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Abstract
We establish analogues of the Hawking and Penrose singularity theorems based
on (a) averaged energy conditions with exponential damping; (b) conditions
on local stress–energy averages inspired by the quantum energy inequalities
satisfied by a number of quantum field theories. As particular applications, we
establish singularity theorems for the Einstein equations coupled to a classical
scalar field, which violates the strong energy condition, and the nonminimally
coupled scalar field, which also violates the null energy condition.

PACS numbers: 04.20.Dw, 04.40.Nr

1. Introduction

The singularity theorems proved by Penrose and Hawking in the mid-1960s [1–3] represented
a major advance over previous work, which was restricted to situations of high symmetry and
particular matter models. At the technical level, this advance was achieved by significant
development of the geometrical apparatus; at the physical level, however, the key idea
was to replace particular matter models by generic energy conditions, which drive geodesic
congruences to focal points. While many classical matter models obey the classical energy
conditions, such as perfect fluids and the electromagnetic field, there are exceptions. For
example, the Klein–Gordon field with nonzero mass fails to satisfy the strong energy condition
(SEC; the hypothesis for the Hawking and Hawking–Penrose theorems if the cosmological
constant vanishes), while the nonminimally coupled Klein–Gordon field also violates the
null energy condition (NEC; the hypothesis of the Penrose theorem). See [4] for a critical
assessment of the status of classical energy conditions and [5] for a review of singularity
theorems and commentary on energy conditions in that context.

One of the main limitations of the energy conditions is that they are incompatible with
quantum field theory, as has long been known [6]. Examples of states with locally negative
expectation values for the energy density are easily constructed [7] and in a large class of
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quantum field theories the energy density at any given point is unbounded from below as
the quantum state varies (see [8] and references therein). Moreover, recent results in two-
dimensional conformal field theory show that individual measurements of weighted spacetime
averages of energy density in the vacuum state yield negative values with probabilities
approaching 90% in some cases [9].

For these reasons a number of authors have investigated singularity theorems under
weakened energy conditions. Examples include [10–13], in which various averaged energy
conditions are considered, particularly the averaged null energy condition (ANEC), i.e.∫

γ

Tabγ
′aγ ′b dλ � 0,

where γ is a complete (or sometimes future- or past-complete) null geodesic in an affine
parameterization. (Via the Einstein equations, these conditions translate immediately to
conditions on the Ricci tensor.) The definition of the integral requires some care; it is usually
interpreted as a lim inf of the integrals over finite regions (as in [12]) or regularized by inserting
a mollifying factor f (λ/λ0)

2 in the integrand (for f in a suitable function class) and taking
the lim inf as λ0 → ∞ [13]. On the other hand, a different approach (see 7.21–22 of [14] and
[15]) is to suppose a lower bound on Rabt

atb for all unit timelike vectors and sufficient initial
contraction for focussing to occur.

In this paper, we will establish singularity theorems under conditions that combine ideas
from these two approaches but also extend them to allow for situations in which the integrand
becomes unboundedly negative. Roughly speaking, we replace the ANEC integral by the
requirement that for a future-complete null geodesic γ : [0,∞) → M ,∫

γ

e−cλTabγ
′aγ ′b dλ − c

2
,

should be finite for some c > 0 (with the integral understood as above) and dominate the
initial expansion of suitable future-complete null congruences in spacetime M. This leads to
a generalization of the Penrose theorem, which is stated precisely as theorem 5.2; a similar
generalization of Hawking’s theorem is given as theorem 5.1. In section 6, we apply these
results to prove a Hawking singularity theorem for the massive minimally coupled Klein–
Gordon field (even though it can violate the SEC), at least provided that the field amplitude is
bounded or, more generally, of exponential type. Under similar conditions on the amplitude of
the field and its derivatives, we also prove a Penrose singularity theorem for the nonminimally
coupled Klein–Gordon field (even though it can violate the NEC). Our results are based on
criteria, derived in section 2, for the nonexistence of global solutions to Riccati equations that
generalize arguments of [16] by inclusion of the exponential as an integrating factor (one could
equally consider other functions in this context). This idea is used to generalize arguments of
[13] in section 3 and the relevant singularity theorems are proved in section 5.

In section 4, we consider how exponentially damped energy conditions of the type
required can be derived from bounds on local energy averages similar to those satisfied
by quantum fields, known as quantum energy inequalities (QEIs) or quantum inequalities
(QIs). Inequalities of this type, which express limitations on the magnitude and duration of
violations of the classical energy conditions, were first mooted by Ford [17] and have since
been established in a number of quantum field theory models (see [8, 18] for reviews). In
four-dimensional Minkowski space, for example, the energy density of a free real scalar field
obeys the bound∫ ∞

−∞
〈Tabγ

′aγ ′b〉ψf (t)2 dt � − 1

16π2

∫ ∞

−∞
f ′′(t)2 dt

2
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for any smooth compactly supported real-valued function f and any Hadamard state
ψ [19, 20]3. Here, γ is any complete timelike geodesic in a proper time parameterization.
Under rescaling of f , the bound scales as the inverse fourth power of the sampling timescale
τ ; this is consistent with the unboundedness below of the energy density at points (in the limit
τ → 0) and also gives an averaged weak energy condition in the limit τ → ∞. Similar results
are known for other free fields.

Although analogous results hold in curved spacetimes, the bounds are more complicated
in form. For example, the bound given in [22] involves local Fourier transforms of distributions
formed from the first few terms in the expansion of the Hadamard parametrix, and is valid
for averaging within suitable domains that typically have compact closure. However, it is
expected on physical grounds [23] (and borne out in concrete examples) that averages over
timescales smaller than local curvature length scales are constrained by bounds taking the
same form as in Minkowski space. In the bounds of [22], for example, the first term in the
Hadamard expansion will dominate the others on sufficiently small scales, and becomes well
approximated by the expression in Minkowski space. This motivates the study of energy
conditions in which local averages of the energy density or other stress–energy quantities are
bounded from below in terms of L2-norms of derivatives of the averaging function, perhaps
with constraints on the support or after the subtraction of some reference function (as in the
so-called difference QEIs). In section 4 we will derive (variants of) the exponentially damped
energy conditions from local energy conditions of this type. This prepares the way for a more
detailed study, which would have to quantify the scales over which the QEI bounds can be
replaced by these simpler estimates. We also emphasize that, while our local conditions are
motivated by QEIs, they do not coincide directly with them; see section 6 for discussion on
this point.

2. Criteria for nonexistence of global solutions to the Riccati equation

We begin with a slight modification of an argument given in [16], lemma 3.

