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Abstract: In this note we study the topology of 3-dimensional initial data sets with
horizons of a sort associated with asymptotically locally anti-de Sitter spacetimes. We
show that, within this class, those initial data sets that contain no (immersed) marginally
outer trapped surfaces in their interior must have simple topology: they are a product of
a surface and an interval, or a mild variation thereof, depending on the connectedness of
the horizon and on its genus relative to that of the end. The results obtained here extend
results in Eichmair et al. (J Differ Geom 95:389–405, 2013) to the case of higher genus
ends.

1. Introduction

One of the interesting features of general relativity is that it does not a priori impose
any restrictions on the topology of space. In fact, as was shown in [17], given an asymp-
totically flat initial data set of arbitrary topology, there always exists a solution to the
vacuum Einstein constraint equations. However, according to the principle of topolog-
ical censorship, the topology of the domain of outer communications (DOC), i.e., the
region outside of all black holes (and white holes), should, in a certain sense, be sim-
ple. Roughly speaking, results on topological censorship [6,12–14] show that, under
suitable energy and causality conditions, the topology of the DOC (at the fundamental
group level) cannot be more complicated than the topology at infinity. In particular, in
the asymptotically Minkowskian case, the DOC must be simply connected. However,
the results alluded to here are spacetime results, i.e., they involve conditions that are
essentially global in time. In [11] a result on topological censorship was obtained at
the pure initial data level for asymptotically flat initial data sets, thereby circumventing
difficult questions of global evolution; cf. [11, Theorem 5.1].

The aim of this note is to extend this result to 3-dimensional initial data sets that arise
in asymptotically locally anti-de Sitter (ALADS) spacetimes. Examples of such are the
generalized Kottler spacetimes [5,7,19], which are solutions to the vacuum Einstein
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equations with negative cosmological constant. These solutions have spacetime ends
and event horizons with arbitrary (but equal) genus. Cauchy surfaces for the DOC have
product topology. Here we will establish conditions on ALADS initial data sets, similar
to those in [11], which imply product topology. The proofs rely on existence results for
marginally outer trapped surfaces, as well as our current understanding of 3-manifolds.
Results in [8] will play a key role in establishing product topology.

In Sect. 2 we present some preliminary material. Our main results are presented in
Sect. 3.

2. Preliminaries

We begin with some basic definitions and important facts about 3-manifolds. Let V be a
compact 3-manifold without spherical boundary components.1 V is said to be irreducible
provided every embedded 2-sphere in V bounds a ball in V .

A surface � embedded in V is said to be compressible if there exists an embedded
disk D ⊂ V such that D ∩ � = ∂ D and ∂ D does not bound a disk in �; such a disk
is a compressing disk for �. A surface that is not compressible is incompressible. It
is a fundamental consequence of the Loop Theorem [20] that � is incompressible if
and only if the map on fundamental groups i∗ : π1(�)→ π1(V ) induced by inclusion
i : � ↪→ V is injective.

If � is a compressible surface in V and D is a compressing disk for �, then D
has a collar neighborhood N (D) ∼= D2 × (0, 1) such that � ∩ N (D) ∼= ∂ D × (0, 1),
and the compression of � along D is the surface �′ = (� ∪ ∂ N (D)) − (� ∩ N (D)).
If moreover � is a component of ∂V , then this compression produces the submanifold
V ′ = V−N (D). Observe that V may be recovered from V ′ by attaching a 3-dimensional
1-handle along �′; the compressing disk is its co-core.

From Theorem 10.5 in [15], together with the positive resolution of the Poincaré
Conjecture (which ensures that there are no fake 3-cells), we have the following algebraic
criterion for V to be an I -bundle (where I is the interval [0, 1]).
Theorem 2.1. Let V be a compact, connected, orientable 3-manifold without spherical
boundary components, and � an incompressible boundary component. If the index,
[π1(V ) : i∗π1(�)], of i∗π1(�) in π1(V ) is finite, then either

• [π1(V ) : i∗π1(�)] = 1 and V is diffeomorphic to � × [0, 1] with � = � × {0}, or
• [π1(V ) : i∗π1(�)] = 2 and V is a twisted I -bundle over a compact non-orientable

surface �̄ with � the associated 0-sphere bundle.

