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We show that Wang’s proof of uniqueness of anti–de Sitter spacetime can be adapted to provide
uniqueness results for strictly static asymptotically locally hyperbolic vacuummetrics with toroidal infinity,
and to prove negativity of the free energy E − TS of static asymptotically AdS black holes with toroidal or
higher-genus horizons.
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I. INTRODUCTION

In [1] Wang derived an identity which allowed him to
prove, in all space-dimensions n ≥ 3, uniqueness of anti–de
Sitter space within the class of strictly static conformally
compactifiable solutions of the vacuum Einstein equations
with a negative cosmological constant and a spherical
conformal infinity. (The identity already appears in [2].)
The aim of this paper is to explore further consequences of
this identity. Namely, we consider static solutions of the
vacuum Einstein equations with a negative cosmological
constant and prove:
(1) The cuspidal Birmingham-Kottler metrics are

unique in the class of strictly static solutions con-
taining asymptotically locally hyperbolic ends and
other controlled asymptotic ends or suitable boun-
daries, cf. Theorems 6.2–6.5 and 6.7 below.

(2) We establish a new lower bound for entropy of
horizons in terms of the genus of the horizon,
cf. Eq. (7.9) below.

(3) We give a simple proof of an upper bound in the
spirit of [ [3], Eq. (24)] on the free energy of a
connected static black hole in terms of the genus of
the horizon, cf. Eq. (8.5) below.

When Λ is positive we review the argument of [2]
(compare [4]), that the identity mentioned above provides a
simple proof of an upper bound for entropy of horizons,
Eq. (9.10) below. This upper bound has been rediscovered
in [5,6], with different proofs.

This work can be thought-of as a continuation of [7]. It
reviews, in a slightly different manner, some results from
[7] and considers further applications. Similar ideas have
been independently pursued in [8].

II. THE EQUATIONS

We consider the vacuum Einstein equations with a
cosmological constant Λ for a static spacetime metric
which we denote by ḡ:

ḡ ¼ −V2dt2 þ gijdxidxj|fflfflfflfflffl{zfflfflfflfflffl}
≕ g

; ∂tV ¼ ∂tg ¼ 0: ð2:1Þ

For definiteness we assume that the spacetime is diffeo-
morphic to R ×M, where M is an n-dimensional manifold
equipped with a Riemannian metric g. We always assume
that V ≢ 0 and that ðM; gÞ is complete, possibly with
boundary. We shall say that ðM; g; VÞ is strictly static if
V > 0 on M.
It is convenient to rescale the metric by a constant to

obtain

Λ ¼ ε
nðn − 1Þ

2
; ð2:2Þ

with ε ∈ f−1; 0; 1g according to the sign of Λ.1 This leads
to the following equations, where D is the covariant
derivative of g, R̄αβ is the Ricci tensor of ḡ and Rij the
Ricci tensor of g:
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R̄αβ ¼ εnḡαβ; ð2:3Þ

DiDjV ¼ VðRij − εngijÞ; ð2:4Þ

ΔV ¼ −εnV; ð2:5Þ

R≡ gijRij ¼ εnðn − 1Þ: ð2:6Þ

By an abuse of terminology, triples ðM; g; VÞ satisfying the
above will also be called solutions of the static vacuum
Einstein equations.
We note that there cannot be a static solution ðM; g; VÞ

with ϵ ¼ −1 on a compact manifold without boundary, as
then (2.5) and the maximum principle imply V ≡ 0,
contradicting the definition of staticity.

III. THE DIVERGENCE IDENTITY

As in [7], the key to our analysis is an identity which has
been used by Shen [2] in dimension three in a context
related to ours, and by Wang [1] in all dimensions n ≥ 3 to
prove uniqueness of anti–de Sitter spacetime. For the
convenience of the reader we rederive this identity here.
We define the symmetric tensor field W on M by2

Wij ≡ Rij − εðn − 1Þgij ¼ V−1DiDjV þ εgij; ð3:1Þ

where the last equality, which follows from (2.4), holds on
the set where V does not vanish. Now, we have

VjWj2g ¼ VWijgikgjlWkl

¼ WijDiDjV þ εVWijgij

¼ WijDiDjV þ εVðR − εnðn − 1ÞÞ
¼ WijDiDjV; ð3:2Þ

where in the last step we used (2.6) and where jWj2g ¼
hW;Wig is the squared norm of W. Thus

VjWj2g ¼ WijDiDjV: ð3:3Þ

Strictly speaking, the calculation (3.2) is valid only on the
region where V has no zeros. But in (3.3) both sides are
smooth everywhere. Furthermore, it is well known that the
set where V does not vanish is dense. This implies that (3.3)
is true throughout M, regardless of zeros or sign of V.
Since ðM; gÞ is Riemannian, jWj2g is non-negative and

equal to zero if and only if W ≡ 0.

