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Abstract

We show that the hypothesis of analyticity in the uniqueness theory of vacuum,
or electrovacuum, static black holes is not needed. More generally, we show
that prehorizons covering a closed set cannot occur in well-behaved domains
of outer communications.

PACS numbers: 04.70.Bw, 04.50.Cd, 04.50.Gh

1. Introduction

One of the hypotheses in the current theory of uniqueness of static vacuum black holes is that of
analyticity. This is used to exclude null Killing orbits, equivalently to prove the non-existence
of non-embedded degenerate prehorizons covering a closed set, within the domain of outer-
communications; see [5] for the details. The aim of this paper is to show that analyticity is not
needed to exclude such prehorizons, and therefore can be removed from the set of hypotheses
of the classification theorems in the static case.

More generally, such prehorizons need to be, and have been, excluded in the dimension
n+1 with n — 1 commuting Killing vectors [4] without assuming analyticity. Our analysis here
provides an alternative, simpler approach to this issue for any stationary solution satisfying the
null energy condition, without the need to invoke more Killing vectors. (Note, however, that
for solutions that are not static, all n — 1 Killing vectors are used to prove that the existence
of a null Killing orbit implies the existence of a prehorizon.)

In this work, we consider asymptotically flat or Kaluza—Klein (KK) asymptotically flat
(in the sense of [6]) spacetimes and show that (for definitions, see below and [5])

Theorem 1.1. [*-regular stationary domains of outer communication {{Mex)) satisfying the
null energy condition do not contain prehorizons, the union of which is closed within ({ Mex))-

The reader is referred to [1] and references therein for progress towards removing the
hypothesis of analyticity in a general stationary case.
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Mext

Figure 1. The hypersurface . from the definition of /*-regularity.
(This figure is in colour only in the electronic version)

2. The time of flight argument

For the convenience of the reader, we recall some definitions from [4, 5].

Definition 2.1. Let (A, g) be a spacetime containing an asymptotically flat or KK
asymptotically flat end Sy and let K be a stationary Killing vector field on 4. We will say
that (A , g, K) is I'*-regular if K is complete, if the domain of outer communications {{ Mex.))
is globally hyperbolic and if ({Me)) contains a spacelike, connected, acausal hypersurface
S D S the closure .7 of which is a topological manifold with boundary consisting of
the union of a compact set and a finite number of asymptotic ends, such that the boundary
3.7 := .\ .7 is a topological manifold satisfying

0.7 C & 1= {({(Mex) N I (Mex). @.1)
with 3.7 meeting every generator of &* precisely once. (See figure 1.)

The definition appears to capture the essential ingredients required for a successful
classification of vacuum [5] or electrovacuum [13] black holes. Whether or not the definition
is optimal from this point of view remains to be seen. In any case, one of its consequences
is the structure theorem [4, 5], which in essence goes back to [11, lemma 2], and which
represents ({.ex)) globally as R x ., with the Killing vector tangent to the R factor.

Another notion that is essential for the current work is as follows.

Definition 2.2. Let K be a Killing vector and set
N[Kl:={pe#|g(K,K),=0, K|, #0}. (2.2)

Every connected, not necessarily embedded, null hypersurface Ny C N'[K] to which K is
tangent will be called a Killing prehorizon.

It follows from [5, corollary 3.3 and lemma 5.14] that in vacuum /*-regular spacetimes
which are static, or four-dimensional stationary and axisymmetric or (n + 1)-dimensional
with n — 1 commuting Killing vectors, the set covered by Killing prehorizons associated
with a Killing vector field K is closed within ({.#cy)). This remains true for electrovacuum
spacetimes in the dimension 3 + 1.

For further purposes, it is convenient to introduce the following.

Definition 2.3. Let (#, g) be a spacetime with a complete Killing vector field K, and let
Q C . We shall say that a closed set & C Q2 is an invariant quasi-horizon in Q if &
is a union of pairwise disjoint null (not necessarily embedded) hypersurfaces, called leaves.
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We further assume that the leaves of ¢ are invariant under the flow of K, and that every null
geodesic maximally extended within 2 and initially tangent to a leaf of # remains on J .

From what has been said, it follows that

Proposition 2.4.  In static, or stationary axi-symmetric, I*-regular vacuum spacetimes,
the union of Killing prehorizons forms a (possibly empty) spatially bounded quasi-horizon in
(Mex))-

Here ‘spatially bounded’ means that it does not extend infinitely far out in the end
{0} x S In the cases of interest, the Killing vector flow acts as a translation along the R
factor, so in fact one has a #-independent bound on the extent on each slice {r} X ;.
Theorem 1.1 follows now from the following.

