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Abstract
All inextendible null geodesics in four-dimensional de Sitter space dS4 are
complete and globally achronal. This achronality is related to the fact that all
observer horizons in dS4 are eternal, i.e. extend from future infinity J + all the
way back to past infinity J −. We show that the property of having a null line
(inextendible achronal null geodesic) that extends from J − to J + characterizes
dS4 among all globally hyperbolic and asymptotically de Sitter spacetimes
satisfying the vacuum Einstein equations with positive cosmological constant.
This result is then further extended to allow for a class of matter models that
includes perfect fluids.

PACS number: 04.20.Cv

1. Introduction

Asymptotically de Sitter spacetimes can be roughly thought of as solutions to the Einstein
equations with positive cosmological constant having a spacelike boundary at infinity J .
These spacetimes naturally arise in a number of contexts, such as in the study of inflationary
cosmological models. An asymptotically de Sitter spacetime is said to be asymptotically
simple provided every null geodesic extends all the way from past infinity J − to future
infinity J +. Such spacetimes are, of course, modelled on de Sitter space dSn itself, which
conformally embeds into the Einstein cylinder, acquiring there a past conformal infinity J −

and a future conformal infinity J +, each spacelike and diffeomorphic to the (n − 1)-sphere.
An additional causal feature of de Sitter space is that every inextendible null geodesic in it
is globally achronal, i.e., never enters into its own chronological future or past. Such null
geodesics are referred to as null lines.

As it turns out, the occurrence of null lines is a very particular feature of de Sitter space. In
[11] it is proved that this property characterizes dS4 among all four-dimensional asymptotically
simple and de Sitter spacetimes.
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Theorem 1.1. Let (M̃, g̃) be an asymptotically simple and de Sitter spacetime of dimension
n = 4 that satisfies the vacuum Einstein equations with positive cosmological constant. If M̃

contains a null line, then M̃ is isometric to de Sitter space dS4.

As discussed in [11, 12], this theorem can be interpreted in terms of the initial value
problem in the following way: Friedrich’s work [9] on the nonlinear stability of de Sitter space
shows that the set of asymptotically simple solutions to the Einstein equations with positive
cosmological constant is open in the set of all maximal globally hyperbolic solutions with
compact spatial sections. As a consequence, by slightly perturbing the initial data on a fixed
Cauchy surface of dS4 we get in general an asymptotically simple solution of the Einstein
equations different from dS4. Thus by virtue of theorem 1.1, such a spacetime has no null
lines. In other words, a small generic perturbation of the initial data destroys all null lines.
This suggests that the so-called generic condition of singularity theory [14] is in fact generic
with respect to perturbations of the initial data.

Alternatively, we could say that no other asymptotically simple solution of the Einstein
equations besides dS4 develops eternal observer horizons. By definition, an observer horizon
A is the past achronal boundary ∂I−(γ ) of a future inextendible timelike curve γ ; thus, A
is ruled by future inextendible achronal null geodesics. As follows from previous comments,
in the case of de Sitter space, observer horizons are eternal, that is, all null generators of A
extend from J + all the way back to J −.

Since the observer horizon is the boundary of the region of spacetime that can be observed
by γ , the question arises as to whether at one point γ would be able to observe the whole
of space. More precisely, we want to know if there exists q ∈ M̃ such that I−(q) would
contain a Cauchy surface of spacetime. Gao and Wald were able to answer this question
affirmatively for globally hyperbolic spacetimes with compact Cauchy surfaces, assuming null
geodesic completeness, the null energy condition and the null generic condition [13]. Thus,
as expressed by Bousso [4], asymptotically de Sitter spacetimes satisfying the conditions of
the Gao and Wald result have Penrose diagrams that are ‘tall’ compared to de Sitter space3.

Though no set of the form I−(q) in dS4 contains a Cauchy surface, I−(q) gets arbitrarily
close to doing so as q → J +. However, note that de Sitter space is not a counterexample to
Gao and Wald’s result, since dS4 does not satisfy the null generic condition. Actually, the
latter remark enables us to interpret theorem 1.1 as a rigid version of the Gao and Wald result
in the asymptotically simple (and vacuum) context: by dropping the null generic hypothesis
in [13] the conclusion will only fail if (M̃, g̃) is isometric to dS4.

The aim of the present paper is to show that two of the basic assumptions in theorem 1.1
can be substantially weakened. Firstly, asymptotic simplicity is a stringent global condition
that rules out from the onset the possible presence of singularities and black holes; examples
such as Schwarzschild de Sitter spacetime never enter the discussion. In section 3, we show
that, provided there is a null line that extends from J − to J +, the assumption of asymptotic
simplicity can be replaced by the much milder assumption of global hyperbolicity, thus
allowing a priori the occurrence of singularities and black holes. In precise terms, we show
the following.

Theorem 1.2. Let (M̃, g̃) be a globally hyperbolic and asymptotically de Sitter spacetime
of dimension n = 4 satisfying the vacuum Einstein equations with positive cosmological
constant. If M̃ has a null line with endpoints p ∈ J −, q ∈ J + then (M̃, g̃) is isometric to an
open subset of de Sitter space containing a Cauchy surface.

