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ABSTRACT
Photon surfaces are timelike totally umbilic hypersurfaces of Lorentzian spacetimes. In the first part of this paper, we locally char-
acterize all possible photon surfaces in a class of static spherically symmetric spacetimes that includes (exterior) Schwarzschild,
Reissner–Nordström, and Schwarzschild–anti de Sitter in n + 1 dimensions. In the second part, we prove that any static, vacuum, and
“asymptotically isotropic” n + 1-dimensional spacetime that possesses what we call an “equipotential” and “outward directed” photon sur-
face is isometric to the Schwarzschild spacetime of the same (necessarily positive) mass using a uniqueness result obtained by the first
author.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0031280

I. INTRODUCTION
One of the cornerstone results in the theory of black holes (in 3 + 1 dimensions) is the static black hole uniqueness theorem first proposed

by Israel1 for a single horizon and later by Bunting and Masood-ul-Alam2 for multiple horizons, which establishes the uniqueness of the
Schwarzschild spacetime among all static asymptotically flat black hole solutions to the vacuum Einstein equations. Refer to the book by
Heusler3 and the review article4 by Robinson for a (then) complete list of references on further contributions, Simon’s spinor proof recently
described in the article by Raulot (Ref. 5, Appendix A), and the recent article by Agostiniani and Mazzieri6 for newer approaches in the case
of a single horizon.

A well-known and intriguing feature of (positive mass) Schwarzschild spacetime is the existence of a photon sphere, namely, the timelike
cylinder P over the {r = (nm) 1

n−2 , t = 0} n − 1-sphere. P has the property of being null totally geodesic in the sense that any null geodesic
tangent to P remains in P, i.e., P traps all light rays tangent to it.

In Ref. 7, the first author introduced and studied the notion of a photon sphere for general static spacetimes (see also Ref. 8 in the
spherically symmetric case). Based on this study, in Ref. 9 she adapted Israel’s argument (which requires the static lapse function to have
nonzero gradient) to obtain a photon sphere uniqueness result, thereby establishing the uniqueness of the Schwarzschild spacetime among all
static asymptotically flat solutions to the vacuum Einstein equations, which admit a single photon sphere. Subsequent to that work, by adapting
the argument of Bunting and Masood-ul-Alam,2 the authors10 were able to improve this result by particularly avoiding the gradient condition
and allowing a priori multiple photon spheres. For further results on photon spheres, in particular uniqueness results in the electro-vacuum
case and the case of other matter fields, see Refs. 11–20.

In this paper, we will be concerned with the notion of photon surfaces in spacetimes (see Refs. 8 and 21 for slightly more general versions
of this notion). A photon surface in an n + 1-dimensional spacetime (Ln+1, g) is a timelike hypersurface Pn, which is null totally geodesic, as
described above. As shown in Refs. 8 and 21, a timelike hypersurface Pn is a photon surface if and only if it is totally umbilic. By definition, a
photon sphere in a static spacetime is a photon surface Pn along which the static lapse function N is constant (see Sec. II for details). While the
Schwarzschild spacetime [in dimension n + 1, n ≥ 3, and with r > (2m) 1

n−2 , m > 0] admits a single photon sphere, it admits infinitely many
photon surfaces of various types, as briefly described in Sec. III.
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In Sec. III, we derive the relevant ordinary differential equation (ODE) describing spherically symmetric photon surfaces for a class
of static spherically symmetric spacetimes, which includes (exterior) Schwarzschild, Reissner–Nordström, and Schwarzschild–AdS (anti–de
Sitter). In the generic case, a photon surface in this setting is given by a formula for the derivative of the radius-time-profile curve r = r(t)
(see Theorem 3.5). This formula is used in Ref. 22 to give a detailed qualitative description of all spherically symmetric photon surfaces
in many (exterior) black hole spacetimes within the class S (defined in Sec. III), including the (positive mass) Schwarzschild spacetime.
In addition, in Sec. III, we present a result that shows, for generic static, isotropic spacetimes, which include positive mass Schwarzschild
and sub-extremal Reissner–Nordström, and that, apart from some (partial) timelike hyperplanes, all photon surfaces are isotropic (see
Theorem 3.8 and Corollary 3.9). As a consequence, one obtains a complete characterization of all photon surfaces in Reissner–Nordström and
Schwarzschild.

Finally, in Sec. IV, we obtain a new rigidity result pertaining to photon surfaces, rather than just to photon spheres. We prove that
any static, vacuum, and asymptotically isotropic spacetime possessing an (possibly disconnected) “outward directed” photon surface inner
boundary with the property that the static lapse function N is constant on each component of each time slice Σn−1(t) := Pn ∩ {t = const.}must
necessarily be a Schwarzschild spacetime of positive mass, with the photon surface being one of the spherically symmetric photon surfaces in
Schwarzschild classified in Sec. III. We call such photon surfaces equipotential. This generalizes static vacuum photon sphere uniqueness to
certain photon surfaces and to higher dimensions.

The proof makes use of a new higher dimensional uniqueness result for the Schwarzschild spacetime due to the first author23 (see Sec. IV
for a statement). This result generalizes in various directions the higher dimensional Schwarzschild uniqueness result of Gibbons et al.24 In
particular, it does not a priori require the spacetime to be vacuum or static. A different proof of the result we use from Ref. 23 has since been
given by Raulot,5 assuming that the manifolds under consideration are spin. These results rely on the rigidity case of a (low regularity version)
of the Riemannian positive mass theorem.25–30

II. PRELIMINARIES
The static spherically symmetric (n + 1)-dimensional Schwarzschild spacetime of mass m ∈ R, with n ≥ 3, is given by (Ln+1 := R

× (Rn/Brm(0)), g), where the Lorentzian metric g is given by

g = −N2dt2 +N−2dr2 + r2Ω, N = (1 − 2m
rn−2 )

1/2
, (2.1)

with Ω denoting the standard metric on Sn−1, and rm := (2m) 1
n−2 for m > 0 and rm := 0 for m ≤ 0 (see also the work of Tangherlini).31 For

m > 0, the timelike, cylindrical hypersurface Pn ∶= {r = (nm) 1
n−2 } is called the photon sphere of the Schwarzschild spacetime because any null

geodesic (or “photon”) γ : R→ Ln+1 that is tangent to Pn for some parameter τ0 ∈ R is necessarily tangent to it for all parameters τ ∈ R. In
particular, the Schwarzschild photon sphere is a timelike hypersurface ruled by null geodesics spiraling around the central black hole of mass
m > 0 “at a fixed distance.”

The Schwarzschild photon sphere can be seen as a special case of what is called a “photon surface”8,21 in a general spacetime (or smooth
Lorentzian manifold).

Definition 2.1 (Photon surface). A timelike embedded hypersurface Pn ↪ Ln+1 in a spacetime (Ln+1, g) is called a photon surface if any
null geodesic initially tangent to Pn remains tangent to Pn as long as it exists or, in other words, if Pn is null totally geodesic.

The one-sheeted hyperboloids in the Minkowski spacetime (Schwarzschild spacetime with m = 0) are also examples of photon surfaces
(see Sec. III). It will be useful to know that, by an algebraic observation, being a null totally geodesic timelike hypersurface is equivalent to
being an umbilic timelike hypersurface.

Proposition 2.2 (See Theorem II.1 of Ref. 8 and Proposition 1 of Ref. 21). Let (Ln+1, g) be a spacetime and Pn ↪ Ln+1 be an embedded
timelike hypersurface. Then, Pn is a photon surface if and only if it is totally umbilic, that is, if and only if its second fundamental form is pure
trace.

As stated above, the Schwarzschild spacetime is “static” by the following definition.

Definition 2.3 (Static spacetime). A spacetime (Ln+1, g) is called (standard) static if it is a warped product of the form

L
n+1 = R ×Mn, g = −N2dt2 + g, (2.2)

where (Mn, g) is a smooth Riemannian manifold and N : Mn → R+ is a smooth function called the (static) lapse function of the spacetime.