Lemma 2.1. Consider the initial value problem

ż = z2

q
+ p,

z(0) = z0

(2.1)

where q(t) and p(t) are continuous on [0,∞), and q(t) > 0 on [0,∞). If∫ ∞

0

dt

q(t)
= +∞ and lim inf

T →+∞

∫ T

0
p(t) dt > −z0,

then (2.1) has no solution on [0,∞).

Proof. Suppose there is a solution z(t) on [0,∞). By hypothesis, there exists t1 � 0 such
that ∫ t

0
p(t ′) dt ′ > −z0

for all t ∈ [t1,∞). Integrating the differential equation,

z(t) =
∫ t

0

z(t ′)2

q(t ′)
dt ′ +

∫ t

0
p(t ′) dt ′ + z0 >

∫ t

0

z(t ′)2

q(t ′)
dt ′ (2.2)

3 Units with h̄ = c = G = 1 are used throughout. Our geometrical conventions are those of [21].
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for t � t1. Introducing R(t) = ∫ t

0 z(t ′)2/q(t ′) dt ′, we see that R is nonnegative and obeys the
differential inequality

Ṙ = z2

q
>

R2

q

for t � t1. Accordingly, we have R(t) > 0 for all t > t1. Fixing any t2 > t1, we now have

1

R(t2)
� 1

R(t2)
− 1

R(t)
=

∫ t

t2

Ṙ

R2
dt >

∫ t

t2

dt

q
(2.3)

for t > t2. However, the right-hand side is unbounded as t → ∞ and we obtain a
contradiction. �

Here, ‘no solution’ means that we have z(t) → +∞ as t → t−∗ < ∞. Note that

z(t) � z0 +
∫ t

0
p(t ′) dt ′

for all t for which the solution exists, so z(t) → −∞ cannot occur at finite time. (It is easily
shown that divergence is the only way in which the solution can break down at finite times.)

As a digression from our main development, we note the following consequence.

Corollary 2.2. If, in lemma 2.1, the integral condition on p is replaced by

z0 + inf
T �0

∫ T

0
p(t) dt = α > 0,

then (2.1) has no solution on [0, τ ], where τ is the unique solution to∫ τ

0

dt ′

q(t ′)
= 2

α
.

In particular, this applies if the negative part p−(t) = min{0, p(t)} is integrable and
z0 +

∫ ∞
0 p−(t) dt = α > 0.

Proof. Following the proof of the lemma, we may take t1 = 0 and deduce from the hypothesis
and equation (2.2) that z(t) � α for all t ∈ [0,∞) and hence that

R(t2) � α2
∫ t2

0

dt ′

q(t ′)

for any t2 > 0. Inequality (2.3) now asserts that

1

α2
>

(∫ t2

0

dt ′

q(t ′)

)(∫ t

t2

dt ′

q(t ′)

)
for all 0 < t2 � t and the intermediate value theorem allows us to find t2 such that both factors
on the right-hand side are equal to 1

2

∫ t

0 q(t ′)−1 dt ′, establishing the required result. Finally, if

p− is integrable, it is clear that
∫ T

0 p(t) dt �
∫ ∞

0 p−(t) dt for all T. �

Remark. In the standard singularity theorems, q(t) ≡ n−1 for timelike geodesic congruences
and q(t) ≡ n − 2 for null geodesic congruences, where n is the spacetime dimension. The
upper bound on the parameter time until blow-up is therefore τ = 2(n − 1)/α or 2(n − 2)/α

respectively. Tighter bounds can be obtained in this case, by a more involved argument [24].

We now weaken the conditions on p; for simplicity we also fix q to be a constant.

4
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Lemma 2.3. Consider the initial value problem

ż = z2

s
+ r,

z(0) = z0

(2.4)

where r(t) is continuous on [0,∞), and s > 0 is constant. If there exists c � 0 such that s

z0 − c

2
+ lim inf

T →+∞

∫ T

0
e−2ct/sr(t) dt > 0,

then (2.4) has no solution on [0,∞).

Proof. Again, assume the contrary. Then, y(t) = (z(t) − c) e−2ct/s solves

ẏ = y2

s e−2ct/s
+ e−2ct/s(r(t) + c2/s)

y(0) = z0 − c (2.5)

on [0,∞). This equation is of the form (2.1), with q(t) = s e−2ct/s and p(t) =
e−2ct/s(r(t) + c2/s). Clearly,

∫ ∞
0 dt/q(t) = ∞; as we also have

lim inf
T →+∞

∫ T

0
e−2ct/s(r(t) + c2/s) dt � lim inf

T →+∞

∫ T

0
e−2ct/sr(t) dt + lim inf

T →+∞

∫ T

0
e−2ct/sc2/s dt

= c

2
+ lim inf

T →+∞

∫ T

0
e−2ct/sr(t) dt

> c − z0 = −y(0)

by the hypothesis, lemma 2.1 entails that (2.5) has no solution on [0,∞) and we have obtained
a contradiction. �

For example, suppose that r(t) � −A eBt for A,B > 0. Then, for c > Bs/2 we have

− c

2
+ lim inf

T →+∞

∫ T

0
e−2ct/sr(t) dt � − c

2
− As

2c − Bs
,

the right-hand side of which has a maximum of −(
√

As + Bs/4) at c = √
As + Bs/2.

Accordingly, (2.4) has no solution on [0,∞) if

z0 >
√

As +
Bs

4
. (2.6)

As an explicit example, consider r(t) = − e2t , s = 1 (i.e. A = 1, B = 2). The above
inequality establishes nonexistence of global solutions for z0 > 3/2; in fact, the equation can
be solved in terms of modified Bessel functions as

z(t) = d

dt
log

(
[I0(e

t )K1(1) + K0(e
t )I1(1)] − [I0(e

t )K0(1) − K0(e
t )I0(1)]z0

)
and it is easy to see that z(t) has a singularity at finite time if and only if

z0 > inf
t�0

I0(e
t )K1(1) + K0(e

t )I1(1)

I0(et )K0(1) − K0(et )I0(1)
= K1(1)

K0(1)
= 1.429...,

which is consistent with the estimate provided by lemma 2.3.
We also have the following consequence.

Corollary 2.4. If, in lemma 2.3, the integral condition on r is replaced by

z0 − c + inf
T �0

∫ T

0
e−2ct/s(r(t) + c2/s) dt = α > 0,

5
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then (2.4) has no solution on [0, τ ], where

τ = s

2c
log(1 + 4c/α).

In particular, this applies if the negative part r−(t) = min{0, r(t)} is such that r−(t) e−2ct/s is
integrable and z0 − c +

∫ ∞
0 e−2ct/sr−(t) dt = α > 0.

