. Now, our approach to topological censorship in this
work requires uniformity in time of the mean null extrinsic curvatures of the
spheres {t = const, r = const′}. This might conceivably hold for a wide class
of dynamical metrics, but how large is the corresponding class of metrics remains
to be seen. Now, the applications we have in mind for our results [6] concern sta-
tionary metrics, in which case the uniformity is easy to guarantee by an obvious
choice of time functions. Hence the uniformity hypothesis is quite reasonable from
this perspective.

Consider, first, a space-time with a Killing vector field X, with complete
orbits, containing a KK-asymptotic end Sext. Then X will be called stationary
if X is timelike on Sext and approaches, as r goes to infinity, ∂t in the coordinate
system of (4.1);2

(M , g) will then be called stationary. Similarly to the standard asymptoti-
cally flat case, we set

Mext := ∪t∈Rφt[X](Sext),

where φt[X] denotes the flow of X. Assuming stationarity, the domain of outer
communications is defined as in [9,7]:

〈〈Mext〉〉 := I−(Mext) ∩ I+(Mext). (5.1)

More generally, let (M , g) admit a time function t ranging over an open interval I
(not necessarily equal to R), and a radius function r as in (4.1), with KK-asymp-
totic level sets which are uniform of order zero. We then set

Mext := {p ∈ M : r(p) ≥ R0}
for some R0 chosen large enough so that for any R ≥ R0 we have

J±(Mext) = J±({r = R}). (5.2)

2 For metrics which are asymptotically flat in the usual (rather than KK) sense, the existence of
such coordinates can be established for Killing vectors which are timelike on Sext, whenever the
initial data set satisfies the conditions of the positive energy theorem. It is likely that a similar
result holds for KK-asymptotically flat or adS metrics, but we have not investigated this issue
any further.
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To see that such an R0 exists, note that the inclusion J±(Mext) ⊃ J±({r = R})
is obvious whenever {r = R} ⊂ Mext. To justify the opposite inclusion let, say,
x ∈ J−(Mext), so there exists a future directed causal curve from x to some point
(t, p) ∈ Mext, thus p ∈ Sext. We need to show that there exists a future directed
causal curve from (t, p) to a point (t′, q) ∈ {r = R}. This follows from the some-
what more general fact, that for any t and for any two points p, q ∈ Sext such
that r(p) ≥ R0 and r(q) ≥ R0, there exists a causal curve γ(s) = (t + αs, σ(s))
such that σ(0) = p and σ(0) = q, with α and σ independent of t. Now, existence
of σ follows from connectedness of Sext. Next, the existence of a t-independent
(large) constant α so that γ is causal for g̊ follows immediately from the form
of the metric g̊. Finally, it should be clear from uniformity in time of the error
terms that, increasing α if necessary, γ will also be causal for g, independently of
t, provided R0 is chosen large enough.

The domain of outer communications is again defined by (5.1).
If the asymptotic estimates are moreover uniform to order one, we choose R0

large enough so that all level sets of {r = R}, with R sufficiently large are future
and past inner trapped.

Remark 5.1. As shown in Appendix A, there exist vacuum space-times which are
uniformly asymptotically flat to order zero, and for which the null convexity con-
ditions needed for our arguments are satisfied even though the asymptotic flatness
estimates (4.4)–(4.5) are not uniform to order one. For simplicity, in this section we
shall only formulate our theorems assuming uniformity to order one, but it should
be clear to the reader that the results hold e.g. for metrics with the asymptotic
behavior as in Appendix A.