3 Refer also to [4] for a discussion of the relationship between the existence of eternal observer horizons and entropy
bounds on asymptotically de Sitter spacetimes.
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In fact, as is discussed in more detail in section 3, if (M̃, g̃) is the maximal development
of initial data from one of its Cauchy surfaces then it must be globally isometric to de Sitter
space.

Secondly, we have long felt that the vacuum assumption in theorem 1.2 should not be
essential, that the conclusion should still hold even if matter is allowed a priori to be present.
In section 4, we establish a version of theorem 1.2 for spacetimes satisfying the Einstein
equations (with � > 0) with respect to a class of matter models that contains perfect fluids;
see theorem 4.1.

In the next section, we set notation, give some precise definitions and establish some
preliminary results.

2. Preliminaries

Throughout this paper, we will be using standard notation for causal sets and relations. Refer
to [18, 20] for the main results and definitions in causal theory.

2.1. Definitions and the null splitting theorem

As usual, a spacetime (M̃, g̃) is a connected, time-oriented four-dimensional Lorentzian
manifold. Following Penrose, we say that a spacetime (M̃, g̃) admits a conformal boundary
J if there exists a spacetime with non-empty boundary (M, g) such that

(1) M̃ is the interior of M and J = ∂M , thus M = M̃ ∪ J ;
(2) there exists � ∈ C∞(M) such that

(a) g = �2g̃ on M̃ ,
(b) � > 0 on M̃ ,
(c) � = 0 and d� �= 0 on J .

In this setting g is referred to as the unphysical metric, J is called the conformal boundary of
M̃ in M and � its defining function.

Further, we will say a spacetime (M̃, g̃) admitting a conformal boundary J is
asymptotically de Sitter if J is spacelike. Thus, by considering the standard conformal
embedding of dSn in the Einstein cylinder we clearly note that dSn is an asymptotically de
Sitter space itself. However, we emphasize that the definition of asymptotically de Sitter does
not require J to be compact. This lack of compactness causes some complications in some
of the arguments.

Many physically relevant scenarios in general relativity are modelled by asymptotically
de Sitter spacetimes. Schwarzchild de Sitter spacetime, which models a black hole sitting in
a positively curved background, is one such example (with a noncompact J , in fact). Other
examples can be found in the context of cosmology, for instance the dust-filled Friedmann–
Robertson–Walker models which satisfy the Eintein equations with � > 0.

Because of the spacelike character of J , in an asymptotically de Sitter spacetime, J can
be decomposed as the union of the disjoint sets J + = {p ∈ J | ∇�p is future pointing}
and J − = {p ∈ J | ∇�p is past pointing}. As a consequence, J + ⊂ I +(M̃,M) and
J − ⊂ I−(M̃,M). It follows as well that both sets J +,J − are acausal in M.

An asymptotically de Sitter spacetime is said to be asymptotically simple if every
inextendible null geodesic has endpoints on J . Such spacetimes are, in particular, null
geodesically complete. A null line is a globally achronal inextendible null geodesic. Recall
that a spacetime satisfying the Einstein equations is said to obey the null energy condition if
T (K,K) � 0 for all null vectors K ∈ T M . As theorem 1.1 shows, the occurrence of a null
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line and the null energy condition are incompatible for asymptotically simple and de Sitter
solutions to vacuum Einstein equations different from dS4.

Theorem 1.1 is a consequence of the null splitting theorem [10], which plays an important
role in the proof of theorem 1.2 as well. Here is the precise statement.

Theorem 2.1. Let (M, g) be a null geodesically complete spacetime which obeys the null
energy condition. If M admits a null line η, then η is contained in a smooth properly embedded,
achronal and totally geodesic null hypersurface S.

Remark 2.2. The proof of the null splitting theorem actually shows how to construct such an
S: let ∂0I

±(η) be the connected components of ∂I±(η) containing η, then ∂0I
+(η) and ∂0I

−(η)

agree and this common surface satisfies all aforementioned properties. Moreover, the proof
also shows that future null completeness of ∂0I

−(η) and past null completeness of ∂0I
+(η) are

sufficient for the result to hold (see remark IV.2 in [10].) This point is essential to the proof of
theorem 1.2.

2.2. Extension lemmas

In order to prove theorem 1.2, we are faced with the technical difficulty of dealing with a
spacetime with boundary. Thus it is convenient to think of our spacetime with boundary as
embedded in a larger open spacetime. This can always be done, as the next result shows.

Lemma 2.3. Every spacetime with boundary (M, g) admits an extension to a spacetime
(N, h).

Proof. First extend M to a smooth manifold M ′ by means of attaching collars to all the
components of ∂M . Since M is time orientable, there exists a timelike vector field V ∈ X (M).
Let us extend V to all of M ′ and let W = {p ∈ M ′ | Vp �= 0}. Clearly W is an open subset of
M ′ containing all of M, so without loss of generality we can assume M ′ = W .