Proof. Following the proof of lemma 2.3, the hypothesis implies that

y(0) + inf
T �0

∫ T

0
p(t) dt = α > 0

and we may apply corollary 2.2 to find that there is no solution to equation (2.4) on [0, τ ],
where τ solves

2

α
=

∫ τ

0

dt ′

q(t ′)
= e2cτ/s − 1

2c
,

proving the first statement. The second statement follows from the elementary bound∫ T

0 e−2ct/s(r(t) + c2/s) dt �
∫ ∞

0 e−2ct/sr−(t) dt for all T ∈ [0,∞). �

For cases in which α � c, the bound is approximately 2s/α, which is the same as in the
remark following corollary 2.2.

3. A generalization of the Wald–Yurtsever argument

Wald and Yurtsever [13] consider hypotheses on weighted averages of the forcing term in
the Riccati equation (see the lemma in that reference). Here, we generalize this further, after
the pattern of lemma 2.3. Fix a real-valued compactly supported function g ∈ C∞

0 (R) with
g(t) = 1 on [0, 1], and g nonincreasing on R

+.

Lemma 3.1. Suppose that a solution to (2.4) exists on (all of) t ∈ [0,∞). If r(t) is
nonconstant, then

lim sup
τ→∞

∫ ∞

0
e−2ct/sr(t)g(t/τ )2 dt <

c

2
− z0

for all c � 0. If r(t) ≡ r is constant, the same conclusion holds provided c �= z0 or
c2/s + r �= 0.

Remarks.

(1) As the lim inf of any function is always less than its lim sup we may rather trivially replace
lim sup by lim inf in the statement of this result.

(2) The c = 0 case essentially corresponds to the result in [13].

Proof. If a solution to (2.4) exists for all t, then we know that (2.5) has a solution on [0,∞).
Rearranging, and integrating against g(t/τ )2,

Ic(τ ) :=
∫ ∞

0
e−2ct/sr(t)g(t/τ )2 dt

=
∫ ∞

0
ẏ(t)g(t/τ )2 dt − c2

s

∫ ∞

0
e−2ct/sg(t/τ )2 dt − Rc(τ), (3.1)

where, as before, y(t) = (z(t) − c) e−2ct/s obeys equation (2.5) and

Rc(τ) = 1

s

∫ ∞

0
y(t)2 e2ct/sg(t/τ )2 dt

6
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increases (not necessarily strictly) as τ increases, and is strictly positive for all τ > 0 unless
y ≡ 0, which can happen only if c = z0 and r(t) ≡ −c2/s. Integrating (3.1) by parts,

Ic(τ ) = −y(0) − 2

τ

∫ ∞

0
y(t)g(t/τ )ġ(t/τ ) dt − c2

s

∫ ∞

0
e−2ct/sg(t/τ )2 dt − Rc(τ) . (3.2)

As y is continuous, both ect/sy(t)g(t/τ ) and e−ct/s ġ(t/τ ) are square integrable, and the
Cauchy–Schwarz inequality gives the estimate∣∣∣∣
∫ ∞

0
y(t)g(t/τ )ġ(t/τ ) dt

∣∣∣∣ �
(

1

s

∫ ∞

0
y2 e2ct/sg(t/τ )2 dt

)1/2 (
s

∫ ∞

0
e−2ct/s ġ(t/τ )2 dt

)1/2

� C
√

τRc(τ ) e−cτ/s,

where C > 0 is defined by

C2 = s

∫ ∞

0
ġ(t)2 dt

and we have used the fact that ġ(t/τ ) = 0 in [0, τ ]. We may also estimate

c

2
(1 − e−2cτ/s) � c2

s

∫ ∞

0
e−2ct/sg(t/τ )2 dt � c

2
.

Putting these estimates in (3.2), we now have

Ic(τ ) � −y(0) − c

2
(1 − e−2cτ/s) − Rc(τ) + 2C e−cτ/s

√
Rc(τ)

τ

and, estimating

2C e−cτ/s

√
Rc(τ)

τ
� Rc(τ)

2
+ 2C2 e−2cτ/s

τ

by the AM–GM inequality, we arrive at

Ic(τ ) � −y(0) − c

2
(1 − e−2cτ/s) − Rc(τ)

2
+ 2C2 e−2cτ/s

τ
.

If either (a) r(t) is nonconstant, or (b) r(t) ≡ r but z0 �= c or c2/s + r �= 0, then y cannot
be identically zero. It follows that Rc(τ) is strictly positive and increasing on (0,∞). Thus,
there exists τ0 > 0 such that

Ic(τ ) < −y(0) − c

2
= c

2
− z0

for all τ > τ0, which proves the required result. �

4. QEI-inspired hypotheses

Now let us consider a QEI-inspired condition: we suppose that the forcing function r(t) is
constrained by inequalities of the form∫ ∞

−∞
(r(t) − r0(t))f (t)2 dt � −|||f |||2 (4.1)

for all real-valued f ∈ C∞
0 (R), where r0(t) is a fixed continuous real-valued function and

|||·||| is any Sobolev (semi-)norm of the form

|||f |||2 =
L∑

�=0

Q�‖f (�)‖2,

7
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where Q� ∈ [0,∞) are constants of the appropriate dimensions, L ∈ N and ‖ · ‖ is the
L2-norm.

In the analogy with QEIs, r0 would be obtained from a reference state. As already
mentioned, this constraint is inspired by, rather than exactly coinciding with, the known QEI
results. See section 6 for more discussion.

Let g be as above and c � 0. Choose a smooth real-valued function h ∈ C∞(R), such
that supp h ⊂ [−τ0,∞) and h(t) = e−ct/s on [0,∞). Then, for each τ > 0,

fτ (t) =
{

e−ct/sg(t/τ) t > 0
h(t) t < 0

defines a test-function fτ ∈ C∞
0 (R). If c > 0, then the dominated convergence theorem

entails that |||fτ ||| → |||h||| as τ → ∞ and we have

lim inf
τ→+∞ Ic(τ ) � −

∫ 0

−τ0

h(t)2(r(t) − r0(t)) dt − |||h||| + lim inf
τ→+∞

∫ ∞

0
e−2ct/sr0(t)g(t/τ )2 dt.

The same holds if c = 0, provided that the coefficient Q0 vanishes in the definition of |||·|||.
Note that |||h||| can be written as

|||h||| =
L∑

�=0

Q�

(
1

2
(c/s)2�−1 +

∫ 0

−τ0

|h(�)(t)|2 dt

)
.

The following result is now immediate.

Theorem 4.1. Suppose r(t) obeys (4.1) and is nonconstant. Suppose there exist c > 0,
τ0 > 0 and h ∈ C∞(R) obeying supp h ⊂ [−τ0,∞) and h(t) = e−ct/s on [0,∞), for which

z0 − c

2
+ lim inf

τ→+∞

∫ ∞

0
e−2ct/sr0(t)g(t/τ )2 dt �

∫ 0

−τ0

h(t)2(r(t) − r0(t)) dt + |||h|||2.