Let us consider a space-time (M , g) with several KK-asymptotic regions
M λ

ext, λ ∈ Λ, each generating its own domain of outer communications. We assume
that all regions are uniform to order one with respect to a Cauchy time function t.
Let Tλ ⊂ M λ

ext be defined as {r = R̂λ} for an appropriately large Rλ. Consider the
manifold obtained by removing from the original space-time the asymptotic regions
{r > R̂λ} ⊂ M λ

ext; this is a manifold with boundary T = ∪λTλ, each connected
component Tλ being both future and past inwards trapped. From (5.2) we have
J±(M λ

ext) = J±(Tλ). Then the following result is a straightforward consequence
of Theorem 3.1:

Theorem 5.2. If (M , g) is a globally hyperbolic with KK-asymptotic ends, uniform
to order one, satisfying the null energy condition (3.1), then

J+(M λ1
ext) ∩ J−(M λ2

ext) = ∅ whenever M λ1
ext ∩ M λ2

ext = ∅. (5.3)

Next, Theorems 3.5 and 3.6 yield the following result on topological censor-
ship for stationary KK-asymptotically flat space-times:

Theorem 5.3. Let (M , g) be a space-time satisfying the null energy condition, and
containing a KK-asymptotic end Mext, uniform to order one. Suppose further
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that 〈〈Mext〉〉 is globally hyperbolic. Then every causal curve in 〈〈Mext〉〉 with end-
points in Mext is homotopic to a curve in Mext. Moreover the map j∗ : π1(Mext) →
π1(〈〈Mext〉〉) is surjective.

Proof. It suffices to prove the second statement. Let R̂ > R and T = {r = R̂}
be defined as in the previous result. Let α be a loop in 〈〈Mext〉〉 based at p0,
and let c be the radial curve from p0 to p ∈ T . Then since 〈〈Mext〉〉 = 〈〈T 〉〉,
by Theorem 3.6 the loop c ∗ α ∗ c−, where c− denotes c followed backwards, is
homotopic to a loop β in T based at p. Thus α is in turn homotopic to c− ∗ β ∗ c,
which is a loop that lies entirely in Mext hence establishing the result. �

For future reference, we point out the following special case of Proposition 3.3,
which follows immediately from the fact that large level sets of r are inner trapped:

Proposition5.4. Let (M , g) be a stationary, asymptotically flat, or KK-asymptot-
ically flat globally hyperbolic space-time satisfying the null energy condition. Let
S ⊂ 〈〈Mext〉〉 be future inwards marginally trapped. There exists a large constant
R1 such that for all R2 ≥ R1 there are no future directed null geodesics starting
inwardly at S, ending inwardly at {r = R2} ⊂ Mext, and locally minimising the
time of flight.

Now we proceed to prove the main theorem for quotients of KK-asymptoti-
cally flat space-times.

Theorem 5.5. Let (M , g) be a space-time satisfying the null energy condition, and
containing a KK-asymptotically flat region, or a KK-asymptotically adS region,
with the asymptotic estimates uniform to order one. Suppose that 〈〈Mext〉〉 is glob-
ally hyperbolic, and that there exists an action of a group Gs on 〈〈Mext〉〉 by isom-
etries which, on Mext ≈ R × Sext, takes the form

g · (t, p) = (t, g · p).
If Sext/Gs simply connected, then so is 〈〈Mext〉〉/Gs.

Remark 5.6. A variation on the proof below, using an exhaustion argument, shows
that the result remains valid if the asymptotic decay estimates are uniform in t
to order zero, and uniform over compact sets in t to order one. In this case the
hypersurfaces {r = R} are not necessarily trapped, but there exists a sequence Rk

such that the hypersurfaces {r = Rk, |t| < k} are.

Proof. If the action of Gs is such that the projection 〈〈Mext〉〉 → 〈〈Mext〉〉/Gs has
the homotopy lifting property (see, e.g., [20]), then the following argument applies:
Consider the commutative diagram

Mext
i−→ 〈〈Mext〉〉

q ↓ ↓ p
Mext/Gs

j−→ 〈〈Mext〉〉/Gs
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where p and q are the standard projections, i the standard inclusion and j the
map induced by i. Thus we have the corresponding commutative diagram

π1(Mext)
i∗−→ π1(〈〈Mext〉〉)

q∗ ↓ ↓ p∗
π1(Mext/Gs)

j∗−→ π1(〈〈Mext〉〉/Gs)

of fundamental groups. By Theorem 5.2, i∗ is onto. Finally notice that p∗ and q∗
are onto since p and q have the homotopy lifting property. Hence j∗ is onto and as
a consequence 〈〈Mext〉〉/Gs is simply connected if Mext/Gs = R × (Sext/Gs) is.