Let p ∈ ∂M and choose a M ′-chart Up around it. Now let g = gij dxi dxj be the
coordinate expression of g in the M-chart M ∩ Up. Since the gij ’s are smooth functions
on M ∩ Up, they can be smoothly extended to an M ′-neighbourhood U ′

p ⊂ Up with
M ∩ U ′

p = M ∩ Up. Let us denote by g′
ij such extensions. It is important to note that U ′

p can

be chosen in such a way that g′ = g′
ij dyi dyj is a Lorentz metric on U ′

p with g′(V , V ) < 0.
Choose a cover {Uα} of ∂M by such open sets and let us define hα = 2e∗

0 ⊗ e∗
0 + g′

α on {Uα},
where e0 denotes the unit vector field (with respect to g′) in the direction of V . Further consider
a smooth partition of unity fα subordinated to {Uα}, thus h0 = ∑

αfαhα is a Riemannian metric
on U = ∪αUα .

Finally, let X be the unit vector field (with respect to h0) in the direction of V , let ω be
the covector h0-related to X and let g′′ = h0 − 2ω ⊗ ω. It is straightforward to check that g′′

is a Lorentz metric on U that agrees with g on the overlap U ∩ M . Thus by gluing g′′ and g

together we obtain a Lorentz metric h on N = U ∪ M . Note h is smooth since U is open. �

Now that we have successfully extended our spacetime with boundary, we would like to
verify that our extension inherits some important causal properties. More precisely, we show
that global hyperbolicity extends ‘beyond J ’ in the asymptotically de Sitter setting. That is,
if (M̃, g̃) is globally hyperbolic, then we can choose a globally hyperbolic extension (N, h)

of it.

Lemma 2.4. Let (M̃, g̃) be a globally hyperbolic and asymptotically de Sitter spacetime, then
(M̃, g̃) can be embedded in a globally hyperbolic spacetime (N, h) such that J topologically
separates M̃ and N − M̃ .
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Figure 1. D = I+(B) ∩ I−(A) is an asymptotically de Sitter and globally hyperbolic open subset
of de Sitter space with Cauchy surface S.

Proof. It suffices to show (M̃, g̃) can be extended past J − since a similar procedure can be
used to extend (M̃, g̃) beyond J +, thus without loss of generality we can assume J = J −.
By lemma 2.3 there is an open spacetime (N0, h) extending (M, g). Since N0 is obtained
from M by attaching collars, the separation part of the proposition holds. As a consequence
J is acausal in N0, hence the Cauchy development D(J , N0) is an open subset of N0. Thus
N = M ∪ D(J , N0) is an open spacetime containing M. We claim that (N, h) is globally
hyperbolic. In fact, it is easy to see that if S is a Cauchy surface for (M̃, g̃) then it is also
a Cauchy surface for (N, h). Indeed, any inextendible causal curve in N must meet M, and
hence will intersect S. �

3. Rigidity without asymptotic simplicity

The main aim of this section is to prove the following theorem and discuss some of its
consequences:

Theorem 3.1. Let (M̃, g̃) be a globally hyperbolic and asymptotically de Sitter spacetime
of dimension n = 4 satisfying the vacuum Einstein equations with positive cosmological
constant. If M̃ has a null line with endpoints p ∈ J −, q ∈ J + then (M̃, g̃) is isometric to an
open subset of de Sitter space containing a Cauchy surface.

Before moving into the proof, we would like to comment that the result is sharp, in the
sense that there exist globally hyperbolic proper subsets of dS4 which contain a null line with
endpoints in J (see figure 1); see however theorem 3.7. We remark also that some globally
hyperbolic and asymptotically de Sitter spacetimes, such as the Schwarzschild de Sitter space,
do possess null lines although they do not extend to J .

We begin the proof of theorem 3.1 by considering a couple of technical lemmas, which
establish that the achronal boundaries ∂I +(η), ∂I−(η) are the result of exponentiating the
respective null cones about the endpoints of η in J .

Lemma 3.2. Let (M̃, g̃) be a globally hyperbolic and asymptotically de Sitter spacetime and
η a future directed causal curve in M. Further assume p ∈ J − is the past endpoint of η. Then

(1) ∂I +(η) = J +(p,N) − (I +(p,N) ∪ {p}),
(2) J +(Np,N) ∩ M̃ ⊂ D+(Np,N) ∩ M̃ ,

where Np := ∂NI +(p,N) and N is a globally hyperbolic extension of (M, g).
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Proof. First note that by global hyperbolicity the set J +(p,N) is closed in N, and as a
consequence

∂NI +(p,N) = J +(p,N) − I +(p,N). (3.1)

Thus by the acausality of J − we have

M̃ ∩ ∂NI +(p,N) = ∂NI +(p,N) − {p}. (3.2)

Let us show now I +(η) = I +(p,N). It is clear that I +(η) ⊂ I +(p,N). Conversely, let
x ∈ I +(p,N) and let us take y ∈ η ∩ I−(x,N). Since any future timelike curve from y to
x has to be contained in M̃ due to the separating properties of J −, we have x ∈ I +(η) and
thus I +(p,N) ⊂ I +(η) is proven. As a consequence ∂I +(η) = ∂M̃I +(p,N). Finally, since
I +(p,N) is an open set in N we get

∂M̃I +(p,N) = M̃ ∩ ∂NI +(p,N). (3.3)

Then the first assertion follows.
To prove the second part of the lemma, we proceed by contradiction. Thus let us assume

x ∈ J +(Np,N) ∩ M̃ − D+(Np,N) ∩ M̃; hence, it follows x ∈ I +(p,N). On the other
hand, since x /∈ D+(Np,N) ∩ M̃ , there is a past inextendible causal curve γ starting at x
that does not intersect Np. Note that γ never leaves I +(p,N), since otherwise it had to
intersect Np = ∂NI +(p,N). Thus γ is contained in the compact set J +(p,N) ∩ J−(x,N),
contradicting strong causality. �

In a time dual manner if η has a future endpoint q ∈ J +, we get ∂I−(η) =
J−(q,N) − (I−(q,N) ∪ {q}).
Lemma 3.3. Let (M̃, g̃) be a globally hyperbolic and asymptotically de Sitter spacetime and
let η be a future directed null line in M̃ having endpoints p ∈ J − and q ∈ J +. Further assume
that (M̃, g̃) satisfies the null energy condition. Then ∂I +(η) is the diffeomorphic image under
the exponential map expp of the set

(
�+

p −{0p})∩O where �+
p ⊂ TpM is the future null cone

based at 0p and O is the biggest open set on which expp is defined.

Proof. Let (N, h) be as in the previous lemma. Hence by lemma 3.2, any point in
M̃ ∩ ∂NI +(p,N) is the future endpoint of a future null geodesic segment emanating from
p. Thus ∂I +(η) ⊂ expp

((
�+

p − {0p}) ∩ O
) ∩ M̃ .

Now let γ be a null generator of ∂I +(η) passing through x ∈ ∂I +(η). Let y ∈ γ a point
slightly to the past of x and note y ∈ ∂NI +(p,N) by equation (3.2). On the other hand, let
γ (t) be a null geodesic emanating from p and passing through y. Then γ coincides with
γ ⊂ M̃ since otherwise we would have two null geodesics meeting at an angle in y and hence
x ∈ I +(p,N). Thus, γ can be extended to p ∈ J − and thus it is past complete. In a time
dual fashion, the generators of ∂I−(η) are future complete.

Let S be the component of ∂I +(η) containing η. By the proof of the null splitting theorem,
S is a closed smooth totally geodesic null hypersurface in M̃ . (Here we are using the fact
that the null splitting theorem does not require full null completeness; see remark 2.2.) As
a consequence, the null generators of S do not have future endpoints in M̃ and hence are
future inextendible in S. Furthermore, by the argument in the previous paragraph, each of
these generators is the image under expp of the set V ∩O, where V is an inextendible null ray
in �+

p.
Let γ be a generator of S, then γ ∩I +(p,N) = ∅. Thus γ is conjugate point free and does

not intersect with any other generator of S. As a result, we have that S is the diffeomorphic
image under expp of an open subset of �+

p − {0p}.
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To check that S encompasses the whole local future null cone at p, let us consider a
causally convex normal neighbourhood V of p and a spacelike hypersurface � slightly to
the future of J −. Thus �0 := � ∩ expp

((
�+

p − {0p}) ∩ V
)

is connected. Moreover,
by the way V and � were chosen we have �0 ⊂ J +(p) − (I +(p) ∪ {p}) = ∂I +(η). Thus
expp

((
�+

p −{0p})∩O
)∩M̃ ⊂ S since every future null geodesic emanating from p, including

η, must intersect �0. It follows S = ∂I +(η) and the proof is complete. �

Now we start the proof of the main result of this section.

Proof of theorem 3.1. We first show that (M̃, g̃) has simply connected Cauchy surfaces. To
this end, let ∂0I

+(η), ∂0I
−(η) be the components of ∂I +(η), ∂I−(η) containing η respectively.

By the null splitting theorem, we have ∂0I
+(η) = ∂0I

−(η), and this common null hypersurface
is closed, smooth and totally geodesic. Moreover, by the previous lemma we also conclude
S := ∂I +(η) is connected, i.e. S = ∂0I

+(η). Lastly, by lemma 3.2 we have ∂I +(η) = Np −{p}
and ∂I−(η) = Nq − {q}. Thus Np − {p} = S = Nq − {q}. On the other hand, note
that the equality, Np − {p} = Nq − {q}, in conjunction with lemma 3.3, imply that every
point in S is at the same time the future endpoint of a null geodesic emanating from p and
the past endpoint of a null geodesic from q. These geodesic segments must form a single
geodesic, otherwise achronality of η would be violated. Hence, all future null geodesics
emanating from p meet again at q. Then S = S ∪ {p, q} is homeomorphic to a sphere. By
a suitable small deformation of S near p and q, we obtain an achronal hypersurface S ′ in
M̃ homeomorphic to an (n − 1)-sphere. Using the compactness of S ′ and basic properties of
Cauchy horizons, one easily obtains, H−(S ′) = H +(S ′) = ∅, and hence S ′ is a Cauchy surface
for M̃ .

As our next step, we proceed to show (M̃, g̃) has constant curvature. Let
(N, h) be a globally hyperbolic extension of (M, g), then by lemma 3.2 we have
I +(S) ⊂ D+(Np,N) ∩ M̃ . In a time dual fashion I−(S) ⊂ D−(Nq,N) ∩ M̃ , hence as
a consequence of proposition [3.15] in [20] we get M̃ = I +(S) ∪ S ∪ I−(S). Thus
M̃ ⊂ D+(Np,N) ∪ D−(Nq,N).