A group G is said to be residually finite if for each non-identity element g ∈ G, there
is a normal subgroup N of finite index such that g /∈ N . It follows from work of
Hempel [16], together with the positive resolution of the geometrization conjecture, that
the fundamental group of every compact 3-manifold V is residually finite; see e.g. [3].
Hence, by basic covering space theory, if π1(V ) 
= 0 then V admits a finite cover Ṽ .
[If π1(V ) were finite, one could simply take the universal cover. Residual finiteness
becomes important when π1(V ) is infinite.]

The following lemma about submanifolds representing codimension one homology
classes is well established for closed orientable manifolds; see [21]. When the ambient
manifold has boundary the result appears well-known to the experts, though we were

1 Here and elsewhere we assume that boundary components (which physically correspond to horizons or
ends) are of genus ≥ 1. The case of spherical ends is considered in [11].
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unable to find an explicit statement or proof in the literature. Hence we give it here. The
proof is a modification of the proof given in [4, VI 11.16] for closed manifolds.

Lemma 2.2. Let M be a smooth, compact, connected, oriented n-manifold with bound-
ary. Then every homology class in Hn−1(M;Z) is realized by a closed, smooth, oriented
(n − 1)-submanifold.

Proof. Recall that we have the isomorphisms

Hn−1(M;Z)
PD←− H1(M, ∂ M)←− [(M, ∂ M), (S1, p)]

where p is a point in S1. Thus for any class z ∈ Hn−1(M;Z), there exists a map
of pairs φ : (M, ∂ M) → (S1, p) such that z = PD(φ∗(ξ)), the Poincaré-Lefschetz
dual to φ∗(ξ) where ξ ∈ H1(S1, p;Z) ∼= H1(S1;Z) ∼= Z is the generator such that
ξ([S1]) = 1. Then let q ∈ S1 be a point different from p and homotope φ to be
transverse to q. This gives us the submanifold φ−1(q) which we now show represents
z. Since PD(ξ) = [q] ∈ H0(S1;Z), ξ is also the Thom class of the normal bundle of q
in S1. Observing that φ gives a bundle map from the normal bundle of φ−1(q) in M to
the normal bundle of q in S1, φ∗(ξ) is the Thom class of the normal bundle of φ−1(q).
Thus PD(φ∗(ξ)) = [φ−1(q)], and hence z = [φ−1(q)]. 
�

For our application, we only need the case when n = 3. A much simpler, standard,
low-tech argument handles this case and applies whether or not the manifold has bound-
ary: In a compact, orientable 3-manifold M , an integral homology class z ∈ H2(M;Z),
viewed in terms of simplicial homology, can be represented as a integral linear combi-
nation of triangles (2-simplicies) in a triangulation of M , say z = [∑ niσi ] for integers
ni . In a tubular neighborhood of each 2-simplex σ , regard nσ as |n| parallel copies of
a triangle with disjoint interiors, oriented according to the sign of n, and glued together
along the edges and vertices. Since the linear combination is a cycle, in a tubular neigh-
borhood along the edges but outside ball neighborhoods of the vertices we can match up
the triangles according to their orientations and resolve the intersections. Now the result-
ing complex intersects the sphere boundaries of the ball neighborhoods of the vertices
in collections of disjoint circles. Replace the complex in these balls with disjoint disks
bounded by these circles. Since these resolutions and replacements preserve homology
classes, the resulting surface represents the original homology class z.

We now consider some basic definitions and facts about marginally outer trapped
surfaces in initial data sets; for background, see e.g. [1]. Let (V, h, K ) be a 3-dimensional
initial data set in a 4-dimensional spacetime (M, g), i.e., V is a spacelike hypersurface
in M with induced (Riemannian) metric h and second fundamental form K . To set sign
conventions, for vectors X, Y ∈ TpV , K is defined as, K (X, Y ) = g(∇X u, Y ), where
∇ is the Levi-Civita connection of M and u is the future directed timelike unit normal
vector field to V .