Equation (3.3) implies

VjWj2g ¼ WijDiDjV

¼ DiðWijDjVÞ − ðDiWijÞðDjVÞ
¼ DiðWijDjVÞ; ð3:4Þ

since

DiWij ¼ DiRij − εðn − 1ÞDigij

¼ DiRij ¼
1

2
DjR

¼ 0; ð3:5Þ

where we used again (2.6). We can integrate over M with
the measure dμg ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp

dnx to obtain

Z
M
VjWj2gdμg ¼

Z
M
DiðWijDjVÞdμg

¼
Z
∂M

WijDiVNjdσ; ð3:6Þ

where we applied Stokes’ theorem with ∂M the boundary
of M, dσ the measure on ∂M and N the unit outer directed
normal vector field of ∂M.
Now, let us suppose that V is positive on the interior ofM

and that V vanishes on its boundary

H ≡ fp ∈ M;VðpÞ ¼ 0g;

with H not necessarily connected. We further assume
that M has a conformal boundary at infinity ∂M∞ (which
we always assume to be compact, but not necessarily
connected), and write

∂M ¼ ∂M∞ ∪ H: ð3:7Þ

We have

Z
M
VjWj2gdμg ¼

Z
∂M∞

WijDiVNjdσ

þ
Z
H
WijDiVNjdσH; ð3:8Þ

where we assumed that M ∪ ∂M∞ is compact, and where
we denote by dσH the measure induced by g on H. By an
abuse of notation, we continue to use the symbol

R
·dσ for

the integral on the boundary at infinity of M, which should
of course be understood by a limiting process.

IV. THE INTEGRAL OVER THE HORIZON

The integral over the horizon H in (3.8) has been
rewritten in a convenient form in [7]. We rederive the

2In his paper Wang denotes his tensor by T but we use W in
order to avoid confusion with the stress-energy tensor.
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formula for completeness. Recall that the surface
gravity κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðDV;DVÞp jH of H is a nonzero constant
on each connected component Hp of H ¼∪P

p¼1 Hp, for
some P ∈ N. Thus there exists a locally constant function
κ∶H → Rþ� ≔ Rþnf0g such that on H

jDVjg ¼ κ: ð4:1Þ

Then, as N is the outer normal to H, on each connected
component Hp we have

N ¼ −
DV
jDVjg

¼ −
DV
κp

; ð4:2Þ

where κp ∈ Rþ� is the value of κ on Hp and the minus sign
comes from the fact that V decreases approaching H as
V ≥ 0 on M and V ¼ 0 on H. ThusZ
H
WijDiVNjdσH

¼ −
X
Hp

1

κp

Z
Hp

WijDiVDjVdσH

¼ −
X
Hp

1

κp

Z
Hp

ðRij − εðn − 1ÞgijÞDiVDjVdσH

¼ −
X
Hp

1

κp

Z
Hp

ðRijDiVDjV − εðn − 1Þκ2pÞdσH: ð4:3Þ

We denote by gH the metric induced by g on H. Letting
RH denote the Ricci scalar of the metric gH, we will need
the Gauss embedding equation

RH ¼ R − 2gðN;NÞRijNiNj þ gðN;NÞððhijAijÞ2 − jAj2hÞ;
ð4:4Þ

where A is the extrinsic curvature tensor ofH inM, defined
for two vector fields X, Y tangent to H as

AðX; YÞ ¼ gðDXN; YÞ: ð4:5Þ
It is well known that H is totally geodesic, i.e., A≡ 0,
which can be seen as follows:

AðX; YÞ ¼ −
1

κ
gðDXDV; YÞ

¼ −
1

κ
gijXkDkDiVYj

¼ −
1

κ
XkYjDkDjV

¼ −
1

κ
XkYjVðRkj − εngkjÞ ¼ 0; ð4:6Þ

since V is zero onH. Thus A ¼ 0 and (4.4) becomes, using
gðN;NÞ ¼ 1 and N ¼ −DV=κ,

RH ¼ R −
2

κ2
RijDiVDjV: ð4:7Þ

We can now rewrite (4.3) as

Z
H
WijDiVNjdσH

¼ −
X
Hp

1

κp

Z
Hp

�
κ2p
2
ðR − RHÞ − εðn − 1Þκ2p

�
dσH

¼
X
Hp

κp
2

Z
Hp

ðRH − Rþ 2εðn − 1ÞÞdσH

¼
X
Hp

κp
2

Z
Hp

ðRH − εnðn − 1Þ þ 2εðn − 1ÞÞdσH

¼
X
Hp

κp
2

Z
Hp

ðRH − εðn − 1Þðn − 2ÞÞdσH: ð4:8Þ

Using this result we obtain the key identity

Z
M
VjWj2gdμg

¼
Z
∂M∞

WijDiVNjdσ

þ
X
Hp

κp
2

Z
Hp

ðRH − εðn − 1Þðn − 2ÞÞdσH: ð4:9Þ

V. THE BOUNDARY TERM AT INFINITY

To avoid ambiguities, we emphasise that in this section
ε ¼ −1. A region Mext ¼ ð0; x0� ×Q ⊂ M, where Q is a
compact (n − 1)-dimensional manifold, is called an asymp-
totically locally hyperbolic (ALH) end if the sectional
curvatures of g approach a (negative) constant as x tends to
zero, where x is the coordinate along the first factor ofMext,
and if the metric x2g extends smoothly to a Riemannian
metric on ½0; x0� ×Q. (Assuming the last property, the
sectional curvatures condition is equivalent to the require-
ment that jdxjx2g (i.e., the norm of dx in the metric x2g)
tends to one as the “conformal boundary at infinity”
fx ¼ 0g is approached.)
A Riemannian manifold ðM; gÞwill be called ALH if it is

complete and contains a finite number of ALH ends. The
boundary at infinity ∂M∞ of M will thus be the union of a
finite number of manifolds Q as above.
A Hamiltonian analysis of general relativity leads, after

many integrations by parts, to the following formula for the
mass of an ALH end [9]3 (compare [10])

3We note a misprint in [ [9], Eq. (4.40)], where a prefactor
1=16 should be replaced by 1=8.
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m¼−
1