The homotopy lifting property of the action is known to hold in many sig-
nificant cases (e.g., when the action is free), but it is not clear whether it holds
in sufficient generality. However, one can proceed as follows: Let π denote the
projection map

π : M → M /Gs.

We start by constructing a covering space, ̂M , of M : Choose p ∈ M and let Ω
be the set of continuous paths in M starting at p. We shall say that the paths
γa ∈ Ω, a = 1, 2, are equivalent, writing γ1 ∼ γ2, if they share their end point,
and if the projection π(γ1 ∗ γ−

2 ) of the path γ1 ∗ γ−
2 , obtained by concatenating γ1

with γ2 followed backwards, is homotopically trivial in M /Gs. We set

̂M := Ω/ ∼ .

By the usual arguments (see, e.g., the proof of [22, Theorem 12.8]) ̂M is a topo-
logical covering of M , while [23, Proposition 2.12] shows that ̂M is a smooth
manifold. (In fact, ̂M is the covering space of M associated with the subgroup
Kerπ∗ ⊂ π1(M).) The covering is trivial if and only if M /Gs is simply connected.

Since Sext/Gs is simply connected, the quotient Mext/Gs = R × (Sext/Gs)
also is, which implies that π−1(Mext) ⊂ ̂M is the union of pairwise disjoint dif-
feomorphic copies M λ

ext, λ ∈ Λ, of Mext, for some index set Λ. Each M λ
ext comes

with an associated open domain of dependence 〈〈M λ
ext〉〉 ⊂ ̂M . As in the proof of

Theorem 3.6, the 〈〈M λ
ext〉〉’s form an open cover of ̂M . Moreover, by Theorem 5.2

they are pairwise disjoint. Connectedness of ̂M implies that Λ is a singleton {λ∗},
with ̂M = 〈〈M λ∗

ext〉〉, hence ̂M = M , and the result follows. �

5.1. Existence of Twist Potentials

We turn now our attention to the question of existence of twist potentials. The
problem is the following: suppose that ω is a closed one form on a domain of outer
communications 〈〈Mext〉〉. For i = 1, . . . r let Xi be the basis of a Lie algebra of
Killing vectors generating a connected group G of isometries and suppose that

∀i LXi
ω = 0 = ω(Xi). (5.4)

If 〈〈Mext〉〉 is simply connected, then there exists a G-invariant function v such
that ω = dv. More generally, if 〈〈Mext〉〉/G is a simply connected manifold, then
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ω descends to a closed one-form on 〈〈Mext〉〉/G, and again existence of the poten-
tial v follows. Let us show that the hypothesis that 〈〈Mext〉〉/G is a manifold
can be replaced by the weaker condition, that the projection map 〈〈Mext〉〉 →
〈〈Mext〉〉/G has the path homotopy lifting property, namely: every homotopy of
paths in 〈〈Mext〉〉/G can be lifted to a continuous family of paths in 〈〈Mext〉〉:
Proposition 5.7. If 〈〈Mext〉〉/G is simply connected, and if the path homotopy lift-
ing property holds, then there exists a G-invariant function v on 〈〈Mext〉〉 so that
ω = dv.

Proof. To simplify notations, let M = 〈〈Mext〉〉 with the induced metric. Choose
a point p ∈ M , let γ : [0, 1] → M be any path with γ(0) = p, set

vγ =
∫

γ

ω,

we need to show that vγ = 0 whenever γ(0) = γ(1). Let γ̊� be the projection
to M /G of a loop γ̊ through p, since M /G is simply connected there exists a
continuous one-parameter family of paths γ�

t , t ∈ [0, 1], so that γ�
0 = γ̊�, γ�

t (0) =
γ�

t (1) = γ̊�(0), γ�
1(s) = γ̊�(0). Let γt be any continuous lift of γ�

t to M which is
also continuous in t, such that γt(1) = p. Then γt(0) = gtp for some continuous
gt ∈ G. We can thus obtain a closed path through p, denoted by γ̂t, by following
γt from p to γt(0), and then following the path

[0, t] � s �→ gt−sp.