Let � be a closed (compact without boundary) two-sided hypersurface in V . Then �

admits a smooth unit normal field ν in V , unique up to sign. By convention, refer to such
a choice as outward pointing. Then l+ = u + ν (resp. l− = u − ν) is a future directed
outward (resp., future directed inward) pointing null normal vector field along �.

Associated to l+ and l−, are the two null second fundamental forms, χ+ and χ−,
respectively, defined as,

χ± : Tp� × Tp�→ R, χ±(X, Y ) = g(∇Xl±, Y ). (2.1)
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The null expansion scalars (or null mean curvatures) θ± of � are obtained by tracing
χ± with respect to the induced metric γ on �, θ± = trγ χ± = div �l±. Physically, θ+
(resp., θ−) measures the divergence of the outgoing (resp., ingoing) light rays emanating
from �.

The null expansion scalars can be expressed solely in terms of the initial data
(V, g, K ). We have θ± = trγ K ± H , where H is the mean curvature of � within
M . In particular, in the time-symmetric case, i.e., when K = 0 [and hence V is totally
geodesic in (M, g)], θ+ is just the mean curvature of � in V .

In regions of spacetime where the gravitational field is strong, one may have both
θ− < 0 and θ+ < 0, in which case � is called a trapped surface. The concept of a
trapped surface plays a key role in the Penrose singularity theorem.

Focusing attention on the outward null normal only, we say that � is an outer trapped
surface if θ+ < 0. Finally, we define � to be a marginally outer trapped surface (or
MOTS) if θ+ vanishes identically. Note that in the time-symmetric case, a MOTS is
simply a minimal hypersurface in V . In this sense MOTSs may be viewed as spacetime
analogues of minimal surfaces. Physically, MOTSs represent an extreme gravitational
situation. Under appropriate energy and causality conditions, their presence in an initial
data set signals the existence of a black hole. Moreover, for stationary (steady state)
black hole spacetimes, cross sections of the event horizon are MOTSs.

Now consider a 3-dimensional initial data set (V, h, K ), where V is compact with
boundary. We say that a component � of ∂V is null mean convex if it has positive
outward null expansion, θ+ > 0, and negative inward null expansion, θ− < 0. Note that
round spheres in Euclidean slices of Minkowski space are null mean convex.

The basic existence results for MOTSs (see [1] and references therein) imply the
following result, which will be needed in the proofs of our main results.

Lemma 2.3. Let (V, h, K ) be a 3-dimensional initial data set, where V is a compact 3-
manifold with boundary. Suppose that the boundary can be expressed as a disjoint union,
∂V = �0 ∪ �1, such that each component of �0 is a MOTS (with respect to either the
null normal whose projection points into V or the null normal whose projection points
out of V ) and each component of �1 is null mean convex. If there are no MOTS in V\�0
then �1 is connected.

Lemma 2.3 is a consequence of the basic existence result for MOTSs obtained in [2];
cf. [2, Theorem 3.1]. Moreover, as will be needed here, this existence result extends to
the case of weak (nonstrict) barriers as described in [2, Section 5]. We note also that
Lemma 2.3 holds for initial data sets up to dimension seven, as a consequence of the
higher dimensional existence results for MOTSs obtained in [9,10].

Proof of Lemma 2.3. The argument is essentially contained in the proof of [11, Theorem
5.1]. Suppose �1 has more than one component. Then we may express ∂V as a disjoint
union, ∂V = �in ∪ �out , such that θ+ ≤ 0 along the components of �in , with respect
to the inward pointing null normal, and with strict inequality on some component, and
such that θ+ ≥ 0 along the components of �out , with respect to the outward pointing
null normal, and with strict inequality on some component. (Take, for example, �in to
consist of one component of �1 and all components of �0 which are MOTS with respect
to the inward pointing null normal, and take �out to consist of the remaining components
of �1 and all components of �0 which are MOTS with respect to the outward pointing
null normal.) Under these barrier conditions [2, Theorem 3.1 and Section 5] implies the
existence of a MOTS � in V homologous to �0. Because of the strict barrier component,
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at least one component of � must be disjoint from �0 and is thus contained in V \�0,
contrary to our assumptions. Hence, �1 must be connected. 
�

A slightly more general notion of MOTS was introduced in [11], and will be needed
for our main results.