8ðn−2Þπ limx→0

Z
x¼const

�
Ri

j−
R
n
δij

�
∇jVNidσ; ð5:1Þ

where the multiplicative prefactor in front of the integral
arises from the Hilbert Lagrangian R̄=ð16πÞ, as relevant for
the physical spacetime dimension nþ 1 ¼ 4. Here Nj is
the unit normal to the level sets of x such that Nx < 0. It
follows that the integral over the conformal boundary at
infinity in (4.9) is related to the total mass m (i.e., the sum
of the masses over all ALH ends) of the spacetime as

Z
∂M∞

WijDiVNjdσ ¼ −8ðn − 2Þmπ; ð5:2Þ

and thus we get

Z
M
VjWj2gdμg ¼ −8ðn − 2Þmπ

þ
X
Hp

κp
2

Z
Hp

ðRH þ ðn − 2Þðn − 1ÞÞdσH:

ð5:3Þ

Recall, an ALH static triple ðM; g; VÞ is strictly static if
V is positive on M. In the strictly static, conformally
compact and boundaryless case we obtain

Z
M
VjWj2gdμg ¼ −8ðn − 2Þmπ: ð5:4Þ

Since the left-hand side is non-negative, we recover a result
of [7]:

Theorem 5.1: Consider a strictly static solution of the
static Einstein equations ðM; g; VÞ with negative cosmo-
logical constant on a conformally compact manifold with-
out boundary. Then the total mass is negative or zero,
vanishing if and only if ðM; gÞ is the hyperbolic space.

Proof.—The only thing that remains to be justified is that
the vanishing of the mass implies hyperbolic space, this
proceeds as follows: When the mass vanishes, (5.4) shows
that the metric is Einstein. Thus the Hessian of V is
proportional to the metric, which is the well studied
Obata’s equation. It follows e.g., from [ [11] Theorem 2]
that all complete metrics for which V does not change sign
andDV has no zeros are not compactifiable (compare [ [12]
Proposition 4.1], see also Remark 6.3 below). We conclude
that, under the current assumptions, DV must have a zero,
which leads to hyperbolic space again by [11]. ▪

As emphasized in [1], Theorem 5.1 leads to uniqueness
of the anti–de Sitter spacetime, which has spherical
conformal infinity, and thus non-negative mass by [13].
(Wang refers to [14–16] for positivity results; these last
papers contain restrictive hypotheses, which have been
meanwhile removed through the work in [13,17,18]. See

also [19] for the rigidity case of these positive mass
theorems, where spherical conformal infinity is assumed.)
Note that examples of metrics, as in the theorem, with
negative mass are provided by the Horowitz-Myers metrics.
The theorem shows that if any further such solutions
exist, they would have to have nonspherical infinity and
negative mass.
Related negativity results for the mass, in the spirit of

Theorem 6.1, can be found in [7,20].

VI. UNIQUENESS THEOREMS FOR THE
CUSPIDAL BIRMINGHAM-KOTTLER METRICS

In this section we continue to assume that ε ¼ −1.
Both the technique of the proof and the argument

generalize to cover somewhat more general geometries,
which we describe now. The cuspidal Birmingham-Kottler
(BK) metrics provide a guiding example. By definition,
these are the metrics which can be written in the form

g ¼ dr2

V2
þ r2h; V ¼ r; ð6:1Þ

where h is a Ricci-flat metric on a compact (n − 1)-
dimensional manifold Q. One checks that g is Einstein,
and has zero mass in the asymptotically locally hyperbolic
(ALH) end, defined as the region where r tends to infinity.
The underlying manifold ð0;∞Þ ×Q has two asymptotic
regions, with the already mentioned ALH end, together
with the region ð0; r0� ×Q where r is allowed to approach
zero, which is metrically complete, and which will be
referred to as a cuspidal end.
The example suggests a natural generalization of Wang’s

argument to manifolds which contain two kinds of asymp-
totic regions: the usual asymptotically locally hyperbolic
ones, as well as ends with mildly controlled asymptotic
behavior, as captured by the following definition: We will
say that a triple ðM; g; VÞ is asymptotically locally hyper-
bolic with mild ends if ðM; gÞ is a complete manifold which
admits an exhaustion M ¼∪i∈N Mi by smooth compact
manifolds Mi ⊂ Miþ1 with boundaries

∂Mi ¼ ∂1Mi ∪ ∂2Mi

where the (not necessarily connected) boundaries ∂2Mi are
a union of smooth hypersurfaces which approach a (com-
pact) conformal boundary at infinity of M, while the (not
necessarily connected) boundaries ∂1Mi are a union of
smooth hypersurfaces on which

jdVjgj∂1Mi
× jWjgj∂1Mi

× Að∂1MiÞ→i→∞ 0; ð6:2Þ

whereAð∂1MiÞ is the “area” of the submanifolds ∂1Mi. Here
j·jg denotes the norm with respect to the metric g, and we
assume that the number of boundary components is bounded
by a number independent of i. The “mild ends” are then the
regions associated with the boundaries satisfying (6.2).
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As formulated so far, the definition allows some
ALH ends to be mild ends. This occurs for example
for hyperbolic space, where W ≡ 0. To avoid this issue,
which would lead to the need to add annoying trivial
comments when formal statements are made, we add to the
definition of a mild end the requirement that a mild end is
not ALH.
The conditions above are clearly satisfied by the metric

(6.1), where both Að∂1MiÞ and jdVjgj∂1Mi
tend to zero

when ∂1Mi is taken to be fr ¼ 1=ig, 1 ≤ i ∈ N, with in
fact jWjgj∂1Mi

identically zero. But note that the above
definition allows for degenerate black holes, such as
extreme Kottler black holes with higher-genus topology,
which contain asymptotically cylindrical ends along which
both V and jdVjg tend to zero when receding to infinity
along the end, with both the area of the cross sections of the
cylindrical end and jWjgj∂1Mi

approaching finite nonzero
limits.
We have the following extension of Theorem 5.1:

Theorem 6.1: Consider a strictly static asymptotically
locally hyperbolic solution ðM; g; VÞ of the static Einstein
equations with at least one mild end. Then the total mass is
negative or zero, vanishing if and only if ðg; VÞ is given
by (6.1).