Now recall that S is a totally geodesic null hypersurface. As a consequence the shear
tensor σ̃αβ of S in the physical metric g̃ vanishes, and since the shear scalar σ̃ = σ̃αβ σ̃ αβ

is a conformal invariant we have σαβ ≡ 0 as well. Then from the propagation equations
(cf [14, (4.36)]) we deduce that the components Wα0β0 of the Weyl tensor vanishes on S, where
{e0, e1, e2, e3} is a null tetrad with e0 adapted to the null generators of S. In [8], Friedrich used
the conformal field equations

∇αdα
βγ ζ = 0, dα

βγ ζ = �−1Wα
βγ ζ (3.4)

along with a recursive ODE argument to guarantee the vanishing of the rescaled conformal
tensor d on D+(S ∪ {p}, N) given that W0000 vanishes on S. Hence, we have shown d ≡ 0
on D+(Np,N). Thus by the conformal invariance of the Weyl tensor we have W̃ ≡ 0 on
D+(Np,N) ∩ M̃ . By a time dual argument, we conclude W̃ ≡ 0 on D−(Nq,N) ∩ M̃ , thus
W̃ ≡ 0 on M̃ . Finally, since (M̃, g̃) satisfies the vacuum Einstein equations with positive
cosmological, the vanishing of the Weyl tensor implies that (M̃, g̃) has constant curvature
C > 0. Note that this is the only part of the argument where the hypothesis n = 4 is used.

Further, since (M̃, g̃) is simply connected, there exists a local isometry �: M̃ → dS4 by
the Cartan–Ambrose–Hicks theorem [6, 18]. (However, since (M̃, g̃) need not be complete,
� need not be a covering map.)

Then the theorem follows by a direct application of the following result. �
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Proposition 3.4. Let (M̃, g̃) be a globally hyperbolic spacetime with compact Cauchy
surfaces. If there exists a local isometry �: M̃ → dSn, then (M̃, g̃) is isometric to an
open subset of dSn containing a Cauchy surface.

Proof. We need to show that � is injective. Let us denote by S a fixed Cauchy surface of M̃ .
By virtue of [3], we can assume that S is smooth and spacelike, and in fact that M̃ = R × S,
with each slice Sa = {a} × S a smooth compact spacelike Cauchy surface. We proceed to
show that �S := � ◦ i : S → dS4 (i = inclusion) is an embedding. To this end, let S be a
fixed Cauchy surface for dS4, and let π : dS4 → S be projection along the integral curves of
a timelike vector field on dS4 into S. Further, let Ŝ := �(S).

We first show π |Ŝ is a local homeomorphism. Since Ŝ is compact, it suffices to show
π is locally one to one. Thus let y ∈ Ŝ. Take then x ∈ S with �(x) = y and consider a
neighbourhood V of x such that �|V is an isometry. Further, since dSn is globally hyperbolic
there is a causally convex neighbourhood U of y contained in �(V). Let then a, b ∈ U such
that π(a) = z = π(b). If a �= b let us denote by γ the portion of π−1(z) from a to b, then
γ is a timelike curve connecting a and b. Thus by causal convexity, γ must be contained in
U ⊂ �(V). Hence �−1(γ ) ∩ V is a timelike curve joining two points of S. But S is achronal,
being a Cauchy surface for M̃ . Thus a = b so π |Ŝ∩U is injective.

Hence F :S → S defined by F = π ◦ �S is a local homeomorphism. Further, since
S is compact, F is proper. Thus by a standard topological result (refer for instance to
proposition 2.19 in [16] and note that the proof works as well in the continuous setting) we
have that F is a topological covering map. Moreover, since S is simply connected we have
that F is injective, hence a homeomorphism. Thus �S is injective as well, therefore a smooth
embedding since S is compact.

Then Ŝ is a compact embedded spacelike hypersurface in dSn. But a compact spacelike
hypersurface in a globally hyperbolic spacetime is necessarily Cauchy (cf [5]). Thus, Ŝ
is a Cauchy surface, and in particular is achronal. Clearly the same conclusion applies to
Ŝa := �(Sa) for each a ∈ R. Since Ŝa is achronal for all a ∈ R it follows that no two of these
surfaces can intersect. Thus � is injective.

The result now follows since every injective local isometry is an isometry onto an open
subset of the codomain. �

Remark 3.5. G Mess points out in [17] the existence of simply connected and locally de Sitter
spacetimes (i.e., spacetimes of constant curvature ≡ 1) that cannot be isometrically embedded
into the three-dimensional de Sitter space. In [2], Bengtsson and Holst were able to construct
a similar example in dimension four. Moreover, this latter spacetime occurs as a Cauchy
development of a Cauchy surface S with noncompact topology H

2 × R. On the other hand,
proposition 3.4 shows that no such example can be found having compact Cauchy surfaces.

We end this section by noting that if a spacetime satisfies all hypotheses of theorem 3.1
and arises as the evolution of Cauchy data, it is isometric to dS4. Recall the fundamental
result by Choquet-Bruhat and Geroch [7] that establishes the existence of a maximal Cauchy
developmentM∗ relative to a initial data set (S, h,K) satisfying the vacuum Einstein equation.
Moreover, such a set satisfies a domain of dependence condition [7, 24].