Definition 2.1. Given an initial data set (V, g, K ), we say that a subset � ⊂ V is an
immersed MOTS if there exists a finite cover p : Ṽ → V and a MOTS �̃ in Ṽ with
respect to the pulled-back data (p∗h, p∗K ), such that p(�̃) = �.

A simple example of an immersed MOTS (that is not a MOTS) occurs in the so-
called RP

3 geon [11,12]. The RP
3 geon is a globally hyperbolic spacetime that is

double covered by the extended Schwarzschild spacetime. Its Cauchy surfaces have the
topology of RP

3 minus a point. The Cauchy surface V covered by the totally geodesic
time slice Ṽ in the extended Schwarzschild spacetime has one asymptotically flat end
(identical to an end in the Schwarzschild slice), and contains a projective plane � that
is covered by the unique minimal sphere �̃ in Ṽ . Since � is not two-sided, it is not a
MOTS. However, since the slice Ṽ is totally geodesic, �̃ is a MOTS, and hence � is an
immersed MOTS.

3. The Main Result

Consider a 3-dimensional initial data set (V, h, K ), where V is a compact, connected 3-
manifold with boundary ∂V = �0∪�1, such that �0 and �1 are orientable surfaces with
no sphere components.2 In the present context we are to think of V as a compact spacelike
hypersurface in the DOC of an ALADS black hole spacetime, with �0 corresponding to
a cross section of the event horizon and �1 corresponding to a surface “near infinity”.
At the initial data level, we represent �0 by a marginally outer trapped surface (MOTS),
and �1 by a null mean convex hypersurface. The null mean convexity condition follows
from physically natural asymptotics in the ALADS setting; cf. [6]. Moreover, since under
suitable circumstances, there can be no (immersed) MOTSs 3 in the DOC, we will adopt
this as an assumption on V \�0.

The following is our main result. For a closed orientable surface �, we let g(�)

denote the sum of the genera of the components of �.

Theorem 3.1. Let (V, h, K ) be a 3-dimensional initial data set satisfying the following.

(a) V is a compact manifold with boundary ∂V = �0 ∪ �1 where �0 and �1 are
orientable surfaces, and each may have multiple components, but no sphere compo-
nents.

(b) Each component of �0 is a MOTS (either with respect to the inward pointing or
outward pointing null normal 4) and �1 is null mean convex.

(c) There are no immersed MOTS in V \�0.

Then �1 is connected and one of the following holds.

(i) �0 is connected, g(�0) = g(�1), and V is diffeomorphic to �0 × [0, 1].
2 We assume throughout that V is compact and connected, and that �0 and �1 are non-empty.
3 Such a surface would be visible from timelike infinity, but there are arguments precluding that possibility

(see e.g. [6,22]).
4 Thus we are allowing for both black holes and white holes.
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(i) (ii) (iii)

Σ

Σ

Fig. 1. Examples of the three possible topology types from Theorem 3.1

(ii) �0 has multiple components, g(�0) = g(�1), and V is diffeomorphic to �0×[0, 1]
with 1-handles attached to �0 × {1}.

(iii) �0 may have multiple components, g(�0) < g(�1), and V is diffeomorphic to
�0 × [0, 1] with 1-handles attached to �0 × {1}.

Note that in all three cases, g(�0) ≤ g(�1). This is consistent with the genus inequal-
ity obtained in [14, Theorem 4.1] in the spacetime setting, as well as a more restrictive
inequality obtained in [18]. Theorem 3.1 gives a complete description of the possible
topologies when equality holds and when the inequality is strict. Figure 1 illustrates
these possibilities; these are examples of what are called compression bodies. Case (i)
is realized by suitably truncated time slices in the generalized Kottler spacetimes. It is
an open question whether the more complicated topologies of cases (ii) and (iii) can
be physically realized. In the static case, a uniqueness result for negative mass Kottler
spacetimes is obtained in [18], assuming, in the notation used here, that the genus of a
component of �0 equals the genus of �1. If �0 is connected, the following immediate
consequence of Theorem 3.1 guarantees topological uniqueness in this case.