Remark 2.4 [Static spacetime cont. and (canonical) time slices]. We will slightly abuse the standard terminology and also call a space-
time static if it is a subset (with boundary) of a warped product static spacetime (R ×Mn, g = −N2dt2 + g), Ln+1 ⊆ R ×Mn, to allow for

J. Math. Phys. 62, 032504 (2021); doi: 10.1063/5.0031280 62, 032504-2

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

inner boundary ∂L not arising as a warped product. We will denote the (canonical) time slices {t = const.} of a static spacetime (Ln+1, g),
Ln+1 ⊆ R ×Mn, by Mn(t) and continue to denote the induced metric and (restricted) lapse function on Mn(t) by g and N, respectively.

In the context of static spacetimes, we will use the following definition of “photon spheres,” extending that of Ref. 7–9. Consistently, the
Schwarzschild photon sphere clearly is a photon surface in the Schwarzschild spacetime in this sense.

Definition 2.5 (Photon sphere). Let (Ln+1, g) be a static spacetime and Pn ↪ Ln+1 be a photon surface. Then, Pn is called a photon
sphere if it is of the form Pn = R × Σn−1 for some smooth hypersurface Σn−1 ⊂ Ln+1 and if the lapse function N of the spacetime is constant along
each connected component of Pn.

For our discussions in Secs. III, IV, we will make use of the following definitions.

Definition 2.6 (Equipotential photon surface). Let (Ln+1, g) be a static spacetime and Pn ↪ Ln+1 be a photon surface. Then, Pn is called
equipotential if the lapse function N of the spacetime is constant along each connected component of each time slice Σn−1(t) := Pn ∩Mn(t) of
the photon surface.

Definition 2.7 (Outward directed photon surface). Let (Ln+1, g) be a static spacetime and Pn ↪ Ln+1 be a photon surface arising as the
inner boundary of Ln+1, Pn = ∂L, and let η be the “outward” unit normal to Pn (i.e., the normal pointing into Ln+1). Then, Pn is called outward
directed if the η-derivative of the lapse function N of the spacetime is positive, η(N) > 0, along Pn.

As usual, a spacetime (Ln+1, g) is said to be vacuum or to satisfy the Einstein vacuum equation if

Ric = 0 (2.3)

on Ln+1, where Ric denotes the Ricci curvature tensor of (Ln+1, g). For a static spacetime, the Einstein vacuum Eq. (2.3) is equivalent to the
static vacuum equations,

N Ric = g∇2N, (2.4)
R = 0, (2.5)

on Mn, where Ric, R, and g∇2 denote the Ricci and scalar curvature and the covariant Hessian of (Mn, g), respectively. Combining the trace
of (2.4) with (2.5), one obtains the covariant Laplace equation on Mn,

△gN = 0. (2.6)

It is clear that, provided (2.4) holds, (2.5) and (2.6) can be interchanged without losing information. Of course, the Schwarzschild spacetime
(R ×Mn, g) is vacuum, and thus, (2.4) and (2.6) hold for the Schwarzschild spatial metric g = N−2dr2 + r2Ω and lapse N on its canonical time
slice Mn = Rn/Brm(0).

Curvature quantities of a spacetime (Ln+1, g) such as the Riemann curvature endomorphism Rm, the Ricci curvature tensor Ric, and
the scalar curvature R will be denoted in gothic print, and the corresponding covariant derivative will be denoted by g∇. The Lorentzian
metric induced on a timelike embedded hypersurface Pn ↪ Ln+1 will be denoted by p, the (outward, see Definition 2.7) unit normal by η, and
the corresponding second fundamental form and mean curvature by h and H = trph, respectively. With this notation, Proposition 2.2 can be
restated to state that a photon surface is characterized by

h = H

n
p. (2.7)

Set sign conventions h(X, Y) = g(g∇Xη, Y) for vectors X, Y tangent to P.
If the spacetime (Ln+1, g) is static, its time slices Mn(t) have vanishing second fundamental form K = 0 by the warped product structure,

or in other words, the time slices are totally geodesic. The time slices of a photon surface Pn ↪ Ln+1 will be denoted by Σn−1(t) := Pn ∩Mn(t),
with induced metric σ = σ(t), second fundamental form h = h(t), and mean curvature H = H(t) = trσ(t)h(t) with respect to the outward
pointing unit normal ν = ν(t). As an intersection of a totally geodesic time slice and a totally umbilic photon surfaces, Σn−1(t) is necessarily
totally umbilic, and we have

h(t) = H(t)
n − 1

σ(t). (2.8)

Our choice of sign of the mean curvature is such that the mean curvature of Sn−1 ↪ Rn is positive with respect to the outward unit
normal in Euclidean space.

The following proposition will be useful to characterize photon surfaces in vacuum spacetimes.
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Proposition 2.8 (Ref. 9, Proposition 3.3). Let n ≥ 2 and let (Ln+1, g) be a smooth semi-Riemannian manifold possessing a totally umbilic
embedded semi-Riemannian hypersurface Pn ↪ Ln+1. If the semi-Riemannian manifold (Ln+1, g) is Einstein, or, in other words, if Ric = Λg
for some constant Λ ∈ R, then each connected component of Pn has constant mean curvature H and constant scalar curvature,

Rp = (n + 1 − 2τ)Λ + τ n − 1
n

H
2, (2.9)

where τ := g(η,η) denotes the causal character of the unit normal η to Pn.

In particular, connected components of photon surfaces in vacuum spacetimes (Λ = 0) have constant mean curvature and constant scalar
curvature, related via

Rp =
n − 1

n
H

2. (2.10)

We will now proceed to define and discuss the assumption of asymptotic flatness and asymptotic isotropy of static spacetimes.

Definition 2.9 (Asymptotic flatness). A smooth Riemannian manifold (Mn, g) with n ≥ 3 is called asymptotically flat if the manifold
Mn is diffeomorphic to the union of a (possibly empty) compact set and an open end En, which is diffeomorphic to Rn/B, Φ = (xi) : En → Rn/B,
where B is some centered open ball in Rn, and

(Φ∗g)ij − δij = Ok(r1− n
2 −ε), (2.11)

Φ∗R = O0(r−n−ε) (2.12)

for i, j = 1, . . ., n on Rn/B as r :=
√
(x1)2 + ⋅ ⋅ ⋅ + (xn)2 →∞ for some k ∈ Z, k ≥ 2, and ε > 0. Here, δ denotes the flat Euclidean metric, and δij

denotes its components in the Cartesian coordinates (xi).
A static spacetime (Ln+1 = R ×Mn, g = −N2dt2 + g) is called asymptotically flat if its Riemannian base (Mn, g) is asymptotically flat as a

Riemannian manifold and, in addition, its lapse function satisfies

Φ∗N − 1 = Ok+1(r1− n
2 −ε) (2.13)

on Rn/B as r →∞ with respect to the same coordinate chart Φ and numbers k ∈ Z, k ≥ 2, and ε > 0. We will abuse language and call Ln+1

⊆ R ×Mn asymptotically flat as long as Ln+1 has a timelike inner boundary ∂L.
Here and in the following, we say that a smooth function f : Rn/B→ R satisfies f = Ok(rp) for k ∈ N0 and p ∈ R as r →∞ if there exists

a constant C > 0 and a centered open ball centered open ball B1 ⊇ B such that ∣Dα f ∣ ≤ Crp−∣α∣ in Rn/B1 for every multi-index α satisfying
∣α∣ ≤ k.

One can expect a well-known result by Kennefick and Murchadha32 to generalize to higher dimensions, which would assert that static
vacuum asymptotically flat spacetimes are automatically “asymptotically isotropic” under suitable asymptotic coordinates. Here, we will resort
to assuming asymptotic isotropy, leaving the higher dimensional generalization of this result to be dealt elsewhere.