Since γ1 is trivial, so is γ̂1 = γ1, so that vγ̂1 = 0. The family γ̂t provides thus a
homotopy of γ̂0 with γ̂1, and by homotopy invariance

0 = vγ1 = vγ̂1 = vγ̂0 = vγ0 .

Next, using the fact that both γ0 and γ̊ project to γ̊�, we will show that

vγ0 = vγ̊ , (5.5)

which will establish the result.
Let s ∈ [0, 1], set r := γ̊(s), let Or ⊂ O denote any sufficiently small simply

connected neighborhood of r, and let vr denote the solution on Or of

dvr = ω, vr(r) = 0. (5.6)

Let Ur = GOr be the orbit of G through Or, for p′ ∈ Up there exists p̂ ∈ Or

and g ∈ G such that p′ = gp̂. Set vr(p′) := vr(p̂), this is well defined as the right-
hand-side is independent of the choice of g and q by (5.4). Then vr is a solution
of (5.6) on Ur, and for all s such that γ̊(s) ∈ Ur we have

vr (̊γ(s)) = vr(γ0(s)).
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It follows that for any interval [s1, s2] such that γ̊([s1, s2]) ⊂ Or we have
∫

γ̊([s1,s2])

ω = vr (̊γ(s2)) − vr (̊γ(s1)) = vr(γ0(s2)) − vr(γ0(s1)) =
∫

γ0([s1,s2])

ω.

A covering argument finishes the proof. �

6. Weakly Future Trapped Surfaces are Invisible

Yet another application of the ideas above is the following result, which is part
of folklore knowledge in general relativity, without a satisfactory proof available
elsewhere in the literature:

Theorem 6.1. Let (M , g) be an asymptotically flat space-time, in the sense of
admitting a regular future conformal completion ˜M = M ∪ I +, where I + is a
connected null hypersurface, such that,
1. ˜D = D ∪ I + is globally hyperbolic, where D = I−(I +, ˜M ), and
2. for any compact set K ⊂ D , J+(K, ˜D) does not contain all of I +

(“i0-avoidance”).
If the NEC holds on D , then there are no compact future weakly trapped subman-
ifolds within D .

Remarks 6.2. 1. Note that if M ∪ I + is globally hyperbolic, then ˜D also is.
2. Compare [8, Appendix B] for a discussion of issues that arise in a related

context.

Proof. We begin by noting that the global hyperbolicity of ˜D implies that ˜D is
causally simple, i.e., that sets of the form J+(K, ˜D) are closed in ˜D for all compact
sets K. Suppose S is a compact future weakly trapped submanifold in D . Let q be
a point on ∂(J+(S, ˜D) ∩ I +) = J̇+(S, ˜D) ∩ I +, which is nonempty by i0-avoid-
ance. Since J̇+(S, ˜D) = J+(S, ˜D)\I+(S, ˜D), there exists an achronal null geodesic
γ : [a, b] → ˜D , with γ(a) ∈ S and γ(b) = q, emanating orthogonally from S, with-
out S-conjugate points on [a, b). In particular, J̇+(S) is a smooth null hypersurface
near γ([a, b)). Below we show that for a suitably chosen point q ∈ J̇+(S, ˜D)∩I +,
there exists a spacelike hypersurface S+ in I + that passes through q and does not
meet I+(S, ˜D). Given this, the proof may now be completed along the lines of the
proof of Proposition 3.3. Since S+ does not meet I+(S, ˜D), one easily argues that
J̇−(S+) is a smooth null hypersurface near S+ that contains a segment γ([b−ε, b])
and lies to the causal past of J̇+(S).