Then, (2.4) has no solution on all of [0,∞). If r(t) ≡ r obeys (4.1), the same conclusion holds
provided c �= z0 or c2/s + r �= 0. If Q0 = 0, the hypothesis on c can be relaxed to c � 0.

Proof. By lemma 3.1, if there is a solution to (2.4) on [0,∞), then

0 > z0 − c

2
+ lim inf

τ→∞ Ic(τ )

� z0 − c

2
+ lim inf

τ→+∞

∫ ∞

0
e−2ct/sr0(t)g(t/τ )2 dt −

∫ 0

−τ0

h(t)2(r(t) − r0(t)) dt − |||h|||2

� 0

by hypothesis, which is a contradiction. �

The above theorem tells us that a focal point will occur if there is sufficient initial
contraction. Note that the dependence on the actual matter distribution r(t) is purely through
its values in [−τ0, 0], i.e. before the contraction z0 is measured. At first sight it is strange
that positive values of r(t) − r0 require a larger value of z0: the reason is simply that the
averaged nature of the energy condition means that large positive energies in the present allow
large negative values in the future. The magnitude of initial contraction required is otherwise
determined by the reference r0 and the function h.

In some QEIs, the support of the sampling function is constrained, for example, to be
small relative to local curvature length scales. For simplicity, let us suppose that there is
some τ0 such that (4.1) is valid for all f with support in an interval of length at most 2τ0.
(This would correspond to conditions in which curvatures remain bounded; if they do not, this

8
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might be regarded as an indication of singular behaviour, albeit not in the sense of geodesic
incompleteness.) We also restrict to a particular seminorm which would be most relevant to
QEIs in four dimensions.

To discuss averages over longer timescales we will use a partition of unity. To this end,
we will say that ψ ∈ C∞

0 (R) is a bump function if it is nonnegative, supported in [0, 3/2] and
obeys ψ(3/4 + x) = ψ(3/4 − x), ψ(x)2 + ψ(1/2 − x)2 = 1 for x ∈ [0, 3/4]; in particular,
this gives ψ = 1 on [1/2, 1]. Then, the functions ψ(x − n)2 (n ∈ Z) form a partition of unity
on R. Note that this partition involves the squares of the underlying functions. The main work
is to show that this gives usable bounds on the exponentially damped averages appearing in
lemma 3.1.

Proposition 4.2. Let r0 be a fixed continuous function and suppose that r(t) is nonconstant
and obeys ∫ ∞

−∞
(r(t) − r0(t))f (t)2 dt � −Q‖f ′′‖2 (4.2)

for any f ∈ C∞
0 ((0,∞)) supported in an interval of length at most 2τ0 > 0. Let ψ be a bump

function. Then, for any c > 0 we have

lim inf
τ→+∞

∫ ∞

0
e−2ct/sr(t)g(t/τ )2 dt � lim inf

τ→+∞

∫ ∞

0
e−2ct/sr0(t)g(t/τ )2 dt

−
∫ 0

−τ0

(r(t) − r0(t))h(t)2 dt − Q

(
‖h′′‖2 +

1

2

(c

s

)3
+

‖ψ ′′‖2

τ 3
0 (1 − e−2cτ0/s)

)
.

(4.3)

for all real-valued h ∈ C∞
0 ((−τ0, τ0/2)) with h(t) = e−ct/sψ(1/2 − t/τ0) on t � 0. The last

term may be replaced by

−Q

(∫ 0

−τ0

|h′′(t)|2 dt +
(c

s

)3
+

‖ψ ′′‖2

τ 3
0

(
1

2
+

1

(1 − e−2cτ0/s)

))
.

We defer the proof to the end of this section. The following consequence is immediate,
by the same reasoning as in theorem 4.1.

Theorem 4.3. Let r0 be a fixed continuous function and ψ be a bump function. Suppose r(t)

is nonconstant and obeys (4.2) for any f ∈ C∞
0 ((0,∞)) supported in an interval of length at

most 2τ0 > 0. If, for some c > 0 and h obeying the conditions of proposition 4.2, we have

z0 � c

2
− (RHS of (4.3)), (4.4)

then (2.4) has no solution on all of [0,∞). If r(t) ≡ r obeys (4.2), the same conclusion holds
provided c �= z0 or c2/s + r �= 0.

Remark. It is possible to find bump functions ψ with ‖ψ ′′‖2 ∼ 331. To see this, consider
the ansatz

ψ(x) =
⎧⎨
⎩

sin(θ(x)) x � 1/4
cos(θ(1/2 − x)) 1/4 < x � 3/4
ψ(3/2 − x) x > 3/4

for θ ∈ C∞(R), θ ≡ 0 on R
−, θ � 0 and θ(1/4) = π/4, and θ(2k)(1/4) = 0 for all k ∈ N,

which ensure that ψ is smooth at x = 1/4. After a calculation, one finds that

‖ψ ′′‖2 = 2
∫ 1/4

0

(
θ ′(x)4 + θ ′′(x)2

)
dt,

9
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which corresponds to the Euler–Lagrange equation

θ ′′′′(x) − 6θ ′(x)2θ ′′(x) = 0 (4.5)

together with boundary conditions θ(0) = θ ′(0) = 0, θ(1/4) = π/4, θ ′′(1/4) = 0. Numerical
solution of this ODE in Maple 14 gives the value ‖ψ ′′‖2 = 330.97. This does not extend to
give a smooth solution to our original problem as θ ′′(0+) = 44.56; however, by considering a
mollified function θε(x) = θ(x)f (x/ε) with f ∈ C∞(R), f (x) = 0 on (−∞, 0], f (x) ≡ 1
on [1,∞), one may show that ‖ψ ′′

ε ‖ → ‖ψ ′′‖ as ε → 0+ [one uses estimates θ(x) = O(x2),
θ ′(x) = O(x), θ ′′(x) = O(1) near x = 0].

Proof of proposition 4.2. The idea of the proof is to use a partition of unity to decompose
the integral

Jc(τ ) =
∫ ∞

0
e−2ct/s(r(t) − r0(t))g(t/τ )2 dt,

thereby obtaining a sum of integrals, each of which can be bounded below using (4.2) (only
finitely many terms appear at any fixed value of τ ). The sum of the resulting lower bounds
must be controlled as τ → ∞.