Proof.—Applying the divergence identity on Mi and
passing with i to infinity one obtains that the sum of the
masses of the ALH ends is nonpositive. If the mass vanishes
we obtain that g is Einstein, and the result follows from [ [11]
Theorem 2, case (II.A)], compare the discussion after
Theorem 5.1 above. (The cuspidal BK metric corresponds
to the pseudohyperbolic space of zero type in the nomen-
clature of [11]. Note that case (II.A) [ [11] Theorem 2] also
allows for the pseudohyperbolic space of negative type, but
this case does not admit a mild end.) ▪

Recall that one of the obstructions, when attempting to
prove the positive mass theorem for asymptotically locally
hyperbolic manifolds using spinorial methods à la Witten,
is that of lack of existence of nontrivial spinor fields which
asymptote to Killing spinors of the asymptotic background
near the conformal boundary at infinity. Such spinor fields
will be called asymptotic Killing spinors. We shall say that
an asymptotically locally hyperbolic spin manifold ðM; gÞ
has a compatible spin structure if all components of the
conformal boundary at infinity admit nontrivial asymptotic
Killing spinors.
TheBK cuspidalmetrics with a flat h provide examples of

manifolds with compatible spin structure. Examples which
do not have a compatible spin structure are the Kottler black
holes with higher genus topology, or the Horowitz-Myers
metrics. (Indeed, if they admitted a compatible spin struc-
ture, all static AH metrics on these manifolds would have
positive mass, but some of the metrics do not.)
Theorem 6.1 leads to the following uniqueness theorem

for the BK cuspidal metrics, seemingly unnoticed in the

literature so far. To avoid ambiguities: we assume here and
below that M has no boundary.

Theorem 6.2: Let ðM; g; VÞ be a strictly static solution
of the vacuum Einstein equations which is the union of a
finite number of mild ends (at least one), a finite number of
ALH ends (at least one), and of a compact set. If ðM; gÞ
carries a compatible spin structure, then ðM; g; VÞ is the
cuspidal BK metric (6.1).

Proof.—Choose any of the ALH ends of ðM; gÞ. One can
run the generalization of Witten’s proof of the positive
energy theorem as in [14,16], using spinor fields which
asymptote to a nontrivial Killing spinor in the chosen end
and to zero on all other ends (if any), to conclude that the
mass of each ALH end is positive or vanishes. The result
follows by Theorem 6.1. ▪

Remark 6.3: An example, not covered by the analysis
so far, of a static but not strictly staticALHmetric with zero
mass is the “hyperbolic Einstein-Rosen bridge,”

g ¼ dr2 þ cosh2ðrÞh; V ¼ sinhðrÞ; ð6:3Þ

with r ∈ R, where h is a negatively curved Einstein metric
on a compact manifold. In this case ðM; g; VÞ is confor-
mally compactifiable, with two ALH ends, and note that V
changes sign. Changing the coordinate r > 0 to R ¼
coshðrÞ one recognizes the space-part of the zero-mass
Kottler black hole with a negatively-curved h,

g ¼ dR2

R2 − 1
þ R2h; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1

p
: ð6:4Þ

We are not aware of a positive-energy theorem which
would hold for this topology, and which could lead directly
to a uniqueness theorem for this metric. See, however,
Theorem 7.1 below, and [21] for a uniqueness result for the
metric (6.3) within the class of Einstein metrics. ▪

A completely different uniqueness theorem for the
cuspidal BK metrics, without spin assumptions, has been
recently proved by the second author and H.C. Jang [12].
The results there are motivated by the fact that the level
sets of the coordinate r of (6.1) have mean curvature
H ¼ n − 1, so that one can cut the manifold along any such
set to obtain a conformally compactifiable manifold with
boundary satisfying H ¼ n − 1. To obtain a result like
Theorem 6.2, but without spin assumption, we will make
use of the following slight refinement of part 3 (the toroidal
case) of Theorem 1.1 in [22].

Theorem 6.4: Let ðM; gÞ be an n-dimensional,
4 ≤ n ≤ 7, asymptotically locally hyperbolic manifold with

flat toroidal conformal infinity ðQ; h
∘
Þ, such that M is

diffeomorphic to ½r0;∞Þ ×Q. Suppose that:
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(1) The boundary Q0 ¼ fr0g ×Q has mean curvature
H ≤ n − 1, where H is the divergence DiNi of the
unit normal Ni pointing into M.

(2) The scalar curvature R of M satisfies R≥−nðn−1Þ.
Then ðM; gÞ has non-negative mass, m ≥ 0.