Let K̃ be a future directed outward pointing null vector at q orthogonal to S+

in the unphysical metric g̃ = Ω2g. Since Ω decreases to the future along γ near q,
we can choose K̃ so that K̃(Ω) = g̃(K̃, ∇̃Ω) = −1. Now extend K̃ to a null vector
field tangent to J̇−(S+) near q, and let K = ΩK̃. A computation, using basic
properties of conformal transformations, shows that the divergence θ of J̇−(S+)
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with respect to K in the physical metric g is related to the divergence θ̃ of J̇−(S+)
with respect to K̃ in the unphysical metric g̃ by, in space-time dimension n+ 1,

θ = −(n− 1)K̃(Ω) + Ω θ̃.

It follows that J̇−(S+) will have positive null divergence at points of γ close to q.
On the other hand, as in the proof of Proposition 3.3, J̇+(S), has nonpositive
null divergence along γ, and we are again led to a contradiction of the maximum
principle for null hypersurfaces.

We conclude the proof by explaining how to choose q and S+. For this purpose
we introduce a Riemannian metric on I +, with respect to which the following con-
structions are carried out. Fix q0 ∈ J̇+(S, ˜D) ∩ I +, and let U ⊂ I + be a convex
normal neighborhood of q0. By choosing a point p ∈ U , p /∈ J+(S, ˜D), sufficiently
close to q0, we obtain a point q ∈ J̇+(S, ˜D) ∩ I +, such that the geodesic segment
pq in U realizes the distance from p to J̇+(S, ˜D)∩I +. Now let S+ be the distance
sphere in U centered at p and passing through q. S+ is a smooth hypersurface in
I + that does not meet I+(S, ˜D). It follows that S+ intersects the generator of
I + through q transversely, and hence is spacelike near q. To see this, let γ be the
null geodesic from S to q as in the preceding paragraph. For x ∈ γ sufficiently close
to q, S′ = J̇+(x, ˜D) ∩ I + will be, in the vicinity of q, a smooth hypersurface in
I + transverse to the null generator of I + through q. But, since S′ ⊂ J+(S, ˜D),
S+ must meet S′ tangentially at q. Hence q is the desired point in J̇+(S, ˜D)∩I +

and S+, suitably restricted, is the desired spacelike hypersurface in I +. �

Remark 6.3. An entirely analogous result holds for asymptotically anti-de Sitter
space-times, in the sense of admitting a regular conformal completion, with time-
like conformal infinity I , and can be proved in a similar fashion.

We further note that Proposition 3.3 may be used to obtain a version of
Theorem 6.1 for space-times (M , g) with KK-asymptotic ends, as follows.

Theorem 6.4. Let (M , g) be a KK-asymptotically flat or KK-asymptotically anti-
de Sitter space-time with the asymptotic estimates uniform to order one. If (M , g)
contains a globally hyperbolic domain of outer communications 〈〈Mext〉〉 on which
the NEC holds, then, there are no compact future weakly trapped submanifolds
within 〈〈Mext〉〉.

Remark 6.5. Theorems 6.1 and 6.4 may be adapted to rule out the visibility
from infinity of submanifolds S bounding compact acausal hypersurfaces S with
weakly outer future trapped boundary. In fact S is allowed to have non-weakly
outer trapped components of the boundary as long as those lie in a black hole
region. Here the outer direction at S is defined as pointing away from S .
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Appendix A. Uniform Boundaries
in Lindblad–Rodnianski–Loizelet Metrics

In this appendix we wish to point out that sufficiently small data vacuum space-
times constructed using the Lindblad–Rodnianski method [24], as generalised by
Loizelet to higher dimensions [25,26] (compare [5]), contain past inwards trapped,
closed to the future (in a sense which should be made clear by what is said below),
timelike hypersurfaces. This is irrelevant as far as the topological implications of
our analysis are concerned, as in this case the space-time manifold is R

n+1 anyway,
but it illustrates the fact that such hypersurfaces can arise in vacuum space-times
which are not necessarily stationary. Note that the resulting space-times are uni-
formly asymptotically flat to order zero, but not to order one in general, as the
retarded-time derivatives of a radiating metric will not fall-off faster than 1/r when
approaching future null infinity.