Corollary 3.2. Let (V, h, K ) be a 3-dimensional initial data set such that V is a compact
manifold with boundary ∂V = �0∪�1, where �0 and �1 are orientable surfaces, with
�0 connected and with g(�0) ≥ g(�1) ≥ 1. Suppose that �0 is a MOTS and �1 is null
mean convex. If there are no immersed MOTS in V \�0 then, in fact, g(�0) = g(�1)

and V is diffeomorphic to �0 × [0, 1].
Remark. If �0 is not connected (but has no sphere components), the conclusion of this
corollary is still true provided the genus assumption g(�0) ≥ g(�1) is replaced by:
g(�′) ≥ g(�1), where �′ is a component of �0. Indeed, this assumption clearly rules
our cases (ii) and (iii) of Theorem 3.1. If one further allows �0 to have some sphere
components, then, by a modification of our arguments, one could conclude that V is
topologically a product minus a finite number of balls.

Theorem 3.1 follows from Lemmas 3.3 and 3.4 presented below. Lemma 3.3 estab-
lishes properties of V that make explicit use of the geometric assumptions, e.g, that there
are no immersed MOTSs in V \�0. Lemma 3.4 is a purely topological result derived
from a key result in [8].

Lemma 3.3. Let (V, h, K ) be a 3-dimensional initial data set satisfying the following:

(a) V is a compact manifold with boundary ∂V = �0 ∪ �1 where �0 and �1 are
orientable surfaces, and each may have multiple components, but no sphere compo-
nents.
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(b) Each component of �0 is a MOTS (either with respect to the inward pointing or
outward pointing null normal) and �1 is null mean convex.

(c) There are no immersed MOTS in V \�0.

Then,

(i) V is orientable.
(ii) There are no non-separating closed surfaces in any finite cover of V .

(iii) V is irreducible.
(iv) �0 is incompressible.
(v) �1 is connected.

Proof. We show that if any one of (i), (ii), (iii), (iv) is not satisfied, then there exists a
finite cover p : Ṽ → V such that p−1(�1) is not connected. Consequentially, Lemma
2.3 then implies that there is an immersed MOTS in V \�0, contrary to assumption. We
immediately obtain (v) by taking the trivial cover in Lemma 2.3.

(i) If V is non-orientable, then V has an orientable double cover. For such covers,
each boundary component of ∂V , since assumed orientable, lifts to two components. In
particular, the lift of �1 is not connected.

(ii) Assume S is a non-separating closed surface in V . Without loss of generality we
may assume S is connected. Form a double cover p : Ṽ → V as follows: Let W be the
result of cutting V open along S. Observe that ∂W = ∂V ∪ S̃ where S̃ is the double
cover of S arising as the boundary of a collar neighborhood of S in V . Let φ : S̃→ S̃ be
the corresponding deck transformation. Then let (Wi , S̃i ) be a copy of (W, S̃) for each
i = 1, 2 and form Ṽ = W1 ∪ W2/φ̃ where φ̃ : S̃1 → S̃2 is the orientation reversing
homeomorphism induced by φ. By construction p−1(�1) is not connected.

If instead S were a non-separating closed surface in a finite cover V ′ of V , then as
above there would be a double cover Ṽ ′ of V ′. Composing these covers gives a finite
cover p : Ṽ ′ → V for which p−1(�1) is not connected.

(iii) Assume V is reducible. Since ∂V 
= ∅, this implies V = V ′#V ′′ is a non-trivial
connected sum. (The only prime but reducible 3-manifolds are S1× S2 and S1×̃S2 [15,
Lemma 3.13].) Since �1 is connected, it is a boundary component of, say, V ′. Since,
as discussed in Sect. 2, every compact 3-manifold is residually finite, V ′′ has a cover of
finite index k > 1. This induces a finite cover p : Ṽ → V in which the V ′ summand
lifts to k disjoint copies. Hence p−1(�1) is not connected.