Theorem 3.6. Let (Si, hi,Ki), i = 1, 2, be two initial data sets with maximal Cauchy
developments (M∗

i , g
∗
i ). Let Ai ⊂ Si and assume that there is a diffeomorphism sending

(A1, h1,K1) to (A2, h2,K2). Then D(A1,M∗
1) is isometric to D(A2,M∗

2).

As pointed out in [1], the argument used in [7] is also valid when considering the Einstein
equations with cosmological constant. Thus we have the following.
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Theorem 3.7. Let (S, h,K) be an initial data set and (M∗, g∗) its maximal Cauchy
development. Suppose that (M∗, g∗) is asymptotically de Sitter and satisfies the vacuum
Einstein equations. If (M∗, g∗) contains a null line from J − to J +, then it is isometric to
dS4.

Proof. By theorem 3.1 there is an isometry �: (M∗, g∗) → A, where A is an open subset
of dS4. Furthermore, by the proof of theorem 3.1 we also know �(S) is a Cauchy surface of
dS4, hence D(�(S), dS4) = dS4. Then the result follows from theorem 3.6. �

4. The non-vacuum case

In this section, we generalize theorem 3.1 to spacetimes satisfying the Einstein equations

Ric − 1
2Rg + �g = T (4.1)

where the energy–momentum tensor T is that of matter. More specifically, we will be
considering matter fields on an asymptotically de Sitter spacetime (M̃, g̃) satisfying all four
of the following hypotheses, which are satisfied by perfect fluids.

(A) The dominant energy condition. Recall that T satisfies the dominant energy condition
if for all timelike X ∈ X (M), T (X,X) � 0 and the vector field metrically related to
T (X,−) is causal. It is easy to see that a perfect fluid satisfies the dominant energy
condition if and only if ρ � |p|.

(B) T̃r T � 0 on a neighbourhood of J . This hypothesis is satisfied for a wide variety of
fields. It holds for photon gases, electromagnetic fields [15, 21, 24] as well as for quasi-
gases [21]. In particular it holds for dust, pure radiation and all perfect fluids satisfying
0 � p � ρ/3.

(C) If K is a null vector at p ∈ M̃ with T (K,K) = 0, then T ≡ 0 at p. Recall that a type I
energy–momentum tensor is by definition diagonalizable [14]. With the exception of a
null fluid, all energy–momentum tensors representing reasonable matter are diagonalizible
[24]. Let {ρ, p1, p2, p3} be the eigenvalues of such a tensor with respect to an orthonormal
basis {e0, e1, e2, e3}, where e0 is timelike. Then for a type I tensor the existence of
λ ∈ (0, 1) satisfying λρ � |pi |, i = 1, 2, 3 prevents the vanishing of Tx in null directions,
unless Tx ≡ 0. In particular, perfect fluids with 0 � p � ρ/3 satisfy this condition.

(D) The following fall-off condition holds:

lim
x→J

�T (∇�,∇�) = 0. (4.2)

For instance, for four-dimensional dust-filled FRW models with � > 0, we have
�T (∇�,∇�) ∼ ρ/� near J , whereas ρ ∼ �3, so that (4.2) is easily satisfied. A
similar conclusion holds for more general perfect fluids with suitable equation of state.

Theorem 4.1. Let (M̃, g̃) be a globally hyperbolic and asymptotically de Sitter spacetime
which is a solution of the Einstein equations with positive cosmological constant

Rαβ − 1
2Rgαβ + �gαβ = Tαβ, (4.3)

where the energy–momentum tensor T satisfies conditions (A)–(D). If (M̃, g̃) contains a null
line η with endpoints on J then (M̃, g̃) is isometric to an open subset of de Sitter space
containing a Cauchy surface.

Proof. The goal is to show that the energy–momentum tensor T vanishes on M̃ , so that
theorem 4.1 reduces to theorem 3.1. We begin by showing that after a suitable gauge fixing,
the unphysical metric assumes a convenient form near J − (and time-dually, near J +).
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Lemma 4.2. Let (M̃, g̃) be as in theorem 4.1. Then � and g can be chosen so that in a
neighbourhood U of J −,� measures distance to J − with respect to g, and g̃ takes the form,

g̃ = 1

�2
[−d�2 + h(u)] on U, (4.4)

where h(u) is a Riemannian metric on the slice Su = �−1(u). Moreover, these choices can
be made so that the fall-off condition D still holds.

Proof of the lemma. Following a computation in [1] we note that the fall-off condition D
implies that

g(∇�,∇�) = −1 on J −. (4.5)

Consider now the conformally rescaled quantities � = �/θ, g = g/θ2; then we want
to find θ smooth in a neighbourhood U of J − such that � agrees with � on J − and
g(∇ �,∇ �) = −1 on U . To do so, we note that this latter equation gives rise to the first-order
PDE

2θg(∇�,∇θ) − �g(∇θ,∇θ) − θ2a = 0, (4.6)

where by (4.5), a := �−1(1 + g(∇�,∇�)) is smooth. By a standard PDE result (refer to
the generalization of theorem 10.3 in [23, p 36]) this equation subject to the initial condition
θ |J − = 1 has a unique solution in a neighbourhood U of J −. Note that, by shrinking U
if necessary, we can extend θ smoothly to a positive function in all of M. Since the integral
curves of the gradient ∇ � are unit speed timelike geodesics in U normal to J −, by further
restricting U to a normal neighbourhood of J −, we can take the slices Su to be the normal
Gaussian foliation of U with respect to J −. Thus we have

g̃ = 1

�
2 [−d�

2
+ h(u)] on U (4.7)

where h(u) is a Riemannian metric on the slice Su = �
−1

(u). Finally, note that

T (∇ �,∇ �) = θ2T (∇�,∇�) + O(�) on U (4.8)

hence the fall-off condition D holds for ∇ � as well. This completes the proof of the lemma.
�

Henceforth, we assume �, g have been chosen in accordance with lemma 4.2.
Recall that by lemma 3.3 the set S := ∂I +(η) is just the future null cone at p, i.e.