In order to proceed, we recall some facts about the space-times constructed
in [24,25]. In Minkowski space-time R

1,n = (Rn+1, η) let

q = r − t,

and let Hµν := gµν − ηµν , where gµν is a small data vacuum metric on R
n+1 as

constructed in [24,25]. By [24, Corollary 9.3] for n = 3, and by [25, Corollary 5.1]
for n ≥ 3,3 there exist constants C, 0 < δ < δ′ < 1 such that

|∂H| ≤
{

Cε(1 + t+ |q|) 1−n
2 +δ(1 + |q|)−1−δ′

, q ≥ 0,
Cε(1 + t+ |q|) 1−n

2 +δ(1 + |q|)−1/2, q < 0,
(A.1)

|H| ≤
{

Cε(1 + t+ |q|) 1−n
2 +δ(1 + |q|)−δ′

, q ≥ 0,
Cε(1 + t+ |q|) 1−n

2 +δ(1 + |q|)1/2, q < 0,
(A.2)

|∂̄H| ≤
{

Cε(1 + t+ |q|)−1−n
2 +δ(1 + |q|)−δ′

, q ≥ 0,
Cε(1 + t+ |q|)−1−n

2 +δ(1 + |q|)1/2, q < 0.
(A.3)

Here ε and δ are small constants determined by the initial data, and δ can be
chosen as small as desired by choosing the data close enough to the Minkowskian
ones. Next, ∂̄ denotes partial coordinate derivatives ∂µ to which a projection oper-
ator in directions tangent to the outgoing coordinate cones {t − r = const} has
been applied, e.g., in spherical coordinates, ∂̄ ∈ Span{L := ∂t + ∂r,

1
r∂θ,

1
r sin θ∂ϕ}.

Examining separately the cases 0 ≤ t ≤ r/2, r/2 ≤ t ≤ r, and r ≤ t, it is
easily seen that there exists a constant C > 0 such that, for all n ≥ 3,4

|H| ≤ C

(1 + r)1/2−δ
, |∂H| ≤ C

(1 + r)1−δ
, |∂̄H| ≤ C

(1 + r)3/2−δ
. (A.4)

3 At the end of the bootstrap argument one concludes that the inequalities there are satisfied by
the solution.
4 The estimates are actually better in higher dimensions, which is irrelevant for our purposes
here.
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The first inequality implies that (M , g) is uniformly asymptotically flat to order
zero. On the other hand, (M , g) is not uniformly asymptotically flat to order one.
However, the third inequality shows that one can choose R0 large enough so that
for all R ≥ R0 the hypersurfaces {r = R, t ≥ 0} are inward past null convex, in the
sense that the level sets of t within {r = R} have negative definite past inwards null
second fundamental form (compare [14]). Indeed, from the first inequality one can
choose null normals to {r = R} of the form ±∂0 ± ∂r +O(r1/2−δ), with a uniform
error term. It now follows from the second and third estimate that the null second
fundamental forms differ from their Minkowskian counterparts by terms which are
uniformly O(r−3/2+2δ) and O(r−3/2+δ). For sufficiently small initial data one can
choose δ < 1/4, and the result follows.

A corresponding result holds for t < 0 by invariance of the Einstein equations
under the map t �→ −t.

In particular the traces of the null second fundamental forms have the right
signs for the results in our work to apply.
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[1] Bañados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional space-time.
Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099

[2] Breitenlohner, P., Maison, D., Gibbons, G.: 4-dimensional black holes from
Kaluza–Klein theories. Commun. Math. Phys. 120, 295–333 (1988)[MR MR973537
(89j:83018)]

[3] Cadeau, C., Woolgar, E.: New five dimensional black holes classified by horizon
geometry, and a Bianchi VI braneworld. Class. Quantum Grav., 527–542 (2001).
arXiv:gr-qc/0011029

[4] Carter, B.: Black hole equilibrium states. In: de Witt, C., de Witt, B. (eds.) Black
Holes. Proceedings of the Les Houches Summer School Gordon & Breach, New York
(1973)
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