Definition 2.10 (Asymptotic isotropy23). A smooth Riemannian manifold (Mn, g) of dimension n ≥ 3 is called asymptotically isotropic
(of mass m) if the manifold Mn is diffeomorphic to the union of a (possibly empty) compact set and an open end En, which is diffeomorphic to
Rn/B, Ψ = (yi) : En → Rn/B, where B is some centered open ball in Rn, and if there exists a constant m ∈ R such that

(Ψ∗g)ij − (̃gm)ij = O2(s1−n), (2.14)

for i, j = 1, . . ., n on Rn/B as s :=
√
(y1)2 + ⋅ ⋅ ⋅ + (yn)2 →∞, where

g̃m := φ
4

n−2
m (s) δ, (2.15)

φm(s) := 1 + m
2sn−2 (2.16)

denotes the spatial Schwarzschild metric in isotropic coordinates.
A static spacetime (Ln+1 = R ×Mn, g = −N2dt2 + g) is called asymptotically isotropic (of mass m) if its Riemannian base (Mn, g) is

asymptotically isotropic of mass m ∈ R as a Riemannian manifold and, in addition, its lapse function N satisfies
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N − Ñm = O2(s1−n) (2.17)

on Rn/B as s→∞ with respect to the same coordinate chart Ψ and mass m. Here, Ñm denotes the Schwarzschild lapse function in isotropic
coordinates, given by

Ñm(s) := 1 − m
2sn−2

1 + m
2sn−2

. (2.18)

As before, we will abuse language and call Ln+1 ⊆ R ×Mn asymptotically isotropic as long as it has a timelike inner boundary.

Here, we have rewritten the Schwarzschild spacetime, spatial metric, and lapse function in isotropic coordinates via the radial coordinate
transformation,

r =: sφ
2

n−2
m (s). (2.19)

For m > 0, this transformation bijectively maps r ∈ (rm,∞) ↦ s ∈ (sm,∞), with sm := (m
2 )

1
n−2 . For m = 0, this transformation is the identity

on R+, while for m < 0, it only provides a coordinate transformation for r suitably large, corresponding to s > ( ∣m∣2 )
1

n−2 .

Remark 2.11. A simple computation shows that the parameter m in Definition 2.10 equals the ADM-mass of the Riemannian manifold
(Mn, g) defined in Refs. 33 and 34.

Remark 2.12. One can analogously define asymptotically flat and asymptotically isotropic Riemannian manifolds and static spacetimes
with multiple ends En

l and associated masses ml.

With these definitions at hand, let us point out that photon spheres are always outward directed in static, vacuum, asymptotically isotropic
spacetimes, a fact that is a straightforward generalization to higher dimensions of Lemma 2.6 and Eq. (2.13) of Ref. 10.

Lemma 2.13. Let Pn ↪ Ln+1 be a photon sphere in a static vacuum asymptotically flat spacetime (Ln+1, g). Then, Pn is outward
directed.

III. PHOTON SURFACES IN A CLASS OF STATIC SPHERICALLY SYMMETRIC SPACETIMES
In this section, we will give a local characterization of photon surfaces in a certain class S of static spherically symmetric spacetimes

(R ×Mn, g), which includes the n + 1-dimensional (exterior) Schwarzschild spacetime. We will first locally characterize the spherically sym-
metric photon surfaces in (R ×Mn, g) ∈ S in Theorem 3.5 and then show in Theorem 3.8 and particularly in Corollary 3.9 that there are
essentially no other photon surfaces in spacetimes, (R ×Mn, g) ∈ S. As mentioned above, these results have been used in Ref. 22 to give a
detailed description of all photon surfaces in many spacetimes in class S, including the (positive mass) Schwarzschild spacetime.

The class S is defined as follows: Let (R ×Mn, g) be a smooth Lorentzian spacetime such that

Mn = I × Sn−1 ∋ (r, ξ) (3.1)

for an open interval I ⊆ (0,∞), finite or infinite, so that there exists a smooth positive function f : I→ R for which we can express the
spacetime metric g as

g = − f (r)dt2 + 1
f (r)dr2 + r2Ω (3.2)

in the global coordinates t ∈ R, (r, ξ) ∈ I × Sn−1, where Ω denotes the canonical metric on Sn−1 of area ωn−1. A Lorentzian spacetime
(R ×Mn, g) ∈ S is clearly spherically symmetric and moreover naturally (standard) static via the hypersurface orthogonal timelike Killing
vector field ∂t .

Remark 3.1. Note that we do not assume that spacetimes (R ×Mn, g) ∈ S satisfy any kind of Einstein equations or have any special type of
asymptotic behavior toward the boundary of the radial interval I, such as being asymptotically flat or asymptotically hyperbolic as r ↗ sup I,
or such as forming a regular minimal surface as r ↘ inf I.

Remark 3.2. As ∂t is a Killing vector field, the time translation of any photon surface in a spacetime (R ×Mn, g) ∈ S will also be a photon
surface in (R ×Mn, g). As all spacetimes (R ×Mn, g) ∈ S are also time-reflection symmetric (i.e., t → −t is an isometry), the time reflection of
any photon surface in (R ×Mn, g) will also be a photon surface in (R ×Mn, g).
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While the form of the metric (3.2) is certainly non-generic even among static spherically symmetric spacetimes, the class S contains many
important examples of spacetimes, such as Minkowski spacetime and the regions exterior to the black holes and white holes in Schwarzschild
spacetime, Reissner–Nordström spacetime, and Schwarzschild–anti de Sitter spacetime (in n + 1 dimensions), each for a specific choice
of f .

Before we proceed with characterizing photon surfaces in spacetimes in this class S, let us first make the following natural
definition.

Definition 3.3. Let (R ×Mn, g) ∈ S. A connected timelike hypersurface Pn ↪ (R ×Mn, g) will be called spherically symmetric if, for each
t0 ∈ R for which the intersection Mn(t0) ∶= Pn ∩ {t = t0} ≠ ∅, there exists a radius r0 ∈ I (where Mn = I × Sn−1) such that

Mn(t0) = {t0} × {r0} × Sn−1 ⊂ {t0} ×Mn. (3.3)

A future timelike curve γ : I → Pn, parametrized by the arclength on some open interval I ⊂ R, is called a radial profile of Pn if γ′ ∈ span{∂t ,∂r}
⊂ Tγ′(R ×Mn) on I and if the orbit of γ under the rotation generates Pn.

With this definition at hand, we will now prove the following lemma, which will be used in the Proof of Theorem 3.5.

Lemma 3.4. Let (R ×Mn, g) ∈ S and let Pn ↪ (R ×Mn, g) be a spherically symmetric timelike hypersurface. Assume that Pn ↪ (R
×Mn, g) has a radial profile γ : I → Pn, which may be written as γ(s) = (t(s), r(s), ξ∗) ∈ R × I × Sn−1 for some fixed ξ∗ ∈ Sn−1. If Pn

↪ (R ×Mn, g) is a photon surface, i.e., is totally umbilic with the umbilicity factor λ, then the following first order ODEs hold on I:

ṫ = λr
f (r) , (3.4)

(ṙ)2 = λ2r2 − f (r), (3.5)

where λ is constant (also where ⋅= d
ds ). Conversely, provided ṙ ≠ 0, if the ODEs (3.4) and (3.5) hold, with λ being constant, then P is a photon

surface with the umbilicity factor λ.

Proof. To simplify the notation, we write P for Pn ↪ (R ×Mn, g) and f for f (r). As in Sec. II, let p and h denote the induced metric and
second fundamental form of P, respectively.