S = expp

(
�+

p ∩O
) ∩ M̃ where O is the maximal set in which expp is defined. Let us denote

now the local causal cone at p by C := expp

(
C+

p ∩O
)∩M̃; hence, C−{p} is a manifold-with-

boundary and ∂(C − {p}) = S. Further let t0 > 0 be such that C′ := C ∩ �−1([0, t0]) ⊂ U .
For s, t ∈ (0, t0) with s < t we define U(s, t) := C′ ∩ �−1([s, t]),S(s, t) := S ∩ �−1([s, t])
and �(t) = C′ ∩ �−1(t). (See figure 2.) Thus U(s, t) is a compact manifold with corners and
∂U(s, t) = S(s, t) ∪ �(s) ∪ �(t).

The following claim is the heart of the proof of theorem 4.1.

Claim. The energy–momentum tensor T vanishes on C′.

Proof of the claim. For the time being, let s ∈ (0, t0) be fixed and let U(t) := U(s, t),S(t) :=
S(s, t) for all t ∈ (s, t0). Let A be the vector field defined by g(A,X) = T (∇�,X) for all
X ∈ X (M̃), hence by the Stokes theorem∫

U(t)

divA dv =
∫

∂U(t)

iA dv =
∫

�(s)

iA dv +
∫

�(t)

iA dv +
∫
S(t)

iA dv. (4.9)
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Figure 2. The future cone at p and associated regions.

We proceed to show the integral over the null cone portion S(t) vanishes. Thus let x ∈ S. By
virtue of assumption C, it suffices to show that T (K,K) = 0 for some null vector K ∈ TxM̃ .
Hence let us consider a future null generator γ of S through x. By the Raychaudhuri equation,
we have

dθ

ds
= −Ric(γ ′, γ ′) − σ 2 − 1

2
θ2, (4.10)

where θ is the null expansion (or null mean curvature) of S. Since S is totally geodesic by
lemma 3.3 we must have θ ≡ 0 and σ ≡ 0, thus Ric(γ ′, γ ′) = 0. Further, since γ ′ is null the
Einstein equations imply Ric(γ ′, γ ′) = T (γ ′, γ ′), and thus T (γ ′, γ ′) = 0. Hence iA dv|S ≡ 0
as desired. Thus we have∫

U(t)

divA dv =
∫

�(t)

T (∇�,∇�) dσ −
∫

�(s)

T (∇�,∇�) dσ. (4.11)

Now let T̂ be the (1, 1) tensor g-equivalent to T and let C denote tensor contraction with
respect to g. Since A = C(T̂ ⊗ ∇�) we have div A = div T (∇�) + C2(T̂ ⊗ ∇(∇�)). Hence∫
U(t)

div T (∇�) dv +
∫
U(t)

C2(T̂ ⊗ ∇(∇�)) dv

=
∫

�(t)

T (∇�,∇�) dσ dv −
∫

�(s)

T (∇�,∇�) dσ.

Since C′ is compact, the components �;α ;β of ∇(∇�) in any g-orthonormal frame field
are bounded from above, say by Q. Similarly, T (∇�,∇�) �

∣∣T α
β

∣∣ on M̃ by the dominant
energy condition, hence by continuity, limz→p T (∇�,∇�)z � limz→p

∣∣T α
β(z)

∣∣ as well.
Then C2(T̂ ⊗ ∇(∇�)) � PT (∇�,∇�) on C′, where P := 16Q. Thus∫

U(t)

C2(T̂ ⊗ ∇(∇�)) dv �
∫
U(t)

P T (∇�,∇�) dv. (4.12)

On the other hand, the formula relating the divergence operator of two conformally related
metrics g = �2g̃ in a Lorentzian manifold of dimension n gives

div T (∇�) = 1

�2
d̃iv T (∇�) +

n − 2

�
T (∇�,∇�) +

1

�3
T̃r T . (4.13)

Since the physical metric satisfies the Einstein equations, the energy–momentum tensor is
divergence free. Thus d̃iv T (∇�) ≡ 0 in M̃ . Moreover, by assumption B, T̃r T � 0, thus we
deduce the inequality∫

U(t)

div T (∇�) dv �
∫
U(t)

2

�
T (∇�,∇�) dv. (4.14)
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Hence equation (4.12) along with (4.12) and (4.14) yield∫
�(t)

T (∇�,∇�) dσ −
∫

�(s)

T (∇�,∇�) dσ �
∫ t

s

∫
�(τ)

(
2

�
+ P

)
T (∇�,∇�) dσ dτ.