Comment on the proof.The only difference in this version
is that the conditionH < n − 1 in [ [22] Theorem1.1, part 3]
has been replaced by the condition H ≤ n − 1. To explain
this weakening, we indicate briefly how the proof goes.
Suppose by contradiction the mass is negative. Then, as in
the proof of [ [22] Theorem 1.1, part 3] there exists a
compact hypersurface Q1 out near infinity, homologous to
Q0, with mean curvatureH1 > n − 1. Then, with respect to
the initial data set ðM; g; K ¼ −gÞ, Q0 has null expansion
θ0 ≤ 0 (and < 0 if H < n − 1), and Q1 has null expansion
θ1 > 0, both with respect to the null normal fields pointing
toward the ALH end. In the case θ0 < 0, the basic existence
result for marginally outer trapped surfaces (MOTS) (see
e.g., [ [23] Theorem 3.3]) guarantees the existence of an
outermost MOTS in the region between Q0 and Q1.
However, as was carefully shown in Theorem 5.1 in [24],
the assumption θ1 < 0 can beweakened to θ1 ≤ 0. The only
difference is that the outermostMOTSΣ, whose existence is
guaranteed by this theorem, may have some component that
agrees with Q0. Now, as discussed in the proof of [ [22]
Theorem 1.1, part 3], Σ (or some component of Σ) cannot
carry a metric of positive scalar curvature. But then
Theorem 3.1 in [25] implies that Σ cannot be outermost.
Hence the mass must be non-negative.
We further remark, as was similarly noted in [22], the

condition that ðQ; h
∘
Þ is a flat torus can be replaced by the

somewhat more general condition that ðQ; h
∘
Þ is a compact

flat manifold, provided the product assumption in
Theorem 6.4 extends to the conformal boundary. This
follows from a covering space argument, using the fact that
any compact flat manifold is finitely covered by a flat torus.
Using Theorem 6.4, one can now argue in a manner

similar to the proof of Theorem 6.2 to obtain the following:

Theorem 6.5: Let ðM; g; VÞ be a strictly static solution
of the vacuum Einstein equations diffeomorphic to
Tn−1 ×R, 4 ≤ n ≤ 7, where Tn−1 is a torus, with one
ALH end with flat toroidal conformal infinity. If there
exists r0 ∈ R such that Tn−1 × fr0g has mean curvature
satisfying H ≤ n − 1 with respect to the normal pointing
toward the ALH end, then ðM; g; VÞ is the BK cuspidal
solution ðð0;∞Þ × Tn−1; r−2dr2 þ r2hÞ.
The general BK rigidity result considered in recent work

of L.-H. Huang and H.C. Jang [8] (see Remark 6.8 below)
involves ALH manifolds with compact boundary, and with-
out “internal” cuspidal ends. In a similar vein, we consider
below a uniqueness result for the BK cuspidal spaces in the
context of static vacuum ALH manifolds with boundary.
This result makes use of certain properties of constant mean
curvature (CMC) hypersurfaces in Riemannian manifolds,
which we now describe; cf., e.g., [26].

Let Σ be a two-sided compact hypersurface in a
Riemannian manifold ðM; gÞ of dimension n. Hence,
Σ admits a smooth unit normal field N. Consider a
normal variation t → Σt of Σ ¼ Σ0, i.e., a variation with
variation vector field V ¼ ∂

∂t jt¼0 ¼ ϕN. ϕ ∈ C∞ðΣÞ. Let
BðtÞ ¼ AðtÞ − ðn − 1ÞVðtÞ, where AðtÞ is the area of Σt
and VðtÞ is the (signed) volume of the region bounded by Σt
and Σ. Then a computation shows that Σ has mean
curvature H ¼ n − 1 if and only if B0ð0Þ ¼ 0 for all normal
variations t → Σt. We say that Σ is a stable CMC hyper-
surface, with mean curvature H¼n−1, provided B00ð0Þ≥0
for all normal variations t → Σt. Consider the operator
L∶C∞ðΣÞ → C∞ðΣÞ, defined by

LðϕÞ ¼ −Δϕþ 1

2
ðRΣ − R − jAj2 −H2Þϕ ð6:5Þ

where, as before, A is the second fundamental form of Σ. It
is a well known fact that Σ is stable if and only if the
principal eigenvalue of L is non-negative, λ1ðLÞ ≥ 0. We
will take this analytic characterization as our definition of
stability. Using this characterization, the following was
proved in [15].

Lemma 6.6: Let ðM; gÞ be an n-dimensional
Riemannian manifold with scalar curvature R satisfying,
R ≥ −nðn − 1Þ. Let Σ be a compact 2-sided stable CMC
hypersurface in M, with mean curvature H ¼ n − 1.
Suppose Σ does not carry a metric of positive scalar
curvature. Then the following holds.

(i) Σ is umbilic, in fact A ¼ h, where h is the induced
metric on Σ.

(ii) Σ is Ricci flat and R ¼ −nðn − 1Þ along Σ.
We now consider the following uniqueness result for the

cuspidal BK space.

Theorem 6.7: Let ðM; gÞ be a strictly static ALH
manifold with compact boundary Σ, and with static
potential V, such that ðM; g; VÞ satisfies the static vacuum
Einstein equations. Suppose that:
(1) Σ is a stable CMC hypersurface with mean curvature

H ¼ n − 1 (with respect to the inward pointing unit
normal N).

(2) Σ does not carry a metric of positive scalar curvature.
(3) Conditions hold which imply that ðM; gÞ has non-

negative mass, m ≥ 0 (compare the positivity results
in [16] for manifolds with compatible spin structure,
or Theorem 6.4 above.)