Theorem 2.5. Consider an asymptotically flat, or K K asymptotically flat, globally hyperbolic
domain of outer communications ({Mey)), satisfying the null energy condition, diffeomorphic
to R x .7, with the Killing vector tangent to the R factor, approaching a time translation in
the asymptotic region. Then there are no invariant quasi-horizons in (( Mex))-

Proof of Theorem 2.5. Let R € R be large enough so that the constant-time spheres lying
on the timelike hypersurface

T =R x {|X| =R}

are both past and future inner trapped, as defined in [6]. Without loss of generality, we can
assume that %~ does not intersect the region {|X| > R}; indeed, K cannot be tangent to the null
leaves of " in the asymptotically flat region, where it is timelike. Let € denote the following
class of causal curves:

€ :={y |y :[0,1] - A is a causal curve which starts and ends
at 7, and meets %, ;= % N ({0} x &) }.

The time of flight t,, of y is defined as
T, =1t(y (1)) —1(y(0)),

where ¢ is the time function associated with the decomposition .#Z = R x .. We write .7,
fort~'(7) = {r} x .Z.

Let T denote the infimum of 7, over y € 4. We wish to show that if % is non-empty,
then % is attained on a smooth null geodesic y, with (a) initial and end points on .7, (b)
meeting .7 at % and (c) meeting .7 normally to the level sets of ¢.

In order to construct y, let y; € € be any sequence of causal curves such that 7,, — .
Let y be any causal curve in ¢; then 0 > #(y;(0)) > —r1, and 0 < #(y;(1)) < 7, for i large
enough. Hence for i large enough, all y;(0)’s belong to the compact set [—T,, 0] X {|X| = R};
similarly, y; (1)’s belong to the compact set [0, 7, ] X {|X| = R}. By global hyperbolicity there
exists an accumulation curve y of the y;’s which is a C° causal curve.

Since 7 is closed in (({.#.x)), Y meets % at some point p. Itis standard that y N{t < 0}
is a smooth null geodesic since otherwise p would be timelike related to y (0), which would
imply the existence of a curve in ¢ with a time of flight less than . Similarly, y N {t > 0} is
a smooth null geodesic.

Next, in a similar fashion (see [15, lemma 50, p 298]), y meets Z; ;) and F )y
orthogonally, where .7, := %, N T .

We claim that y is also smooth at p. To see that, let ¢ denote that leaf of ¢ that passes
through p. Then the portion of y that lies to the causal past of p must meet A transversally.
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Otherwise y N J~(p) would coincide with that portion of the null Killing orbit of K through
D that lies to the past of p, but those which never reach 7, since ¢ is spatially bounded.
Similarly the portion of y that lies to the causal future of p must meet Vi transversally.
Suppose that the two geodesic segments forming y do not join smoothly at p. Then there exist
arbitrary small deformations of y which produce a timelike curve with the same end points
as p, and hence the same time of flight. By transversality, and because there exists a small
neighbourhood ¥ of p in which the connected component of ANV passing through p forms
a null embedded hypersurface, any such deformation, say 7, will meet J at some point p.
Let ¢, denote the flow of K; then
V= ¢—t(i))(77)

is a timelike curve in ¥ which has the same time of flight as y. Since y is timelike, it can be
deformed to a causal curve with a shorter time of flight. This contradicts the definition of 7,
and hence proves (a), (b) and (c).

Let 7, = 1(y(0)). We claim that (d) y minimizes the time of flight amongst all nearby
differentiable causal curves from .77, to .7. Indeed, by transversality of y to ¢, there exists
a neighbourhood % of y in the space of differentiable curves such that every curve y in this
neighbourhood intersects . Then suppose that there exists a causal curve y € % which
starts at .77, ends at .7 and has a time of flight smaller than . Then y intersects  at some
p. But then ¢_;(,)(y) is in % and has a time of flight smaller than ¢, which contradicts the
definition of %, whence (d) holds.

This provides a contradiction to J#~ being non-empty, as there are no causal curves with
the property (d) by [6, proposition 3.3]. O

3. Non-rotating horizons and maximal hypersurfaces

In this section, we provide an alternative simple argument to exclude prehorizons within the
domain of outer communication, which applies to four-dimensional static vacuum spacetimes.