Set e0 = γ̇, and extend it to all of P by making it invariant under the rotational symmetries. Thus, e0 is the future directed unit tangent
vector field to P orthogonal to each time slice {t(s) = const.}, s ∈ I. In terms of coordinates, we have

e0 = ṫ∂t + ṙ∂r . (3.6)

Let η be the outward pointing unit normal field to P. From (3.2) and (3.6), we obtain

η = ṙ
f
∂t + ṫ f ∂r . (3.7)

Claim. P is a photon suface, with umbilicity factor λ = f
r ṫ, if and only if e0 satisfies

g∇e0 e0 = λη. (3.8)

◻

Proof of the claim. Extend e0 to an orthonormal basis {e0, e1, . . . , en−1} in a neighborhood of an arbitrary point in P. Thus, each eI ,
I = 1, . . . , n − 1, where defined, is tangent to the time slices. A simple computation then gives

g∇eIη =
ṙ
f
g∇eI∂t + ṫ f g∇eI∂r =

ṫ f
r

eI , (3.9)

from which it follows that
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h(eI , eJ) = g(g∇eIη, eJ) = λδIJ , I, J = 1, . . . , n − 1, (3.10)

where δIJ is the Kronecker delta and

λ = f
r

ṫ. (3.11)

Similarly,

h(e0, eI) = h(eI , e0) = g(g∇eIη, e0)) = 0. (3.12)

Hence,

[h(eI , eJ)]I,J=0,...,n−1 (3.13)

is a diagonal matrix with h(eI , eI) = λ for I = 1, . . . , n − 1. It remains to consider h(e0, e0).
The profile curve γ and its rotational translates are “longitudes” in the “surface of revolution” P. As such, each is a unit speed geodesic in

P, from which it follows that
g∇e0 e0 = ℓη (3.14)

for some scalar ℓ. This implies that

h(e0, e0) = g(g∇e0η, e0) = −g(g∇e0 e0,η) = −ℓ. (3.15)

From this and (3.13), we conclude that P is a photon surface if and only if ℓ = λ = f
r ṫ, which establishes the claim.

Using the coordinate expressions for e0, η, and λ, a straightforward computation shows that (3.8), with λ = f
r ṫ, is equivalent to the

following system of second order ODEs in the coordinate functions t = t(s) and r = r(s):

ẗ + f ′

f
ṙṫ = ṙ

r
ṫ, (3.16)

r̈ + f f ′

2
ṫ2 − f ′

2 f
ṙ2 = ( f ṫ)2

r
. (3.17)

Now, assume that P is a photon sphere with the umbilicity factor λ so that, particularly, (3.16) and (3.11) hold. Treating (3.16) as a first
order linear equation in ṫ, we have

ẗ + ( f ′

f
ṙ − ṙ

r
)ṫ = 0,

which, multiplying through by the integrating factor f
r , gives d

ds(
f
r ṫ) = 0 so that (3.4) holds, with λ = f

r ṫ > 0 being a constant on P. The
assumption that γ is parameterized with respect to arc length gives

f (ṫ)2 − 1
f
(ṙ)2 = 1. (3.18)

Together with (3.4), we see that (3.5) also holds.
Conversely, now assume that (3.4) and (3.5) hold, with λ = f

r ṫ = being constant, and, in addition, that ṙ ≠ 0. Differentiating (3.4)
with respect to s and then using (3.11) easily implies (3.16). Differentiating (3.5) with respect to s, then using (3.11), and dividing out by
ṙ gives

r̈ + f ′

2
= ( f ṫ)2

r
. (3.19)

Together with (3.18) [which follows from (3.4) and (3.5)], this implies (3.17). We have shown that (3.16) and (3.17) hold, from which it follows
that (3.8) holds with λ = f

r ṫ. Invoking the claim then completes the Proof of Lemma 3.4. ◻

From Lemma 3.4, we obtain the following.

Theorem 3.5. Let (R ×Mn, g) ∈ S and let Pn ↪ (R ×Mn, g) be a spherically symmetric timelike hypersurface. Assume that Pn ↪ (R
×Mn, g) is a photon surface, with the umbilicity factor λ, i.e.,

J. Math. Phys. 62, 032504 (2021); doi: 10.1063/5.0031280 62, 032504-7

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

h = λp,

where p and h are the induced metric and second fundamental form induced on Pn by Pn ↪ (R ×Mn, g), respectively.
Let γ : I → Pn be a radial profile for Pn and write γ(s) = (t(s), r(s), ξ∗) ∈ R × I × Sn−1 for some ξ∗ ∈ Sn−1. Then, λ is a positive constant

and either r ≡ r∗ along γ for some r∗ ∈ I at which the photon sphere condition

f ′(r∗)r∗ = 2 f (r∗) (3.20)

holds, λ =
√

f (r∗)
r∗

, and (Pn, p) = (R × Sn−1,− f (r∗)dt2 + r2
∗Ω) is a cylinder and thus a photon sphere or r = r(t) can globally be written as a

smooth non-constant function of t in the range of γ and r = r(t) satisfying the photon surface ODE,

(dr
dt
)

2

= f (r)2 (λ2r2 − f (r))
λ2r2 . (3.21)

Conversely, whenever the photon sphere condition f ′(r∗)r∗ = 2 f (r∗) holds for some r∗ ∈ I, then the cylinder (Pn, p) = (R
× Sn−1,− f (r∗)dt2 + r2

∗Ω) is a photon sphere in (R ×Mn, g) with the umbilicity factor λ =
√

f (r∗)
r∗

. In addition, any smooth non-constant
solution r = r(t) of (3.21) for some constant λ > 0 gives rise to a photon surface in (R ×Mn, g) with the umbilicity factor λ.

Proof. From Lemma 3.4, we know that λ is a positive constant. Moreover, we know that t = t(s) and r = r(s) satisfy Eqs. (3.4) and (3.5).
In the case when r ≡ r∗ for some constant r∗, these equations immediately imply

ṫ = 1√
f (r∗)

, λ =
√

f (r∗)
r∗

. (3.22)

Furthermore, (3.17) implies

f ′(r∗)r∗ = 2 f (r∗). (3.23)

In the general case, Eqs. (3.4) and (3.5) clearly imply (3.21). The converse statements are easily obtained from (3.21) and the unit speed
condition (3.18). ◻

Remark 3.6. In view of Remark 3.2, note that in the “either” case, the photon sphere is time-translation and time-reflection invariant
in itself. In the “or” case, note that the photon surface ODE (3.21) is time-translation and time-reflection invariant and will thus allow for
time-translated and time-reflected solutions corresponding to the same λ > 0.

Example 3.7. Choosing (R ×Mn, g) = (R1,n,m), where m is the Minkowski metric and f : (0,∞) → R : r ↦ 1, the photon sphere condi-
tion cannot be satisfied for any r∗ ∈ (0,∞) so that every spherically symmetric photon surface in the Minkowski spacetime must satisfy ODE
(3.21), which reduces to

(dr
dt
)

2

= λ
2r2 − 1
λ2r2 ⇔ r(t) =

√
λ−2 + (t − t0)2 for some t0 ∈ R

and describes the rotational one-sheeted hyperboloids of radii λ−1 for any 0 < λ < ∞.
This is, of course, consistent with the well-known fact that the only timelike totally umbilic hypersurfaces in the Minkowski spacetime are,

apart from (parts of) timelike hyperplanes, precisely (parts of) these hyperboloids and their spatial translates, the formula for which explicitly
displays the time-translation and time-reflection invariance of the photon surface characterization problem.

Note that the photon sphere condition is satisfied precisely at the well-known photon sphere radius r∗ = (nm) 1
n−2 in the n + 1-

dimensional Schwarzschild spacetime, where f (r) = 1 − 2m
rn−2 for m > 0 and r > rH = (2m) 1

n−2 and there is no photon sphere radius for m ≤ 0
and r > 0. While there are no other photon spheres, there are many non-cylindrical photon surfaces in the Schwarzschild spacetime. The
analysis in Ref. 22, based on Theorem 3.5, shows that, up to time translation and time reflection (cf. Remarks 3.2 and 3.6), there are five classes
of non-cylindrical spherically symmetric photon surfaces in the (exterior) positive mass Schwarzschild spacetime [as well as in many other
(exterior) black hole spacetimes in class S]; the profile curves for representatives from each class are depicted in Fig. 1.