We start from the identity(
d2

dt2
e−ct/sϕ(t)

)2

= e−2ct/s
(c

s

)4
{
ϕ(t)2 − 2

s

c

d

dt
(ϕ2) + 2

( s

c

)2
ϕ′(t)2 +

( s

c

)2 d2

dt2
(ϕ2)

−2
( s

c

)3 d

dt
((ϕ′)2) +

( s

c

)4
ϕ′′(t)2

}
. (4.6)

For real-valued ϕ ∈ C∞
0 ((0,∞)), we may integrate by parts and discard a nonpositive term to

find∫ ∞

0

(
d2

dt2
e−ct/sϕ(t)

)2

dt =
(c

s

)4
∫ ∞

0
e−2ct/s

(
ϕ(t)2 − 2

( s

c

)2
ϕ′(t)2 +

( s

c

)4
ϕ′′(t)2

)
dt

�
∫ ∞

0
e−2ct/s

((c

s

)4
ϕ(t)2 + ϕ′′(t)2

)
dt. (4.7)

If, additionally, the support of ϕ is contained in an interval of length at most 2τ0, we may
apply (4.2) with f (t) = e−ct/sg(t/τ )ϕ(t) and g chosen as above, to give∫ ∞

0
e−2ct/s(r(t) − r0(t))g(t/τ )2ϕ(t)2 dt

� − Q

∫ ∞

0
e−2ct/s

(
c4

s4
g(t/τ )2ϕ(t)2 +

(
d2

dt2
g(t/τ )ϕ(t)

)2
)

dt, (4.8)

where we have estimated ‖f ′′‖2 using (4.7), with ϕ replaced by g(t/τ )ϕ(t). This estimate
will be used for each term appearing in the partition of unity, to which we now turn.

Let ϕ(t) = ψ(t/τ0), where ψ is the chosen bump function. Defining ϕn(t) = ϕ(t − nt0),
the ϕ2

n form a partition of unity so that
∑∞

n=0 ϕn(t)
2 ≡ 1 on t > τ0/2 and at most two ϕn(t)

are nonzero at each t; each ϕn has a support diameter of 3τ0/2. We may now decompose the
integral Jc(τ ) using this partition, estimating each term using (4.8). This gives

Jc(τ ) =
∫ τ0/2

0
e−2ct/s(r(t) − r0(t))g(t/τ )2(1 − ϕ(t)2) dt +

∞∑
n=0

∫ ∞

0
e−2ct/s(r(t)

− r0(t))g(t/τ )2ϕn(t)
2 dt

�
∫ τ0/2

0
e−2ct/s(r(t) − r0(t))g(t/τ )2(1 − ϕ(t)2) dt − Q

∞∑
n=0

Sn(τ ),

10
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where

Sn(τ ) =
∫ ∞

0
e−2ct/s

((c

s

)4
g(t/τ )2ϕn(t)

2 +

(
d2

dt2
g(t/τ )ϕn(t)

)2
)

dt.

Our task is now to control the sum
∑∞

n=0 Sn(τ ) in the limit τ → ∞. Now, for
τ > (n + 3/2)τ0, g(t/τ ) ≡ 1 on the support of ϕn, and we obtain

Sn(τ ) =
∫ ∞

0
e−2ct/s

((c

s

)4
ϕn(t)

2 + ϕ′′
n(t)2

)
dt

�
(c

s

)4
∫ ∞

0
e−2ct/sϕn(t)

2 dt + e−2cnτ0/s‖ϕ′′‖2,

where the exponential factor in the second term arises on account of the support properties of
ϕn and we use ‖ϕ′′

n‖ = ‖ϕ′′‖. Provided the limit and sum can be exchanged (which will be
justified below), we then have

lim
τ→∞

∞∑
n=0

Sn(τ ) �
∞∑

n=0

(c

s

)4
∫ ∞

0
e−2ct/sϕn(t)

2 dt + ‖ϕ′′‖2
∞∑

n=0

e−2cnτ0/s .

The first sum can be evaluated using the partition of unity property and the second is elementary,
so

lim
τ→∞

∞∑
n=0

Sn(τ ) �
(c

s

)4
∫ τ0/2

0
e−2ct/s(ϕ(t)2 − 1) dt +

(c

s

)4
∫ ∞

0
e−2ct/s dt +

‖ϕ′′‖2

1 − e−2cτ0/s

� 1

2

(c

s

)3
+

‖ϕ′′‖2

1 − e−2cτ0/s
,

where we discard the nonpositive contribution from ϕ2 − 1 in the last step.
Assembling the results so far, we have

lim inf
τ→+∞ Jc(τ ) �

∫ τ0/2

0
e−2ct/s(r(t) − r0(t))(1 − ϕ(t)2) dt − Q

(
1

2

(c

s

)3
+

‖ψ ′′‖2

τ 3
0 (1 − e−2cτ0/s)

)
.

Taking h as specified in the hypotheses, we note that h(t)2 = e−2ct/s(1 − ϕ(t)2) on t � 0.
Applying equation (4.2) with h in place of f , we obtain

lim inf
τ→+∞ Jc(τ ) � −

∫ 0

−τ0

(r(t) − r0(t))h(t)2 dt − Q

(
‖h′′‖2 +

1

2

(c

s

)3
+

‖ψ ′′‖2

τ 3
0 (1 − e−2cτ0/s)

)
.

Finally, because

lim inf
τ→+∞ Ic(τ ) � lim inf

τ→+∞ Jc(τ ) + lim inf
τ→+∞

∫ ∞

0
e−2ct/sr0(t) dt,

we obtain the required result (4.3). The alternative form of the bound arises if we estimate
‖h′′‖2 by using (4.6) applied to ϕ(t) = ψ(1/2 − t/τ0) and integrating by parts on [0,∞) to
obtain (4.7) (the boundary terms at t = 0 cancel). Using the properties of ψ we find

‖h′′‖2 �
∫ 0

−τ0

|h′′(t)|2 dt +
1

2

(c

s

)3
+

1

2τ 3
0

‖ψ ′′‖2

which yields the alternative bound.
It remains to justify the exchange of limit and sum used above, for which we use a

dominated convergence argument. We split Sn(τ ) into the sum of two terms. For the first, we
note that ∫ ∞

0
e−2ct/sg(t/τ )2ϕn(t)

2 dt � e−2cnτ0/s‖ϕ‖2

11
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because supp ϕn ⊂ [nτ0,∞). The second is regarded as the square of an L2 norm, which can
be estimated using the Leibniz rule and triangle inequalities as[∫ ∞

0
e−2ct/s

(
d2

dt2
g(t/τ )ϕn(t)

)2

dt

]1/2

� Cn

τ 2
+

C ′
n

τ
+ C ′′

n,

where Cn, C ′
n and C ′′

n are the L2 norms of e−ct/sg′′(t/τ )ϕn(t), 2 e−ct/sg′(t/τ )ϕ′
n(t) and

e−ct/sg(t/τ )ϕ′′
n(t) respectively. Setting C = max{1, 4‖g′‖2

∞, ‖g′′‖2
∞} and again using the

support properties of ϕn, we have∫ ∞

0
e−2ct/s

(
d2

dt2
g(t/τ )ϕn(t)

)2

dt � Cτ0 e−2cnτ0/s

(‖ψ‖
τ 2

+
‖ψ ′‖
ττ0

+
‖ψ ′′‖
τ 2

0

)2

.