Let (#, g) be an asymptotically flat, I*-regular, vacuum spacetime with a hypersurface
orthogonal Killing vector K. By [8] all components of the future event horizon & are non-
degenerate. We can therefore carry out the construction of [16] if necessary to obtain that
9 ((Aex)) is the union of bifurcate Killing horizons. By [10], ({(.#cx)) contains a maximal
Cauchy hypersurface .. By [18] (compare the argument at the end of [5, section 7.2]), % is
totally geodesic. Decomposing K as K = Nn + Y, where n is the field of future-directed unit
normals to .#, and where Y is tangent to .#, one finds from the Killing vector equations that

D,'Yj + DjY[ = —ZNK,J
But the right-hand side vanishes; thus Y is a Killing vector of the metric y induced on .% by
g. Now, Y is asymptotic to zero as one recedes to infinity in .#; hence, Y = 0 by usual
arguments, (see, e.g., the proof of [7, proposition 2.1]). Since K has no zeros within ((.#Zex)),
we conclude that N has no zeros on .. Alternatively, N satisfies the equation
AN = K7K;;N, 3.1

vanishes on 9.7, and is asymptotic to one as one recedes to infinity along the asymptotically
flat region, and thus has no zeros by the strong maximum principle. Whatever the argument,
K = Nn is timelike everywhere on ((.#.x)), and there are no prehorizons within ({.#cy)).

The above argument applies verbatim to higher dimensional vacuum metrics, as well as
to four-dimensional electrovacuum metrics, for configurations where all horizons are non-
degenerate. A proof of the existence of maximal hypersurfaces with sufficiently controlled
asymptotic behaviour near the degenerate horizons would extend this argument to the general
case. In any case, the proof based on the time of flight covers more general situations.
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4. Conclusions

Recall that a manifold . is said to be of positive energy type if there are no asymptotically
flat complete Riemannian metrics on . with nonnegative scalar curvature and vanishing mass
except perhaps for a flat one. This property has been proved so far for all n-dimensional
manifolds . obtained by removing a finite number of points from a compact manifold of
dimension 3 < n < 7[17], or under the hypothesis that . is a spin manifold of any dimension
n > 3, and is expected to be true in general [2, 14].

Using the results already established elsewhere [3, 5, 9, 12, 13] together with theorem 1.1
one has the following.

Theorem 4.1. Let (A, g) be a vacuum (n + 1)-dimensional spacetime, n > 3, containing
a spacelike, connected, acausal hypersurface ., such that .7 is a topological manifold with
boundary, consisting of the union of a compact set and of a finite number of asymptotically
flat ends. Suppose that there exists on .4 a complete static Killing vector K, that ({Mex:)) is
globally hyperbolic and that 3.7 C M \ ((Mey)). Let .7 denote the manifold obtained by
doubling .’ across the non-degenerate components of its boundary and compactifying, in the
doubled manifold, all asymptotically flat regions but one to a point. If .7 is of positive energy
type, then ({Mex)) is isometric to the domain of the outer communications of a Schwarzschild
spacetime.

Theorem 4.2. Under the remaining hypotheses of theorem 4.1 with n = 3, suppose instead
that (A, g) is electrovacuum with the Maxwell field invariant under the flow of K. Then
((Mext)) is isometric to the domain of outer communications of a Reissner—Nordstrom or a
standard Majumdar—Papapetrou spacetime.

Acknowledgments

PTC is grateful to the University of Miami for hospitality and support during part of the work
on this paper. The work was supported in part by the Polish Ministry of Science and Higher
Education grant Nr N N201 372736 and by NSF grant DMS-0708048.

References

[1] Alexakis S, Ionescu A D and Klainerman S 2009 Hawking’s local rigidity theorem without analyticity
arXiv:0902.1173

[2] Christ U and Lohkamp J 2006 Singular minimal hypersurfaces and scalar curvature arXiv:math.DG/0609338

[3] Chrusciel P T 1999 The classification of static vacuum space-times containing an asymptotically flat spacelike
hypersurface with compact interior Class. Quantum Grav. 16 661-87

Chrusciel P T 2010 The classification of static vacuum space-times containing an asymptotically flat spacelike

hypersurface with compact interior Class. Quantum Grav. (arXiv:gr-qc/9809088v2) (corrigendum)

[4] Chrusciel P T 2008 On higher dimensional black holes with abelian isometry group J. Math. Phys. 50 052501
(21 pp) (arXiv:0812.3424 [gr-qc])