In each case, they approach asymptotically the event horizon r = rH and/or the photon sphere r = r∗ and/or become asymptotically
null at infinity in (t, r)-coordinates. An analysis of the behavior of the asymptotics of the non-cylindrical spherically symmetric photon is
performed for both Schwarzschild and many other (exterior) black hole spacetimes in class S in (generalized) Kruskal–Szekeres coordinates
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FIG. 1. Profile curves for all types of spherically symmetric photon surfaces in Schwarzschild spacetime grouped according to the umbilicity factor (see Ref. 22 for details).

in Ref. 35. There, it is found that the photon surfaces appearing to approach r = rH in (t, r)-coordinates, in fact, cross the event horizon, while
those approaching the photon sphere r = r∗ or asymptotically becoming null in (t, r)-coordinates do so in (generalized) Kruskal–Szekeres
coordinates too.

Using quite different methods, in Ref. 36, the same types of photon surfaces are found in a 2 + 1-dimensional spacetime obtained by
dropping an angle coordinate from 3 + 1-dimensional Schwarzschild of positive mass.

The following question naturally arises: What about non-spherically symmetric photon surfaces? This is addressed in the following
theorem (see Corollary 3.9).

Theorem 3.8. Let n ≥ 3, I ⊆ R+ be an open interval, and Dn := {y ∈ Rn ∣ ∣y∣ = s ∈ I}, and let Ñ,ψ : I → R+ be smooth positive functions.
Consider the static isotropic spacetime

(R ×Dn, g = −Ñ2dt2 + ψ2 δ) (3.24)

of lapse Ñ = Ñ(s) and conformal factor ψ = ψ(s), with s := ∣y∣ for y ∈ Dn here and in the following. We write g̃ := ψ2 δ. A timelike hypersurface
Pn in (R ×Dn, g) is called isotropic if Pn ∩ {t = const.} = Sn−1

s(t)(0) ⊂ Dn for some radius s(t) ∈ I for every t for which Pn ∩ {t = const.} ≠ ∅. A
(partial) centered vertical hyperplane in (R ×Dn, g) is the restriction of a timelike hyperplane in the Minkowski spacetime containing the t-axis
to R ×Dn, i.e., a set of the form

{(t, y) ∈ R ×Dn ∣ y ⋅ u = 0} (3.25)

for some fixed Euclidean unit vector u ∈ Rn, where ⋅ denotes the Euclidean inner product. Centered vertical hyperplanes are totally geodesic in
(R ×Dn, g).

Furthermore, assume that the functions Ñ and ψ satisfy

Ñ′(s)
Ñ(s)

≠ ψ
′(s)
ψ(s) (3.26)

for all s ∈ S for some dense subset S ⊆ I. Then, any photon surface in (R ×Dn, g) is either (part of) an isotropic photon surface or (part of) a
centered vertical hyperplane.

Corollary 3.9. Let n ≥ 3 and m > 0, and consider the n + 1-dimensional Schwarzschild spacetime of mass m. Then, any connected photon
surface is either (part of) a centered vertical hyperplane, as described above, or (part of) a spherically symmetric photon surface, as described in
Theorem 3.5.

Proof of Corollary 3.9. Recall the isotropic form of the Schwarzschild spacetime (2.15), (2.16), and (2.18), with I = (sm,∞), and note
that (3.26) corresponds to sn−2 ≠ m

2(n−1) (which can be quickly seen when exploiting Ñ = 2−φ
φ , ψ = φ 2

n−2 ). This, however, is automatic as

( m
2(n−1))

1
n−2 < sm = (m

2 )
1

n−2 < s holds for all s ∈ I = (sm,∞). ◻

Remark 3.10. Condition (3.26) has the following geometric interpretation: If

Ñ′(s)
Ñ(s)

= ψ
′(s)
ψ(s)

J. Math. Phys. 62, 032504 (2021); doi: 10.1063/5.0031280 62, 032504-9

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

holds for all s ∈ O, with O ⊆ I being an open subset, then, on each connected component J ⊆ O, there exists a positive constant A > 0 such that
Ñ(s) = Aψ(s) for all s ∈ J, where we used that Ñ,ψ > 0. This shows that g = −Ñ2dt2 + ψ2δ = ψ2(−A2dt2 + δ) or, in other words, the static
isotropic spacetime (R × (O × Sn−1), g) is locally conformally flat and hence possesses additional photon surfaces corresponding to the totally
geodesic timelike hyperplanes that do not contain the t-axis and to the spatially translated totally umbilic rotational one-sheeted hyperboloids of
the (time-rescaled) Minkowski spacetime (see Example 3.7).

Hence, Theorem (3.8) gives a full characterization of photon surfaces in nowhere locally conformally flat static isotropic spacetimes.

Remark 3.11. A static isotropic spacetime (R ×Dn,−Ñ2dt2 + ψ2 δ) can be globally rewritten as a spacetime of class S if and only if Ñ2(s)
= (1 + sψ′(s)

ψ(s) )
2 > 0 for all s ∈ I by setting r(s) := sψ(s) and f (r) := Ñ(s(r)), where s = s(r) denotes the inverse function of r = r(s). In this case,

the photon sphere and photon surface conditions on the isotropic radius profile s = S∗ and s = S(t) [3.57 and (3.60)] reduce to the much simpler
photon sphere and photon surface conditions for the area radius profile r = r∗ and r = r(t) [3.20 and (3.21)], respectively.

Conversely, a spacetime of class S can always be locally rewritten in isotropic form by picking a suitable r0 ∈ I (or r0 ∈ I) and setting

s = s(r) := exp(∫
r

r0

(ρ
√
( f (ρ))

−1
dρ),

ψ(s) := r(s)
s , and Ñ(s) :=

√
f (r(s)), where r = r(s) denotes the inverse of s = s(r).

The main reason for switching into the isotropic picture lies in the spatial conformal flatness allowing us to easily describe centered vertical
hyperplanes and to exclude photon surfaces that are neither centered vertical hyperplanes nor isotropic.

Proof of Theorem 3.8. Let Pn be a connected photon surface in a static isotropic spacetime (R ×Dn, g = −Ñ2dt2 + ψ2δ). As before, set
Mn(t) := {t = const.}. Let T := {t ∈ R ∣ Pn ∩Mn(t) ≠ ∅} and note that T is an open, possibly infinite, interval. Set Σn−1(t) := Pn ∩Mn(t) for
t ∈ T. As timelike and spacelike submanifolds are always transversal, Σn−1(t) is a smooth surface. Furthermore, Σn−1(t) is umbilic in Mn(t) by
the time symmetry of Mn(t), or, in other words, because the second fundamental form of Mn(t) in a static spacetime vanishes. As (Mn(t), g̃)
is conformally flat, exploiting the conformal invariance of umbilicity, the only umbilic hypersurfaces in (Mn(t), g̃) are the conformal images
of pieces of Euclidean round spheres and pieces of Euclidean hyperplanes. Slightly abusing the notation and denoting points in the spacetime
by their isotropic coordinates, by continuity, and by connectedness of Pn, (Σn−1(t))

t∈T
is thus either a family of pieces of spheres,

Σn−1(t) ⊆ {y ∈ Rn ∣ ∣y − c(t)∣ = S(t)}, (3.27)

with centers c(t) ∈ Rn and radii S(t) > 0 for all t ∈ T, or a family of pieces of hyperplanes,

Σn−1(t) ⊆ {y ∈ Rn ∣ y ⋅ u(t) = a(t)} (3.28)

for some δ-unit normal vectors u(t) ∈ Rn and altitudes a(t) ∈ R for all t ∈ T, where ∣ ⋅ ∣ and ⋅ denote the Euclidean norm and inner product,
respectively. The (outward, where appropriate) unit normal η to Pn can be written as η = αν + β∂t , with α > 0, recalling that ν denotes the
(outward, where appropriate) unit normal to Σn−1(t) in Mn(t). By time symmetry of Mn(t), the second fundamental form h of Pn in the
spacetime restricted to Σn−1(t) can be expressed in terms of the second fundamental form h of Σn−1(t) in Mn(t) via h∣TΣn−1

(t)×TΣn−1
(t) = αh.