Accordingly, there exists K > 0 such that 0 � Sn(τ ) � K e−2cnτ0/s for all n ∈ N0 and τ > τ0,
where K is independent of τ and n. As this upper bound is evidently summable, the dominated
convergence theorem permits us to exchange the limit and sum as claimed. �

5. Singularity theorems

The results from the previous sections can be used to obtain refinements of some of the
classical singularity theorems of Hawking and Penrose [21] that allow global violations of the
classical energy conditions.

We first consider the cosmological setting.

Theorem 5.1. Let M be a globally hyperbolic spacetime of dimension n � 2, and let S be
a smooth compact spacelike Cauchy surface for M. Suppose along each future complete unit
speed timelike geodesic γ : [0,∞) → M issuing orthogonally from S, there exists c � 0 such
that

lim inf
T →∞

∫ T

0
e−2ct/(n−1)r(t) dt > θ(p) +

c

2
, (5.1)

where r(t) := Ric (γ ′(t), γ ′(t)) = Rabγ
′aγ ′b(t) and θ(p) is the expansion (i.e. mean

curvature) of S at p = γ (0). Then, M is future timelike geodesically incomplete.

Remarks.

(1) As usual, if one assumes that the Einstein equations,

Rab − 1
2Rgab = 8πTab, (5.2)

hold, then the Ricci curvature term can be directly related to the energy–momentum tensor
Tab, and, hence, one should view (5.1) as an energy condition on spacetime.

(2) Note that the energy condition (5.1) is satisfied provided along each such timelike geodesic
γ , the condition

lim inf
T →∞

∫ T

0
r(t) dt > θ(p)

(corresponding to c = 0) holds. This condition emphasizes the fact that if S is mean
contracting, i.e. if θ is negative on S, then (5.1) can hold even if r(t) is everywhere
negative.

(3) Specializing further, if the strong energy condition holds, i.e. if Ric (X,X) = RabX
aXb �

0 for all timelike vectors X, and if S is everywhere mean contracting, then (5.1) holds,
and we essentially recover Hawking’s cosmological singularity theorem; cf theorem 4 in
[21], p 272. (For convenience we have stated theorem 5.1 as a future singularity result
rather than a past singularity result.)

12
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Proof of theorem 5.1. We construct an S-ray γ , i.e. a future inextendible timelike geodesic γ

emanating from a point on S that realizes the Lorentzian distance to S from each of its points,
as follows. Choose a sequence of points qn which extends arbitrarily far into the future of
S.4 By the properties of Cauchy surfaces, there exists a timelike geodesic segment γn from
pn ∈ S to qn that realizes the Lorentzian distance from S to qn. Since S is compact, by taking
a subsequence if necessary, we may assume that the sequence pn converges to a point p ∈ S.
Let γ : [0, a) → M , a ∈ (0,∞], be the future inextendible unit speed timelike geodesic
issuing orthogonally from p ∈ S. The maximality of the γn’s guarantees that γ is an S-ray
(see, for example, the proof of the sublemma in [25]).

Let ρ : J +(S) → R be the Lorentzian distance function from S,:

ρ(x) = d(S, x) = sup
y∈S

d(y, x).

By global hyperbolicity, ρ is continuous on J +(S), and will be smooth up to the focal cut
locus of S (see [26]). Since γ is an S-ray, there are no focal points, or focal cut points, to
S along γ , which, by the lower semi-continuity of the S-distance-to-cut locus function [26],
ensures that ρ is smooth on a neighbourhood U of γ . On this neighbourhood u := −∇ρ is a
smooth future directed, geodesic, hypersurface orthogonal unit timelike vector field such that
u = γ ′ along γ . Consider the expansion scalar θ = div u. Along γ , θ = θ(t), t ∈ [0, a),
obeys Raychaudhuri’s equation (for an irrotational timelike congruence) [21]

dθ

dt
= −Ric(γ ′, γ ′) − 2σ 2 − 1

n − 1
θ2, (5.3)

where σ is the shear scalar.
We now observe that γ is necessarily future incomplete. Suppose that γ is future complete

(i.e. suppose a = ∞). Setting z = −θ , r = Ric (γ ′, γ ′) + 2σ 2, s = n − 1 and z(0) = −θ(p)

in (2.4), we see that lemma 2.3, together with the energy condition (5.1), implies that (5.3),
with θ(0) = θ(p), has no solution on [0,∞), which is a contradiction. �

Remarks.

(1) Although slightly more complicated to state, lemma 3.1 and theorems 4.1 and 4.3 provide
alternative energy conditions that yield singularity theorems similar to theorem 5.1.

(2) The assumption of global hyperbolicity in theorem 5.1 can be relaxed. It is sufficient to
assume that M admits a smooth compact acausal spacelike hypersurface S. In this case
one can construct an S-ray γ contained in the future domain of dependence D+(S) (see
especially [25], main lemma), and use the fact that S is a Cauchy surface for the total
domain of dependence D(S).

(3) We see from the proof that it would be sufficient for (5.1) to hold on S-rays.

We now consider an extension of the Penrose singularity theorem [21], theorem 1, to
the energy conditions being considered here. Let � be a codimension-two compact acausal
spacelike submanifold in a spacetime M of dimension n � 3. Under suitable orientation
assumptions, there exist two smooth nonvanishing independent null normal vector fields, �+

and �−, along �, corresponding to outgoing and ingoing light-rays emanating from �. The
null expansion scalars θ+ and θ− on � are obtained by taking the divergence of �+ and �−,
respectively, along �, and measure the instantaneous divergence of the outgoing and ingoing
light rays emanating from �. In a strong gravitational field both θ+ and θ− can be negative, in
which case � is called a trapped surface. According to the Penrose singularity theorem, if �

4 More precisely, if h is a complete background Riemannian metric on M, choose qn in J +(S) so that the h-distance
from S to qn tends to infinity as n → ∞.

13
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is a trapped surface in a spacetime M having a noncompact Cauchy surface and satisfying the
null energy condition, then M is future null geodesically incomplete.

The following generalizes the Penrose singularity theorem (see also [27], theorem 2).