[5] Chrusciel P T and Lopes Costa J 2008 On uniqueness of stationary black holes Astérisque 195-265
(arXiv:0806.0016v2 [gr-qc])

[6] Chrusciel P T, Galloway G and Solis D 2009 On the topology of Kaluza—Klein black holes Ann. Henri
Poincaré 10 893-912 (arXiv:0808.3233 [gr-qc]). MR MR2533875

[7] Chrusciel P T and Maerten D 2006 Killing vectors in asymptotically flat space-times: II. Asymptotically
translational Killing vectors and the rigid positive energy theorem in higher dimensions J. Math.
Phys. 47 022502 (10 pp) (arXiv:gr-qc/0512042). MR MR2208148 (2007b:83054)

[8] Chrusciel P T, Reall H S and Tod K P 2006 On non-existence of static vacuum black holes with degenerate
components of the event horizon Class. Quantum Grav. 23 549-54 (arXiv:gr-qc/0512041). MR MR2196372
(2007b:83090)


http://www.arxiv.org/abs/0902.1173
http://www.arxiv.org/abs/math.DG/0609338
http://dx.doi.org/10.1088/0264-9381/16/3/004
http://www.arxiv.org/abs/gr-qc/9809088v2
http://www.arxiv.org/abs/0812.3424
http://www.arxiv.org/abs/0806.0016v2
http://dx.doi.org/10.1007/s00023-009-0005-z
http://www.arxiv.org/abs/0808.3233
http://dx.doi.org/10.1063/1.2167809
http://www.arxiv.org/abs/gr-qc/0512042
http://dx.doi.org/10.1088/0264-9381/23/2/018
http://www.arxiv.org/abs/gr-qc/0512041

IOP FTC bbb

Class. Quantum Grav. 27 (2010) 152001 Fast Track Communication

[9]

[10]

(11]

[12]
(13]

(14]
[15]
[16]

[17]

[18]

Chrusciel P T and Tod K P 2007 The classification of static electro-vacuum space-times containing an
asymptotically flat spacelike hypersurface with compact interior Commun. Math. Phys. 271 577-89 MR
MR2291788

Chrusciel P T and Wald R M 1994 Maximal hypersurfaces in stationary asymptotically flat space-times Commun.
Math. Phys. 163 561-604 (arXiv:gr-qc/9304009). MR MR1284797 (95f:53113)

Chrusciel P T and Wald R M 1994 On the topology of stationary black holes Class. Quantum Grav. 11 L147-52
(arXiv:gr-qc/9410004). MR MR1307013 (95;:83080)

Lopes Costa J 2010 On black hole uniqueness theorems PhD thesis Oxford

Lopes Costa J 2010 On the classification of stationary electro-vacuum black holes Class. Quantum
Grav. 27 035010 (22pp)

Lohkamp J 2006 The higher dimensional positive mass theorem I arXiv:math.DG/0608795

O’Neill B 1983 Semi-Riemannian geometry Pure and Applied Mathematics vol 103 (New York: Academic)

Récz I and Wald R M 1996 Global extensions of space-times describing asymptotic final states of black holes
Class. Quantum Grav. 13 539-52 (arXiv:gr-qc/9507055). MR MR 1385315 (97a:83071)

Schoen R 1989 Variational theory for the total scalar curvature functional for Riemannian metrics and related
topics Topics in Calculus of Variations (Montecatini Terme, 1987) (Lecture Notes in Mathematics vol 1365)
(Berlin: Springer) pp 120-54 MR MR994021 (90g:58023)

Sudarsky D and Wald R M 1993 Extrema of mass, stationarity and staticity, and solutions to the Einstein—Yang—
Mills equations Phys. Rev. D 46 1453-74


http://dx.doi.org/10.1007/s00220-007-0191-9
http://dx.doi.org/10.1007/BF02101463
http://www.arxiv.org/abs/gr-qc/9304009
http://dx.doi.org/10.1088/0264-9381/11/12/001
http://www.arxiv.org/abs/gr-qc/9410004
http://dx.doi.org/10.1088/0264-9381/27/3/035010
http://www.arxiv.org/abs/math.DG/0608795
http://dx.doi.org/10.1088/0264-9381/13/3/017
http://www.arxiv.org/abs/gr-qc/9507055
http://dx.doi.org/10.1103/PhysRevD.46.1453

	1. Introduction
	2. The time of flight argument
	3. Non-rotating horizons and maximal hypersurfaces
	4. Conclusions
	Acknowledgments
	References