(iv) Assume �0 is compressible. Thus there is a compressing disk D for �0, and D
is necessarily disjoint from �1. If D is non-separating in V , then we may form a double
cover as in (ii) with D playing the role of S. On the other hand, if D separates V into
V ′ and V ′′ where �1 is a boundary component of V ′ (recall that �1 is connected), then
we may form a finite cover of V extending a finite cover of V ′′ as in (iii). In either case,
�1 lifts to a disconnected surface. 
�
Lemma 3.4. Let V be a compact, connected, orientable, irreducible 3-manifold with
∂V = �0 ∪�1 such that �1 is connected, �0 is incompressible and potentially discon-
nected, and ∂V has no sphere components. Assume there are no non-separating closed
surfaces in any finite cover of V .

Then, using |�0| to denote the number of components of �0,

• g(�0) ≤ g(�1) and
• V ∼= �0 × [0, 1] with at least |�0| − 1 1-handles attached to �0 × {1}.
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Moreover g(�0) = g(�1) if and only if exactly |�0| − 1 1-handles are attached to
�0 × {1}. In particular, if �0 is connected, then V ∼= �0 × [0, 1].
Proof. The proof splits according to whether or not �1 is incompressible.

Case 1. �1 is incompressible.
Corollary 3.6 in [8] then shows that either (a) V is covered by a product

F × [0, 1] for some surface F or (b) there exists a finite cover Ṽ of V such that
rk(H2(Ṽ )/incl∗(H2(∂ Ṽ ))) > 0, where incl∗ : H2(∂ Ṽ )) → H2(Ṽ ) is the homomor-
phism induced by inclusion.

(a) There is a cover p : Ṽ ∼= F × [0, 1] → V for some surface F .
Let �̃i be the lift of �i to Ṽ for each i = 0, 1. Since ∂ Ṽ has just two boundary

components, �̃i is connected for each i = 0, 1. Hence both �0 and �1 are connected.
Fix a basepoint∗ ∈ �0. By incompressibility, the Loop Theorem implies the inclusion

map �0 ↪→ V induces an injection π1(�0, ∗) into π1(V, ∗). We claim that this is also a
surjection: A loop γ ⊂ V based at ∗ lifts under p to a loop γ̃ connecting two points of
p−1(∗) ⊂ �̃i . Since Ṽ ∼= F × [0, 1], γ̃ is homotopic to a path γ̃ ′ connecting the same
points of p−1(∗). Thus p(γ̃ ) is homotopic in V , fixing endpoints in ∗ ∈ �0, to γ . Thus
π1(�0) ∼= π1(V ). Hence, we are in the first case of Theorem 2.1, which then implies
that V ∼= �0 × [0, 1]. Consequentially, g(�0) = g(�1).

(b) There is a finite cover p : Ṽ → V such that rk(H2(Ṽ )/incl∗(H2(∂ Ṽ ))) > 0. Hence
there is a non-trivial element in H2(Ṽ ) that is not in incl∗(H2(∂ Ṽ )). By Lemma 2.2, such
an element can be realized by a closed surface S embedded in Ṽ . Since any connected,
closed, separating surface in Ṽ represents a class in incl∗(H2(∂ Ṽ )), S must have a
non-separating component. This is contrary to our assumptions.

Case 2. �1 is compressible.
It is always possible to choose a minimal set of mutually disjoint compressing disks for

�1 such that the compressions of �1 produces a manifold V ′ ⊂ V with incompressible
boundary �0 ∪ �′1. Let D1, . . . , Dn be such a set. Then V may be recovered from V ′
by attaching disjoint 1-handles h1, . . . , hn along �′1; the compressing disk Di may be
identified with the co-core of the 1-handle hi . For each 1-handle hi , let di and ei be the
two disks in �′1 to which it is attached.

We claim that �′1 has no sphere components: Otherwise, since V is V ′ with 1-handles
attached, ∂V has no sphere components, and V is irreducible, a sphere component of �′1
would have to bound a 3-ball B in V ′ (V\V ′ is just the 1-handles). Because �0 
= ∅ and
�1 is connected, there must be a 1-handle, say h, connecting ∂ B to another component
of �′1. But then V ′ ∪h∪ B ∼= V ′, implying that the compression corresponding to h was
not necessary. This is contrary to the presumed minimality of our set of compressing
disks.