Then m ¼ 0 and ðM; gÞ is Einstein, Rij ¼ −ðn − 1Þgij.
Furthermore, if Σ is a regular level set of the static potential,
Σ ¼ fV ¼ V0g, then ðM; gÞ is isometric to the (truncated)
cuspidal BK space ð½r0;∞Þ × Σ; r−2dr2 þ r2hÞ.
Proof.—Using the Gauss equation (4.4), together with

Lemma 6.6, one easily computes,

RijNiNj ¼ −ðn − 1Þ: ð6:6Þ
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Furthermore, by the Codazzi equation and part (i) of
Lemma 6.6, one has

RijXiNj ¼ 0 for all X tangent toΣ: ð6:7Þ
Now, applying (3.8), we obtain

Z
M
VjWj2dμ¼

Z
∂M∞

WijDiVNjdσþ
Z
Σ
WijDiVNjdσΣ

¼−8ðn−2Þmπþ
Z
Σ
WijDiVNjdσΣ; ð6:8Þ

recall that Wij ¼ Rij þ ðn − 1Þgij.
Along Σ we can write DV as,

DV ¼ λN þ X ð6:9Þ

where X is tangent to Σ. Hence, along Σ, we have

WijDiVNj ¼ λWijNiNj þWijXiNj ¼ λWijNiNj

¼ λðRijNiNj þ ðn − 1ÞgijNiNjÞ
¼ λð−ðn − 1Þ þ ðn − 1ÞÞ ¼ 0:

Thus,

Z
M
VjWj2dμ ¼ −8ðn − 2Þmπ: ð6:10Þ

and hence m ≤ 0. Assumption 3 in Theorem 6.7 then
implies m ¼ 0, and hence by (6.10), Rij ¼ −ðn − 1Þgij.
We now assume Σ is the level set, Σ ¼ fV ¼ V0g, and

show that ðM; gÞ is isometric to the cuspidal BK space, as in
the statement of the theorem. We have,

DiDjV ¼ VðRij þ ngijÞ ¼ Vgij: ð6:11Þ

Hence, in view of Proposition 4.2 in [12], it suffices to show
that, along Σ, jDVj ¼ V0.
Along Σ, we have DV ¼ λN, where λ ¼ �jDVj.

Let X be any unit tangent vector to Σ. From (6.11),
DiDjVXiXj ¼ V0. On the other hand, using the definition
of the Hessian,

DiDjVXiXj ¼ gijXkDkDiVXj ¼ gijXkDkðλNiÞXj

¼ λgijXkDkNiXj þ ðXkDkλÞgijNiXj

¼ λAijXiXj ¼ λhijXiXj ¼ λ;

where in the last line we have used part (i) of Lemma 6.6.
Thus λ ¼ V0 > 0, and hence jDVj ¼ V0 along Σ. ▪

Remark 6.8: Theorem 4.1 in [12] shows that under a
strengthening of the stability assumption, the assumption in
Theorem 6.7 that the boundary is a level set of the static
potential, used to conclude that ðM; gÞ is isometric to the
cuspidal BK space, can be removed. This strengthened

assumption (“locally weakly outermost”) is used in forth-
coming work of Lan-Hsuan Huang and Hyun Chul Jang
[8], in which they establish the uniqueness of the cuspidal
BK space in a more general (not necessarily static) ALH
setting with boundary, assuming the mass vanishes. We
thank them for communications regarding their work.

VII. LOWER BOUND FOR
ENTROPY (AREA) WHEN m ≥ 0

We continue to assume that Λ < 0 but now we consider
solutions with a horizon H. If m ≥ 0 (which holds if the
conformal boundary at infinity is a sphere by the
Riemannian asymptotically hyperbolic positive mass theo-
rem [13]) we have

X
Hp

κp

Z
Hp

ðRH þ ðn − 2Þðn − 1ÞÞdσH

¼ 2

Z
M
VjWj2gdμg þ 16ðn − 2Þmπ ≥ 0; ð7:1Þ

and the inequality is saturated if and only if m ¼ 0 and
W ¼ 0. This last condition is equivalent to, since ε ¼ −1,

Rij ¼ −ðn − 1Þgij; ð7:2Þ

so ðM; gÞ is an Einstein manifold (the Ricci tensor is
proportional to the metric).
The identity (7.1) leads to the following uniqueness

result for the metric (6.3) on fr ≥ 0g, which has m ¼ 0
and RH ≡ −ðn − 2Þðn − 1Þ:
Theorem 7.1: Consider a static solution ðM; g; VÞ of the

vacuum Einstein equations on a manifold with boundary,
with V positive on the interior of M and vanishing at ∂M.
Suppose thatM is the union of a finite number of ALH ends
(at least one), a finite number of mild ends, and a compact
set. If

m ≥ 0 and RH ≤ −ðn − 2Þðn − 1Þ ð7:3Þ

then M is diffeomorphic to ½0;∞Þ × ∂M with the met-
ric (6.3).