Theorem 5.2. Let M be a spacetime of dimension n � 3 with a noncompact Cauchy surface
S. Let � be a smooth compact acausal spacelike submanifold of M of codimension 2, with
null expansion scalars θ± associated with the future directed null normal vector fields �±.
Suppose along each future complete affinely parameterized null geodesic η : [0,∞) → M ,
issuing orthogonally from � with initial tangent �±, there exists c � 0 such that

lim inf
T →∞

∫ T

0
e−2ct/(n−2)r(t) dt > θ±(p) +

c

2
, (5.4)

where p = η(0) and r(t) := Ric (η′(t), η′(t)) = Rabη
′aη′b(t). Then, M is future null

geodesically incomplete.

Remarks. If � is a trapped surface and M obeys the null energy condition, then (5.4) is
satisfied for sufficiently small c and we recover the Penrose singularity theorem. The case in
which (5.4) holds with c = 0 corresponds to the codimension 2 case of theorem 2 in [27]. As
in theorem 5.1, lemma 3.1 and theorems 4.1 and 4.3 may be used to provide alternative energy
conditions that yield singularity theorems similar to theorem 5.2. Finally, note that if the
Einstein equations (5.2) hold, then the Ricci curvature term Ric (η′(t), η′(t)) can be replaced
by 8πTabη

′aη′b(t).

Proof of theorem 5.2. We shall be brief, as the general structure of the proof is similar to
the proof of the Penrose singularity theorem. See [21] for further details and relevant results
from causal theory.

The achronal boundary ∂J +(�) is a C0 achronal hypersurface ruled by null geodesics,
i.e. for each point q ∈ ∂J +(�) \ � there exists a future directed null geodesic segment from a
point in � to q which is entirely contained in ∂J +(�). Such null geodesics are called the null
generators of ∂J +(�).

If ∂J +(�) were compact, then flowing along the integral curves of a timelike vector field
on M would establish a homeomorphism between ∂J +(�) and the Cauchy surface S, which
would contradict the noncompactness of S. Thus, we may assume that ∂J +(�) is noncompact.
Since ∂J +(�) is closed but noncompact we can find a sequence of points qn in ∂J +(�) whose
h-distance to � (where h is a complete background Riemannnian metric on M) tends to infinity
as n → ∞. Let ηn be a null geodesic generator of ∂J +(�) from pn ∈ � to qn; ηn must meet
� orthogonally, otherwise the achronality of ∂J +(�) would be violated. By passing to a
subsequence if necessary, we may assume without loss of generality that pn → p ∈ � and
that the initial tangents η′

n(0) → �+(p).
Let η : [0, a) → M , a ∈ (0,∞], be the affinely parameterized future inextendible null

geodesic emanating from p with initial tangent �+(p); η is contained in ∂J +(�) since each
ηn is. Since ∂J +(�) is achronal there can be no null focal points, or null focal cut points, to
� along η. It follows [26] that η is contained in a smooth null hypersurface H ⊂ ∂J +(�)

generated by null geodesics emanating from � near p with initial tangents given by �+. Let K
be a smooth null vector field on H such that K = η′ along η, and let θ̂ be the null expansion
of H with respect to K. Along η, θ̂ = θ̂ (t), t ∈ [0, a), obeys Raychaudhuri’s equation (for an
irrotational null congruence) [21]:

dθ̂

dt
= −Ric(η′, η′) − 2σ̂ 2 − 1

n − 2
θ̂2. (5.5)
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Now one can argue just as in the proof of theorem 5.1. If η were future complete, so that
a = ∞, then lemma 2.3 and (5.1) would imply that (5.5), with θ̂ (0) = θ+(p), has no solution
on [0,∞). Hence, η must be future incomplete. �

6. Applications and discussion

We begin with two applications to the Einstein equations coupled to a real scalar field. The
minimally coupled Einstein–Klein–Gordon system in n > 2 spacetime dimensions is given
by

Rab − 1
2Rgab = 8πT min

ab , T min
ab = ∇aφ∇bφ − 1

2gab(∇cφ∇cφ + m2φ2).

If γ is a unit speed timelike geodesic, then

r(t) = Ric(γ ′, γ ′) = 8π

(
(∇γ ′φ)2 − m2

n − 2
φ2

)
,

from which we can see easily that (see, e.g., [28] and [21], p 95) the Klein–Gordon field
fails to obey the strong energy condition and hence the standard hypotheses of the Hawking
singularity theorem. However, if φ remains bounded along γ , with |φ| � φ∗, say, then we
have

− c

2
+

∫ T

0
e−2ct/(n−1)r(t) dt � − c

2
− K2

2c

for all c, T > 0, where K = mφ∗
√

8π(n − 1)/(n − 2). The right-hand side has a maximum
for c = K , and we may conclude from theorem 5.1 that if θ < −K everywhere on S, then M
is future timelike geodesically incomplete.

In fact, the same result follows from theorem 4 of [15] (in the n = 4 case). However,
we may also obtain more general results, which both allow for exponential growth of φ in the
proper time along these geodesics and provide finer detail in the case of exponential decay.
For example, if S is a smooth compact spacelike Cauchy surface and the scalar field obeys a
bound

|φ(p)| � φ∗ eaρ(p)/(n−1)

for p ∈ J +(S), where ρ(p) is the Lorentzian distance from p to S and a ∈ R is constant, then
we obtain a bound

− c

2
+

∫ T

0
e−2ct/(n−1)r(t) dt � − c

2
− K2

2(c − a)

for any c > a and all T > 0 along S-rays, for which ρ(γ (t)) = t . Optimizing over c > 0 as
before, and using theorem 5.1 (and the third remark following its proof) we then have that M
is future timelike geodesically incomplete if

θ <

{−a/2 − K a � −K

K2/(2a) a < −K

on S. The case a = 0 corresponds to the result above, while the other cases indicate the
additional power of our technique.

A drawback of these results is the need to invoke the supremum φ∗ and (if needed) the
constant a. In principle, they are implicit in the Cauchy data for the Einstein–Klein–Gordon
system on S. One can also read this result in the following way (with a = 0 for simplicity): if
S is mean contracting, then either M is future timelike geodesically incomplete or φ exceeds
m−1

√
(8π)−1(n − 2)/(n − 1) infS |θ | in magnitude somewhere to the future of S.
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We now turn to the nonminimally coupled field of mass m � 0 and coupling ξ , with
stress–energy tensor

Tab = T min
ab + ξ

(
gab� − ∇a∇b +

(
Rab − 1

2Rgab

))
φ2.