By umbilicity, h = λp, with p denoting the induced metric on Pn, and this implies that

h = λ
α
σ, (3.29)

where σ is the induced metric on Σn−1(t). We will treat the planar and the spherical cases separately. We will denote t-derivatives by ⋅ and
s-derivatives by ′.

A. Planar case
Let Σn−1(t) be as in (3.28) for all t ∈ T. We will show that a(t) = 0 and u̇(t) = 0 for all t ∈ T and, moreover, that λ = 0 along Pn. This then

implies that Pn is contained in a centered vertical hyperplane with unit normal η = ν = ψ−1(s)ui∂yi and, moreover, that all centered vertical
hyperplanes are totally geodesic as they can be written in the form (3.28) with u̇(t) = 0 and a(t) = 0 for all t ∈ T.

For each t ∈ T, extend u(t) to a δ-orthonormal basis {e1(t) = u(t), e2(t), . . . , en(t)} of Rn so that eI(t) is smooth in t, and constant
for each t, for all I = 2, . . . , n. Then, clearly, XI(t, y) := ek

I (t)∂yk is tangent to Pn for all I = 2, . . . , n and {XI(t, ⋅)}n
I=2 is an orthogonal frame

for Σn−1(t) with respect to g̃ by conformal flatness. To find the missing (spacetime-) orthogonal tangent vector to Pn, consider a curve
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μ(t) = (t, y(t)) in Pn with tangent vector μ̇(t) = ∂t + ẏi(t)∂yi . Let the capital Latin indices run from 2, . . . , n. Now decompose
ẏ(t) = ρ(t)u(t) + ξI(t)eI(t) ∈ Rn. By (3.28), we find that ρ(t) = ẏ(t) ⋅ u(t) = ȧ(t) − y(t) ⋅ u̇(t). Hence, a future pointing tangent vector to
Pn orthogonal in the spacetime to all XI is given by

X1(t, y) := ∂t + (ȧ(t) − y ⋅ u̇(t))ui(t)∂yi (3.30)

so that we have constructed a smooth orthogonal tangent frame {Xi}n
i=1 for Pn. Hence, we can compute the (spacetime) unit normal to

Pn to be

η(t, y) =
ψ(s)
Ñ(s)(ȧ(t) − y ⋅ u̇(t))∂t + Ñ(s)

ψ(s) ui(t)∂yi

√
Ñ2(s) − ψ2(s)(ȧ(t) − y ⋅ u̇(t))2

. (3.31)

In other words, using that ν(t, y) = ψ−1(s) ui(t)∂yi , we have

α(t, y) = Ñ(s)√
Ñ2(s) − ψ2(s)(ȧ(t) − y ⋅ u̇(t))2

, (3.32)

β(t, y) = ψ(s)(ȧ(t) − y ⋅ u̇(t))
Ñ(s)

√
Ñ2(s) − ψ2(s)(ȧ(t) − y ⋅ u̇(t))2

. (3.33)

We are now in a position to compute the second fundamental forms explicitly and take advantage of the umbilicity of Pn. Using u(t) ⋅ ėJ(t)
= −u̇(t) ⋅ eJ(t) for all t ∈ T, the condition h(X1, XJ) = 0 gives

− u̇(t) ⋅ eJ(t) +
1
s
{ψ
′(s)
ψ(s) −

Ñ′(s)
Ñ(s)

}(ȧ(t) − y ⋅ u̇(t))y ⋅ eJ(t) = 0 (3.34)

for J = 2, . . . , n. As {u(t), eJ(t)}n
J=2 is a δ-orthonormal frame, this is equivalent to

1
s
{ψ
′(s)
ψ(s) −

Ñ′(s)
Ñ(s)

}(ȧ(t) − y ⋅ u̇(t))(y − a(t) u(t)) = u̇(t). (3.35)

As Σn−1(t) has the dimension n − 1, (3.35) tells us that u̇(t) = 0 for all t ∈ T by linear dependence considerations (otherwise, if the term in
braces {. . .} vanishes). Hence, (3.35) simplifies to

{ψ
′(s)
ψ(s) −

Ñ′(s)
Ñ(s)

} ȧ(t) (y − a(t) u) = 0 (3.36)

so that, for a given t ∈ T, again using that Σn−1(t) has dimension n − 1 and linear dependence considerations, we find ȧ(t) = 0 if the term in
braces {. . .} does not vanish along Pn, i.e., when assuming (3.26).

Let us now compute the umbilicity factor λ, exploiting that u and a are constant. Note that eI is also constant, (3.32) and (3.33) reduce to
α = 1 and β = 0, and using (3.31) and (3.30), we get η = ν and X1 = ∂t . As eI is independent of y, we find

h(XI , XJ) =
ψ′(s)

s
a δIJ (3.37)

so that by (3.29), the photon surface umbilicity factor λ satisfies

λ(t, y) = λ(y) = ψ′(s)
sψ2(s) a (3.38)
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and is particularly independent of t. From h(X1, X1) = λp(X1, X1), we find

λ(y) = Ñ′(s)
sÑ(s)ψ(s)

a. (3.39)

Thus, (3.38) and (3.39) combine to

λ(y) = ψ′(s)
sψ2(s) a = Ñ′(s)

sÑ(s)ψ(s)
a, (3.40)

which implies that a = 0 and, indeed, λ(y) = λ = 0 is also independent of y when assuming that (3.26) holds along Pn. This shows that centered
vertical hyperplanes are totally geodesic and that any photon surface Pn as in (3.28) along which (3.26) holds is (part of) a centered vertical
hyperplane.

B. Spherical case
Let Σn−1(t) be as in (3.27) for all t ∈ T. We will show that c(t) = 0 for all t ∈ T. This then implies that Pn is contained in an isotropic

photon surface as desired, namely, in a photon sphere with isotropic radius s = S∗ satisfying (3.57) or with isotropic radius profile s = S(t) as
in (3.60). We will use the abbreviation

u(t, y) := y − c(t)
S(t) (3.41)

to reduce the notational complexity.
The outward unit normal ν to Σn−1(t) in Mn(t) is given by

ν = ψ−1(s) ui(t, y) ∂yi . (3.42)

Now, choose a smooth δ-orthonormal system of vectors eI(t, y) locally along Pn such that eI(t, y) ⋅ u(t, y) = 0 for all (t, y) ∈ Pn and set
XI(t, y) := ek

I (t, y)∂yk for all (t, y) ∈ Pn and all I = 2, . . . , n so that {XI(t, ⋅)}n
I=2 is an orthogonal frame for Σn−1(t) with respect to g̃ by confor-

mal flatness. To find the missing (spacetime-) orthogonal tangent vector to Pn, consider a curve μ(t) = (t, y(t)) in Pn with the tangent vector
μ̇(t) = ∂t + ẏi(t)∂yi . Let capital Latin indices again run from 2, . . . , n. Now, decompose

ẏ(t) = ρ(t)u(t, y(t)) + ξI(t)eI(t, y(t)) ∈ Rn. (3.43)

By (3.27) and the fact that d
dt ∣u(t, y(t))∣2δ = 0 for all t ∈ T, we find

ρ(t) = ẏ(t) ⋅ u(t, y(t)) = ċ(t) ⋅ u(t, y(t)) + Ṡ(t). (3.44)

Hence, a future pointing tangent vector to Pn orthogonal in the spacetime to all XI is given by

X1(t, y) := ∂t + (ċ(t) ⋅ u(t, y) + Ṡ(t))ui(t, y) ∂yi (3.45)

so that we have constructed a smooth orthogonal tangent frame {Xi}n
i=1 for Pn. Hence, we can compute the outward (spacetime) unit normal

to Pn to be

η(t, y) =
ψ(s)
Ñ(s)(ċ(t) ⋅ u(t, y) + Ṡ(t))∂t + Ñ(s)

ψ(s) ui(t, y)∂yi

√
Ñ2(s) − ψ2(s)(ċ(t) ⋅ u(t, y) + Ṡ(t))2

. (3.46)