Proof.—Under the current hypotheses the left-hand side
of (7.1) is smaller than or equal to zero, while the right-
hand side is larger than or equal to zero. As already pointed-
out the metric must be Einstein, and the result follows from
case (II.A) of [ [11] Theorem 2]. ▪

If the manifold M is 3-dimensional, n ¼ 3, the identity
(7.1) implies

X
Hp

κp

Z
Hp

ðRH þ 2ÞdσH ≥ 0; ð7:4Þ
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that is to say

2
X
Hp

κpAp ≥ −
X
Hp

κp

Z
Hp

RHdσH; ð7:5Þ

where Ap is the area of the connected componentHp of the
boundary H.
Assuming that the Hp’s are all closed and orientable, the

Gauss-Bonnet theorem,Z
Hp

RHdσH ¼ 8πð1 − gpÞ; ð7:6Þ

where gp is the genus of Hp, gives the inequality

X
Hp

κpAp ≥ 4π
X
Hp

κpðgp − 1Þ: ð7:7Þ

with equality holding if and only ifm ¼ 0, Ap¼4πðgp−1Þ,
withM diffeomorphic to ½0;∞Þ × ∂M and g given by (6.3).
In order to express (7.7) in terms of the cosmological

constant Λ we have to use the fact that according to (2.2)
for n ¼ 3 we set Λ ¼ −3, so in this case we have

X
Hp

κpAp ≥
12π

jΛj
X
Hp

κpðgp − 1Þ: ð7:8Þ

Note that the cosmological constant Λ has the dimension of
inverse length squared so this is the only way to reintroduce
it while preserving the homogeneity of the dimensions.
In the case where H is connected this reads

AH ≥
12πðgH − 1Þ

jΛj ; ð7:9Þ

with AH the area of H and gH its genus. This can be
compared to aweaker inequality of Gibbons [ [27] Eq. (45)],
where time symmetry but no staticity is assumed (see also
Woolgar [28]):

AH ≥
4πðgH − 1Þ

jΛj : ð7:10Þ

VIII. AN UPPER BOUND FOR THE
FREE ENERGY

Let k ∈ R. In [3] one defines

Fk ¼ E − kTS; ð8:1Þ

where E is the total mass, T is the Hawking temperature of
a Killing horizon, and S its entropy [29]

E ¼ m; T ¼ κ

2π
; S ¼ A

4
: ð8:2Þ

The functional Fk equals the total mass when k ¼ 0 and the
“free energy” when k ¼ 1.

From (7.1) we have

X
Hp

κp

Z
Hp

ðRH þ ðn − 2Þðn − 1ÞÞdσH

¼ 2

Z
M
VjWj2gdμg þ 16ðn − 2Þmπ; ð8:3Þ

which in dimension n ¼ 3 and for a single Killing horizon
H reads

2πT

�Z
H
RHdσH þ 2A

�
− 16πm ≥ 0. ð8:4Þ

If the Killing horizon is a torus or an orientable manifold of
higher genus gH (not to be confused with the metric gH on
the horizon…) we obtain

E − TS ≤
1

2
κð1 − gHÞ ≤ 0: ð8:5Þ

Using the notation of (8.1), we conclude that the free
energy F≡ F1 of static solutions containing a connected
horizon of higher genus is negative:

F1 ≤ 0: ð8:6Þ
This gives a simple proof of the inequality [ [3] Eq. (24)] for
a connected horizon with gH ≥ 1.
In the current context it is instructive to consider the

Birmingham-Kottler metrics (A1) of the Appendix below.
For these metrics we find, in space-dimension n and using
the normalization l ¼ 1,

κ¼jDVjgjV¼0¼
1

2
ðV2Þ0jV¼0¼

�
rþðn−2Þμ

rn−1

�����
r2¼ 2μ

rn−2
−k

¼
�

nμ
rn−1

−
k
r

�����
V¼0

;

8πTS¼κAH¼κrn−1jV¼0A∞¼ðnμ−krn−2ÞjV¼0A∞;

8πE¼8πm¼ðn−1ÞA∞μ:

The toroidal case k ¼ 0 leads to

E
TS

¼ n − 1

n
⇔ E −

n − 1

n
TS ¼ 0 ⇔ Fn−1

n
¼ 0; ð8:7Þ

which suggests that in this case and in dimension n ¼ 3 the
sharp inequality is

F2
3
≤ 0:

In the case k ¼ −1, for solutions with μ > 0 we get

E
TS

¼ ðn − 1Þμ
ðnμþ rn−2ÞjV¼0

≤
n − 1

n
; ð8:8Þ
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(as n ≥ 2 and r > 0) which is equivalent to

E −
n − 1

n
TS ≤ 0 ⇔ Fn−1

n
≤ 0: ð8:9Þ

When k ¼ −1, n ¼ 3, and μ < 0 belongs to the black-
hole range μ > −ð3 ffiffiffi

3
p Þ−1, the ratio E=TS varies from −∞

to zero which does not seem to lead to any new information,
but note that (8.9) remains true trivially since E ≤ 0 in
this case.

IX. POSITIVE COSMOLOGICAL CONSTANT

In this section we consider a positive cosmological
constant so Λ > 0 and ε ¼ 1 in (2.2). In this case there
is no conformal boundary at infinity, and the models
ðM; g; VÞ of interest are compact manifolds with a boun-
dary H on which V vanishes. Thus (4.9) becomesZ
M
VjWj2gdμg ¼

X
Hp

κp
2

Z
Hp

ðRH − ðn− 1Þðn− 2ÞÞdσH ≥ 0;

ð9:1Þ
and the inequality is saturated with a nontrivial V if and
only if W ¼ 0 on M, that is to say if and only if

Rij ¼ ðn − 1Þgij: ð9:2Þ

If M is 3-dimensional, n ¼ 3, from (9.1) we obtain

X
Hp

κpAp ≤
1

2

X
Hp

κp

Z
Hp

RHdσH: ð9:3Þ

Assuming the Hp’s are all closed and orientable and
applying the Gauss-Bonnet theorem we are led to