The presence of the Einstein tensor in this expression complicates the initial value problem
for the Einstein equations with this source (see [29] for existence and uniqueness results). In
addition, the second derivatives allow violations of the NEC as well as the SEC, which can
be exploited to construct nonsingular cosmological solutions [30]. However, for ξ ∈ [0, 1/4]
(including the conformal coupling ξ = 1

4 (n − 2)/(n − 1)) the theory obeys the inequality∫
γ

Tabγ
′aγ ′bf (λ)2 dλ � −2ξ

∫
γ

{
f ′(λ)2 − 1

2
Ric(γ ′, γ ′)f (λ)2 −

(
1

4
− ξ

)
Rγ ′2

}
φ2 dλ

for any affinely parameterized causal geodesic γ and smooth compactly supported, real-valued
f ([31], theorem II.1, modulo change in conventions). If we assume that the field magnitude
remains bounded, |φ| � φ∗ this entails (for the case of null γ ) that∫

γ

Ric(γ ′, γ ′)(1 − 8πξφ2)f (λ)2 dλ � −16πξφ2
∗‖f ′‖2

for all f ∈ C∞
0 (R). Provided that φ∗ is strictly less than the critical value (8πξ)−1/2 we may

absorb a factor into f , thus obtaining∫
γ

Ric(γ ′, γ ′)f (λ)2 dλ � −16πξφ2
∗

∫ ∞

−∞

(
d

dλ

f (λ)√
1 − 8πξφ2

)2

dλ

� − Q
(‖f ′‖2 + Q̃2‖f ‖2

) =: −|||f |||
for all real-valued f ∈ C∞

0 (R), where

Q = 32πξφ2
∗

1 − 8πξφ2∗
, Q̃ = 8πξφ∗φ′

∗
1 − 8πξφ2∗

,

and φ′
∗ is an upper bound on |φ′|. (We have used the simple estimate ‖(fg)′‖2 �

2(‖f ‖2‖g′‖2
∞ + ‖f ′‖2‖g‖2

∞) for any f ∈ C∞
0 (R), g ∈ C∞(R).) This is a bound of the

form (4.1) with r0 ≡ 0 and r = Ric (γ ′, γ ′). To proceed, we need the following lemma.

Lemma 6.1. Let τ0 > 0, s > 0 and choose K > 0 so that

K2 � Q̃2 + Q−1Ric(γ ′, γ ′)

on (−τ0, 0]. For any ε > 0, there exists c > 0 and h ∈ C∞(R) with supp h ⊂ [−τ0,∞),
h(t) = e−ct/s on [0,∞) and

c

2
+ |||h||| +

∫ 0

−τ0

h2Ric(γ ′, γ ′) dλ � Q̃
√

Qs + Q2/2 +
1

2
QK coth Kτ0 + ε.

Proof. We take c = Q̃s
√

2Q/(Q + 2s). Then the left-hand side becomes

Q̃
√

Qs + Q2/2 +
∫ 0

−τ0

(Qh′2 + [QQ̃2 + Ric(γ ′, γ ′)]h2) dλ

so it is sufficient to show that

inf
h

∫ 0

−τ0

(
h′2 + K2h2

)
dλ � K

2
coth Kτ0 , (6.1)

with the infimum taken over the class of h specified in the hypotheses. Treating this as a
variational problem, the Euler–Lagrange equation is h′′ = K2h and applying the boundary
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conditions h(−τ0) = 0, h(0) = 1, the solution is h(λ) = (sinh Kτ0)
−1 sinh K(λ + τ0), giving

equality in (6.1). This can be approximated arbitrarily well within the given class of h. �

Accordingly, using theorem 4.1 in place of lemma 2.3, we obtain an analogue of
theorem 5.2 if the hypothesis (5.4) is replaced by the requirement

θ±(p) < −Q̃
√

(n − 2)Q + Q2/2 − 1
2QK coth Kτ0,

with K computed as above for the extension of the null geodesic η to (−τ0, 0], for some τ0 > 0.
Finally, we briefly discuss the potential for applications involving quantum fields. The

QEIs established for many free fields are weakened versions of the weak and dominant energy
conditions, while our analogue of the Hawking singularity theorem is based on a weakened
strong energy condition. In order to prove a Hawking result from QEI hypotheses, it would
be necessary to add conditions on the trace of the stress–energy tensor, much as in the case
of the classical scalar field discussed above. In addition, it is necessary to find estimates on
the timescales for averaging over which the curved spacetime QEIs are well approximated by
Minkowski space results. Nonetheless, there seems a good prospect of obtaining results along
these lines, and our results provide a proof of principle for the idea that energy conditions
based on local averages can be used to deduce singularity theorems. Turning to the Penrose-
type results, a significant problem at present is that no locally averaged energy inequality
along individual null geodesics is known, and direct analogues of the results for timelike
averaging cannot hold in dimensions higher than 2 [32]. Here, it seems that the best approach
is to consider averages with a degree of transverse smearing, whereupon QEIs can be proved
[32]. It is worth recalling that even the ANEC condition is problematic for averaging along a
complete null geodesic: the real scalar field violates ANEC in general spacetimes (see [33] and
references therein) although it holds in Minkowski space [13] and in general spacetimes along
complete achronal geodesics with a tubular Minkowskian neighbourhood [34]. Moreover, this
problem persists even with some transverse averaging schemes [35].

Finally, it should be noted that a full treatment of singularity theorems in the context
of quantized matter would require (at least) a semiclassical analysis that takes backreaction
into account in a dynamical fashion, bringing significant technical challenges—see [36, 37]
for recent results in simple cosmological models and further references, and [38] for positive
results on ANEC with transverse smearing in this context5.

Acknowledgments

We are grateful to the Centre for Analysis and Nonlinear PDEs (Maxwell Institute) and
the ICMS in Edinburgh for financial support during the workshop Mathematical Relativity
at which this work was initiated. It is a pleasure to thank the workshop organizers and
participants for useful discussions, particularly Paul Tod and James Vickers. This work was
partially supported by NSF grant DMS-0708048.

References

[1] Penrose R 1965 Phys. Rev. Lett. 14 57–9
[2] Hawking S W 1966 Proc. R. Soc. A 294 511–21
[3] Hawking S W and Penrose R 1970 Proc. R. Soc. A 314 529–48
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[23] Ford L H and Roman T A 1996 Phys. Rev. D 53 5496–507
[24] Paeng S H 2009 Math. Proc. Camb. Phil. Soc. 146 475–87
[25] Galloway G J 1986 Math. Proc. Camb. Phil. Soc. 99 367–75
[26] Kemp P M 1984 Focal and focal-cut points PhD Thesis, University of California, San Diego, CA (Ann Arbor,

MI: ProQuest LLC)
[27] Galloway G J and Senovilla J M M 2010 Class. Quantum Grav. 27 152002 (arXiv:1005.1249)
[28] Bekenstein J D 1975 Phys. Rev. D 11 2072–5
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