In other words, using that ν(t, y) = ψ−1(s)ui(t, y)∂yi , we have
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α(t, y) = Ñ(s)√
Ñ2(s) − ψ2(s)(ċ(t) ⋅ u(t, y) + Ṡ(t))2

, (3.47)

β(t, y) =
ψ(s)(ċ(t) ⋅ u(t, y) + Ṡ(t))

Ñ(s)
√

Ñ2(s) − ψ2(s)(ċ(t) ⋅ u(t, y) + Ṡ(t))2
. (3.48)

Extending the fields eJ trivially in the radial direction, let us first collect the following explicit formulas arising from differentiating eJ in
direction u:

ei
I(t, y)(eJ ,yi(t, y)) ⋅ u(t, y) = − ei

I(t, y) eJ(t, y) ⋅ y,yi

S(t) = − δIJ

S(t) , (3.49)

ui(t, y)(eJ ,yi(t, y)) ⋅ u(t, y) = −ui(t, y) eJ(t, y) ⋅ y,yi

S(t) = 0. (3.50)

Now, let us compute the second fundamental forms explicitly. Using (3.50), we find that the umbilicity condition h(X1, XJ) = 0 gives

0 = u(t, y) ⋅ ėJ(t, y) + (ċ(t) ⋅ u(t, y) + Ṡ(t))ui(t, y)uk(t, y)

× [ei
J ,yk(t, y) + ψ

′(s)
sψ(s)(yk ei

J(t, y) + y ⋅ eJ(t, y) δi
k − yi(eJ)k(t, y))]

− (ċ(t) ⋅ u(t, y) + Ṡ(t)) Ñ′(s)
sÑ(s)

y ⋅ eJ(t, y)

= ċ(t)
S(t) ⋅ eJ(t, y) + (ċ(t) ⋅ u(t, y) + Ṡ(t))1

s
{ψ
′(s)
ψ(s) −

Ñ′(s)
Ñ(s)

} y ⋅ eJ(t, y)

for all J = 2, . . . , n. As {u(t, y), eJ(t, y)}n
J=2 is a δ-orthonormal frame, this turns out to be equivalent to

− ċ(t)
S(t) = (ċ(t) ⋅ u(t, y) + Ṡ(t))1

s
{ψ
′(s)
ψ(s) −

Ñ′(s)
Ñ(s)

}y

− ((ċ(t) ⋅ u(t, y) + Ṡ(t))1
s
{ψ
′(s)
ψ(s) −

Ñ′(s)
Ñ(s)

}y ⋅ u(t, y) + ċ(t) ⋅ u(t, y)
S(t) )u(t, y).

(3.51)

As Σn−1(t) has the dimension n − 1 for all t ∈ T, (3.51) tells us by linear dependence considerations that ċ(t) = 0 for all t ∈ T. Consequently,
(3.51) simplifies to

0 = Ṡ(t){ψ
′(s)
ψ(s) −

Ñ′(s)
Ñ(s)

}(y − (y ⋅ u(t, y))u(t, y)). (3.52)

Assuming (3.26), the term in braces {. . .} does not vanish and (3.52) implies that, for a fixed t ∈ T, Ṡ(t) = 0 or y = (y ⋅ u(t, y))u(t, y) for all
y ∈ Σn−1(t). However, y = (y ⋅ u(t, y))u(t, y) for all y ∈ Σn−1(t) is equivalent to c = 0 and S(t) = s for all y ∈ Σn−1(t), again by linear depen-
dence considerations and as Σn−1(t) has dimension n − 1. In other words, assuming (3.26), we now know that c = 0 unless S is constant along
Pn, the case in which a constant center c ≠ 0 is potentially possible.

Let us now continue with our computation of the conformal factor λ using the simplification ċ(t) = 0 for all t ∈ T. We first treat the case
Ṡ(t) = 0 for all t ∈ T: We know that S(t) = S = s. Moreover, (3.47) and (3.48) give α = 1 and β = 0, and by (3.46) and (3.45), η = ν and X1 = ∂t .
Moreover, u(t, y) = u(y) and eJ(t, y) and, hence, XJ are independent of t. By (3.49) and y ⋅ u(y) = c ⋅ u(y) + S via (3.41), we find

h(XI , XJ) =
ψ(S)

S
(1 + ψ

′(S)
ψ(S) (c ⋅ u(y) + S))δIJ , (3.53)
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so that, by (3.29), the photon surface umbilicity factor λ satisfies

λ(t, y) = 1
Sψ(S)(1 + ψ

′(S)
ψ(S) (c ⋅ u(y) + S)), (3.54)

and thus, particularly, λ(t, y) = λ(y) is independent of t. Similarly, from h(X1, X1) = λp(X1, X1), we find

λ(y) = Ñ′(S)
SÑ(S)ψ(S)

(c ⋅ u(y) + S), (3.55)

and hence,

1 + {ψ
′(S)
ψ(S) −

Ñ′(S)
Ñ(S)

}(c ⋅ u(y) + S) = 0 (3.56)

for all y ∈ Σn−1(t) and all t ∈ T. As Σn−1(t) has the dimension n − 1 and S is constant, we conclude that c ⋅ u(y) is constant and, hence, by
(3.41) that c ⋅ y must be constant along Pn. Using again that Σn−1(t) has the dimension n − 1, this leads to c = 0 as desired. Hence, the isotropic
radii s = S∗ for which this photon sphere can occur are the solutions of the implicit photon sphere equation,

1 + {ψ
′(S∗)
ψ(S∗)

− Ñ′(S∗)
Ñ(S∗)

} S∗ = 0, (3.57)

provided that such solutions exist.
Let us now treat the other case c = 0: We find X1 = ∂t + Ṡ(t)ui(t, y)∂yi by (3.45), and indeed, eJ(t, y) = eJ(y) is independent of t as

u(t, y) = y
S(t) . Moreover, s = S(t) holds for all (t, y) ∈ Pn. Thus, using (3.49), we can compute

h(XI , XJ) =
ψ(S(t))

S(t) (1 + ψ
′(S(t))
ψ(S(t)) S(t))δIJ , (3.58)

so that, by (3.29), the photon surface umbilicity factor λ satisfies

λ(t, y) =
Ñ(S(t))(1 + ψ′(S(t))

ψ(S(t)) S(t))

S(t)ψ(S(t))
√

Ñ2(S(t)) − ψ2(S(t)) Ṡ2(t)
(3.59)

from which we see that λ(t, y) = λ(t) only depends on t. From the remaining umbilicity condition h(X1, X1) = λp(X1, X1), we obtain

λ(t) = Ñ(S(t))ψ(S(t))
√

Ñ2(S(t)) − ψ2(S(t)) Ṡ2(t)
3

× ( Ñ′(S(t))Ñ(S(t))
ψ2(S(t)) + S̈(t) + {ψ

′(S(t))
ψ(S(t)) −

2Ñ′(S(t))
Ñ(S(t))

}Ṡ2(t))

and can conclude that the implicit equation,

(1 + ψ
′(S(t))
ψ(S(t)) S(t))(Ñ2(S(t)) − ψ2(S(t)) Ṡ2(t))

= S(t)Ñ′(S(t))Ñ(S(t))

+ S(t)ψ2(S(t))(S̈(t) + {ψ
′(S(t))
ψ(S(t)) −

2Ñ′(S(t))
Ñ(S(t))

}Ṡ2(t)),

(3.60)

holds for the isotropic radius profile s = S(t). ◻
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Now that we know that all photon surfaces except some vertical partial hyperplanes in “most” spacetimes of class S are spherically
symmetric, let us gain a complementary perspective on these by relating spherically symmetric photon surfaces to null geodesics. The following
notion of maximality will be useful for this endeavor.

Definition 3.12 (Maximal photon surface). Let (R ×Mn, g) ∈ S and let Pn ↪ (R ×Mn, g) be a connected spherically symmetric photon
surface. We say that Pn is maximal if Pn does not lie inside a strictly larger connected spherically symmetric photon surface.