Then since V is irreducible, so also must be V ′. However, it may be that V ′ is
disconnected even though V is connected. Let the components of V ′ be W 1, . . . , W r .
Then for each s = 1, . . . , r , let W s

0 = W s ∩ �0 and W s
1 = W s ∩ �′1 so that ∂W s =

W s
0 ∪W s

1 .
We claim that each component is a product, W s ∼= W s

0 × [0, 1]. If this is so, then
V ′ ∼= �0 × [0, 1] and thus V is the product �0 × [0, 1] with 1-handles attached to
�0×{1}. Because �1 is connected, a total of |�0|−1 1-handles are required to connect
all the components of V ′. These 1-handles do not alter the total genus of the boundary.
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Any further attachment of 1-handles increases the genus. The conclusion of the theorem
then follows. Therefore the remainder of this proof shows that W s ∼= W s

0 × [0, 1] for
each s = 1, . . . , r .

Because W s is irreducible and has incompressible boundary with no sphere compo-
nents, we may appeal to [8, Corollary 3.6] again and follow a similar argument as in
Case 1 for each s = 1, . . . , r .

(a) There is a cover ps : W̃ s ∼= F ×[0, 1] → W s . As before, elementary covering space
arguments and Theorem 2.1 imply that W s is an I -bundle over a surface. Thus ∂W s

has at most two components. By construction, we necessarily have W s
1 
= ∅, but it is

possible that W s
0 = ∅. If W s

0 
= ∅, then both W s
0 and W s

1 are connected and we again
conclude as in Case 1 that W s ∼= W s

0 × [0, 1] and g(W s
0 ) = g(W s

1 ). This is the desired
conclusion.

If W s
0 = ∅ and W s

1 has two components, then we again conclude that the two
components have the same genus and W s is the product of a closed surface and an
interval. In particular, there is a closed surface S in the interior of W s that separates the
components of W s

1 . Since �1 is connected, there is a path joining the two components
of W s

1 that runs through a subset of the 1-handles h1, . . . , hn and the components of
�′1\W s

1 . Hence in V the surface S is non-separating, contrary to assumption.
If W s

0 = ∅ and W s
1 has just one component, then W s is a twisted I -bundle over a

closed, compact, non-orientable surface S. Since W s is orientable, S is one-sided and
hence non-separating in W s . Therefore it remains non-separating in V , a contradiction.

(b) There is a finite cover ps : W̃ s → W s of degree k such that rk(H2(W̃ s)/incl∗
(H2(∂W̃ s))) > 0. Again there is a non-separating, closed surface S embedded in W̃ s .

We now extend this to a finite covering of V in which S continues to be non-separating.
First extend ps to a degree k cover p′ : Ṽ ′ → V ′ where Ṽ ′ is the disjoint union of W̃ s

with k copies of V ′ \W s and p′|(Ṽ ′ \W̃ s) is the trivial k-fold covering map. Then each
of the disks di and ei in �′1 (to which the handle hi is attached) has k preimages in

�̃′1 ⊂ ∂ Ṽ ′. Denote the preimage of di as d̃i
1 ∪ · · · ∪ d̃i

k
and the preimage of ei as

ẽi
1∪· · ·∪ ẽi

k . For each i = 1, . . . , n, let h̃i
1∪· · ·∪ h̃i

k
be k disjoint 1-handles covering

hi ; then for each j = 1, . . . , k, attach the 1-handle h̃i
j

to Ṽ ′ along the disks d̃i
j

and
ẽi

j in �̃′1. By construction, this gives a covering map p : Ṽ → V that restricts to our
initial covering map p′ : Ṽ ′ → V ′. In particular, S continues to be non-separating in Ṽ ,
contrary to our assumptions. 
�

Lemmas 3.3 and 3.4 combine to give a proof of Theorem 3.1.

Proof of Theorem 3.1. Lemma 3.3 implies that all the assumptions of Lemma 3.4 hold.
The conclusion of Lemma 3.4 implies that of Theorem 3.1. 
�
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