(4.15)

Now, we would like to analyse the limit of both sides of relation (4.15) as s → 0. Let
then p(s) ∈ �(s) be such that T (∇�z,∇�z) � T (∇�p(s),∇�p(s)) for all z ∈ �(s). Such
p(s) always exists since �(s) is compact. Thus∫

�(s)

1

�
T (∇�,∇�) dσ � 1

s
T (∇�p(s),∇�p(s))

∫
�(s)

dσ

= 1

s
T (∇�p(s),∇�p(s))Vol(�(s)). (4.16)

Let us consider now a small normal neighbourhood N around p. It is known [22] that the
metric volume of the local causal cone truncated by a timelike vector is of the same order as
the volume of the corresponding truncated cone in TpM . Hence by considering s very small
we get the estimate

Vol(�(s)) = O(s3). (4.17)

Thus without loss of generality, we can take t0 > 0 such that C′ is contained in such a normal
neighbourhood N . Thus, for s sufficiently small, (4.16) and (4.17) imply∫

�(s)

1

�
T (∇�,∇�) dσ � CT (∇�p(s),∇�p(s))s

2 (4.18)

for some positive constant C. Hence

lim
s→0+

∫
�(s)

1

�
T (∇�,∇�) dσ = 0 (4.19)

by virtue of assumption D.
Let x = x(t) be the function defined by

x(t) :=
∫ t

0

∫
�(τ)

(
2

�
+ P

)
T (∇�,∇�) dσ dτ, (4.20)

which makes sense since, by (4.19), the integrand continuously extends to τ = 0. By letting
s → 0+ in inequality (4.15) we obtain∫

�(t)

T (∇�,∇�) dσ � x(t). (4.21)

Differentiation of (4.20) for t ∈ (0, t0) gives,

dx

dt
=

(
2

t
+ P

) ∫
�(t)

T (∇�,∇�) dσ (4.22)

which when combined with (4.21) yields the differential inequality,

d

dt

(
e−P t

t2
x

)
� 0. (4.23)

Hence the function

I (t) = x(t) e−P t

t2
(4.24)

is decreasing near J −.
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Thus, we analyse limt→0+ I (t). Note first that estimate (4.18) yields∫
�(t)

(
2

�
+ P

)
T (∇�,∇�) dσ � C ′T (∇�p(t),∇�p(t))t

2 (4.25)

for some constant C ′ � 0. Thus we get

lim
t→0+

x(t)

t2
= lim

t→0+

1

2t

∫
�(t)

(
2

�
+ P

)
T (∇�,∇�) dσ

� C ′

2
tT (∇�p(t),∇�p(t)), (4.26)

which, by condition (D), implies that limt→0+
x(t)

t2 = 0, and hence limt→0+ I (t) = 0. It follows
that I (t) ≡ 0 on C′, and consequently T (∇�,∇�) ≡ 0 on C′. Therefore T ≡ 0 on C′ by the
dominant energy condition. This completes the proof of the claim. �

Now let 0 < t1 < t0 and let (N, h) be a globally hyperbolic extension of (M, g). Further,
let C′′ := C ∩ �−1([0, t1]) and let us denote by S+ the portion of Np to the future of �(t1).
Hence it is clear that T ≡ 0 on C′′. Further, let x be in the topological interior of D+(S ′, N);
hence, W = J−(x,N)∩J +(S ′, N) is compact. Then T ≡ 0 on W by the conservation theorem
of Hawking and Ellis (cf [14, p 93]), thus T ≡ 0 on intD+(S ′, N). Hence by continuity we
have T ≡ 0 on D+(S ′, N) ∩ M̃ .

On the other hand, let x ∈ J +(p,N) ∩ M̃ − C′′ and let γ be a past inextendible timelike
curve with future endpoint x. Since J +(p,N) ∩ M̃ ⊂ D+(Np,N)M̃ by lemma 3.2, we have
that γ must intersect Np, say at y. If �(y) � t1 then y ∈ S ′. If �(y) < t1 then note that
�(x) > t1 since x �∈ C′′. Now, since the function t �→ �(γ (t)) is continuous there exists a
point z ∈ γ between x and y such that �(z) = t1. Hence z ∈ �(t1) ⊂ S ′. Thus we have
the inclusions I +(S) ⊂ J +(p,N) ∩ M̃ ⊂ C′′ ∪ (D+(S ′, N) ∩ M̃) where S = ∂I +(η) as in
lemma 3.3. Then we just showed T ≡ 0 on I +(S).

In a time dual fashion, we can show T vanishes in a neighbourhood of q and consequently
on the whole set I−(S). To finish the proof, recall that since ∂I +(η) = S = ∂I−(η) then
M̃ = S ∪ I +(S) ∪ I−(S), therefore T ≡ 0 on M̃ and the result follows. �

We conclude with a couple of remarks. In [10, 11], a uniqueness result for the Minkowski
space is obtained that is entirely analogous to theorem 1.1. Although, in the asymptotically
Minkowskian setting, the fact that J is null adds some complications to the analysis, one
should still be able to modify the techniques used here to allow a priori for the presence of
matter in that setting, as well. Also, note that Maxwell fields are excluded from theorem 4.1;
they do not satisfy condition C. Nonetheless, by taking advantage of the conformal invariance
of such fields, it may be possible to obtain a version of theorem 4.1 that includes them.
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