X
Hp

κpAp ≤ 4π
X
Hp

κpð1 − gpÞ: ð9:4Þ

Reintroducing the cosmological constant (Λ ¼ þ3 so far)
yields

X
Hp

κpAp ≤
12π

Λ

X
Hp

κpð1 − gpÞ: ð9:5Þ

If H is connected then this inequality becomes

AH ≤
12π

Λ
ð1 − gHÞ; ð9:6Þ

and since AH > 0 and gH ∈ N we must have

gH ¼ 0; ð9:7Þ
so the genus of H is zero, which means that H is
homeomorphic to a two-sphere, and we get

AH ≤
12π

Λ
: ð9:8Þ

If one sets Λ ¼ 3 through a constant conformal rescaling
then the result becomes

AH ≤ 4π: ð9:9Þ
The above4 gives a simple proof of a result already obtained
by Boucher-Gibbons-Horowitz [ [5] Eq. (3.1)] (compare
Ambrozio [ [4] Theorem 2] and Borghini-Mazzieri [ [6]
Corollary 2.6]):

Theorem 9.1: Let ðM; g; VÞ be a 3-dimensional com-
pact static solution to the vacuum Einstein equation with
positive cosmological constant Λ. If the boundary H of M
is connected, closed, and orientable then H is homeomor-
phic to a two-sphere and its area AH satisfies

AH ≤
12π

Λ
; ð9:10Þ

with equality holding only in de Sitter space.

We note that the equality case is handled as before by an
analysis of Obata’s equation, and that the condition of
orientability can be removed by passing to a finite covering
ofM, in which the areas of each horizon will be larger than
or equal to the original ones.
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APPENDIX: THE MASS OF THE
BIRMINGHAM-KOTTLER METRICS

Consider a Birmingham-Kottler (BK) metric [30,31] in
space-time dimension d≡ nþ 1:

g¼−V2dt2þdr2

V2
þ r2hABdxAdxB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

≕hk

; V2 ¼ r2

l2
þk−

2μ

rn−2
;

ðA1Þ

with μ ∈ R, where l is related to the cosmological constant
Λ as

Λ ¼ −
nðn − 1Þ
2l2

;

and where hk is an Einstein metric with scalar curvature
ðn − 1Þðn − 2Þk, with k ∈ f�1; 0g. When k ≠ 0 the

4Once this paper was written we realized that Theorem 9.1, as
well as the proof presented here, can already be found in [2].
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coordinates above are uniquely defined except when hk is
the unit round metric on a sphere Sn−1, in which case the
coordinates are defined up to a conformal transformation of
the sphere. On the other hand the case k ¼ 0 allows for the
rescaling

ðr; tÞ ↦ ðr̄ ¼ λr; t̄ ¼ λ−1tÞ; ðA2Þ
where λ is a positive constant, in which case (A1) becomes

g ¼ −V̄2dt̄2 þ dr̄2

V̄2
þ r̄2h̄ABdxAdxB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

≕ h̄k

; ðA3Þ

V̄2 ¼ r̄2

l2
−

2μ̄

r̄n−2
; ðA4Þ

with

h̄k ¼ λ−2hk; μ̄¼ λnμ; and note that V̄ ¼ λV: ðA5Þ
If we take the point of view that only the conformal class of
hk matters as far as the asymptotic data are concerned, we
conclude that, when k ¼ 0, the only information carried by
the number μ is its vanishing or its sign.
Now, we see from (A5) that

V̄ × μ̄ ×
ffiffiffiffiffiffiffiffiffiffiffiffi
det h̄k

q
¼ V × μ ×

ffiffiffiffiffiffiffiffiffiffiffiffi
det hk

p
ðA6Þ

so that the product

V × μ ×
ffiffiffiffiffiffiffiffiffiffiffiffi
det hk

p
; ðA7Þ

which has the same scaling as the integrand of the
formula (5.1) defining the Hamiltonian energy, is invariant
under (A2).
In conclusion, (1) μ by itself is not the Hamiltonian mass,

and (2) the inclusion of V and of the area factor associated
with the metric hk in the integrand are essential for an
invariant definition of mass.

1. The space Ricci tensor for
Birmingham-Kottler metrics

We wish to calculate the boundary integral at infinity
which arises when integrating the divergence identity (3.4)
for a BK metric. For this we need the space-part of its Ricci
tensor. The simplest way to calculate this tensor is to use the
static KID equation (2.4) written backwards

Rij ¼ V−1DiDjV þ 2Λ
n − 1

gij: ðA8Þ

One readily finds, in the scaling where 2Λ ¼ −nðn − 1Þ, in
an ON frame with θ1̂ ¼ V−1dr, and where θÂ is ortho-
normal frame for the metric r2hk ≡ r2hABdxAdxB,

R1̂ 1̂ ¼ V−1D1̂D1̂V − ng1̂ 1̂

¼ 1 − n −
ðn − 2Þðn − 1Þm

rn
; ðA9Þ

RÂ B̂ ¼ V−1DÂDB̂V − ngÂ B̂

¼
�
1 − nþ ðn − 2Þμ

rn

�
δÂ B̂; ðA10Þ

with the remaining components of the Ricci tensor being
zero by symmetry considerations. These formulas readily
lead to (compare [10])

− lim
R→∞

Z
r¼R

∇jV

�
Ri

j −
R
n
δij

�
Nidσ ¼ ðn− 1Þðn− 2ÞA∞μ;

ðA11Þ

where A∞ is the area of the boundary at infinity in the
metric hk.
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