If ζ : J → R ×Mn is a null geodesic in (R ×Mn, g) ∈ S defined on some interval J ⊆ R, then the energy E := −gζ(∂t ∣ζ , ζ̇) is constant along

ζ. Exploiting the spherical symmetry of the spacetime, one can find a set {Xi}
(n−1)(n−2)

2
i=1 of Killing vector fields tangential to the orbits of the

spherical symmetry, which span (over R) the Killing subalgebra of the spacetime corresponding to spherical symmetry. Now, locally select a
linearly independent system {XiI}n−1

I=1 among these and observe that this gives us

[XiI , XiJ ] =: αK
IJXiK (3.61)

for some smooth coefficients αK
IJ satisfying αK

IJ = −αK
JI , where I, J, K = 1, . . . , n − 1, and where we have used that the spheres of symmetry are

n − 1-dimensional. Next, we set ℓI := g(XiI , ζ̇), and note that ℓI is constant along ζ. We then define the (total) angular momentum ℓ of ζ as
ℓ := (GIJℓIℓJ)

1
2 ≥ 0, where (GIJ) is the inverse of (GIJ) := (gζ(XiI ∣ζ , XiJ ∣ζ)). Then, ℓ is constant along ζ because, locally, we have

d
ds
ℓ2 = −GIAGJB( d

ds
GAB)ℓIℓJ

= −GIAGJB(gζ( g∇ζ̇XiA , XiB ∣ζ) + gζ( g∇ζ̇XiB , XiA ∣ζ))ℓIℓJ

= GIAGJB(gζ( g∇XiB
XiA ∣ζ , ζ̇) + gζ(

g∇XiA
XiB ∣ζ , ζ̇))ℓIℓJ

= GIAGJBαK
BA gζ(XiK ∣ζ , ζ̇)ℓIℓJ

= GIAGJBαK
BAℓIℓJℓK ,

where s denotes the parameter along ζ and where we have used the Killing property of XiA and XiB to get from the second to the third line,
(3.61) to get from the third to the fourth, and the definition of ℓK to get from the fourth to the last one. As α is antisymmetric in its lower
indices, ℓ must be constant along ζ. Moreover, ℓ is independent of the local choice of the linearly independent system {XiI}n−1

I=1 , which can be
seen as follows: Suppose that {YI}n−1

I=1 is another local linearly independent system of spherical Killing vector fields sharing an open domain
with {XiI}n−1

I=1 , set ĜIJ := (gζ(YI ∣ζ , YJ ∣ζ)), let (ĜIJ) be the inverse of (ĜIJ), and set ℓ̂I := g(YI , ζ̇) for I, J = 1, . . . , n − 1. Observe that, by linear
independence, YI =: TK

I XiK for a smooth family of invertible matrices (TK
I ) with inverses ((T−1)I

K). Then,

ĜIJ = GKLTK
I TL

J ,

ℓ̂I = TK
I ℓK , and hence,

ĜIJ ℓ̂I ℓ̂J = GAB(T−1)I
A(T−1)J

BTK
I ℓK TL

J ℓL = GABℓAℓB = ℓ2.

We will use the following definition of null geodesics generating a hypersurface.

Proposition 3.13. Let (R ×Mn, g) ∈ S and let ζ : J → R ×Mn and ζ(s) = (t(s), r(s), ξ(s)) be a (not necessarily maximal) null geodesic
defined on some open interval J ⊆ R with angular momentum ℓ, where ξ(s) ∈ Sn−1. Then, ζ generates the hypersurface Hn

ζ defined as

Hn
ζ := {(t, p) ∈ R ×Mn ∣ ∃s∗ ∈ J, ξ∗ ∈ Sn−1 : t = t(s∗), p = (r(s∗), ξ∗)},

which is a smooth, connected, and spherically symmetric hypersurface in R ×Mn, which is timelike if ℓ > 0 and null if ℓ = 0.

Proof. The claim that Hn
ζ is a smooth spherically symmetric hypersurface is verified by recalling that r > 0 for all (t, p) ∈ R ×Mn so that

ζ∗ ∈ Sn−1 is unique and by realizing that t = t(s) is injective along the null geodesic ζ, which shows that s∗ is unique. It is connected because
the geodesic ζ is defined on an interval.

To show the claims about its causal character, set e0 = ζ̇ and extend it to all of Hn
ζ by making it invariant under the spherical symmetries.

Thus, e0 is a null tangent vector field to Hn
ζ , orthogonal to each time slice {t(s) = const.} of Hn

ζ . Now, if ℓ = 0, it is easy to see that ξ̇ = 0 along
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ζ and, hence, e0�gSn−1 or, in other words, g(e0, X) = 0 for any vector field X tangent to Hn
ζ whence Hn

ζ is null. Otherwise, if ℓ > 0, we will have
ξ̇ ≠ 0 everywhere along ζ, and hence, e0 will not be g-orthogonal to Sn−1 and, hence, g will induce a Lorentzian metric on Hn

ζ . ◻

With these concepts at hand, we can write down a characterization of spherically symmetric photon surfaces via generating null geodesics.

Proposition 3.14. Let (R ×Mn, g) ∈ S and let Hn ↪ (R ×Mn, g) be a connected spherically symmetric timelike hypersurface. Then, Hn is
generated by a null geodesic ζ : J → R ×Mn if and only if Hn is a photon surface. Moreover, Hn is a maximal photon surface if and only if any
null geodesic ζ : J → R ×Mn generating Hn is maximal.

The umbilicity factor λ of a photon surface Pn is related to the energy E and angular momentum ℓ of its generating null geodesics by λ = E
ℓ

.

Proof. First, assume that Hn is generated by a null geodesic ζ : J → R ×Mn so that Hn = Hn
ζ and observe that Hn must then actually be

ruled by the null geodesics arising by rotating ζ around Sn−1. As Hn is timelike by assumption, we know from Definition and Proposition 3.13
that the angular momentum ℓ of ζ satisfies ℓ > 0. Proceeding as above, let {eI}n−1

I=1 be a local orthonormal system tangent to Sn−1 along ζ, and
set e0 := ζ̇ and extend it to all of Hn

ζ by making it invariant under the spherical symmetries so that {e0, eI}n−1
I=1 is a local frame along ζ. Writing

ζ(s) = (t(s), r(s), ξ(s)) for s ∈ J as before, we can write

ζ̇(s) = ṫ(s)∂t + ṙ(s)∂r + ξ̇(s) (3.62)

for s ∈ J so that ζ being a null curve is equivalent to

− f (r)ṫ2 + ṙ2

f (r) + r2∣ξ̇∣2Ω = 0 (3.63)

along ζ. From this and the definition of energy E and angular momentum ℓ, we obtain

ṫ = E
f (r) , (3.64)

ṙ2 = E2 − ℓ2 f (r)
r2 , (3.65)

∣ξ̇∣2Ω =
ℓ2

r4 (3.66)

along ζ. To compute the second fundamental form h of Hn ↪ (R ×Mn, g), let us first compute the outward (growing r) spacelike unit normal
η to Hn. By spherical symmetry, η must be a linear combination of ∂t and ∂r with no angular contribution. It must also be orthogonal to
e0 = ζ̇. From this, we find

η = 1
ℓ
( rṙ

f (r)∂t + Er∂r), (3.67)

where we have used (3.64) and (3.65). For I = 1, . . . , n − 1, we find by a direct computation (exploiting spherical symmetry) that

g∇eIη =
E
ℓ

eI , (3.68)

and hence,

h(eI , eβ) = g(g∇eIη, eβ) =
E
ℓ
g(eI , eβ) (3.69)

for I = 1, . . . , n − 1 and β = 0, . . . , n − 1. On the other hand, smoothly extending e0 to a neighborhood of Hn, one finds that

h(e0, e0) = g(g∇e0η, e0) = −g(g∇e0 e0,η) = 0 (3.70)

holds as e0 = ζ̇ and ζ is a geodesic. Hence, by symmetry of h and g,
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h(eα, eβ) =
E
ℓ
g(eα, eβ) (3.71)

for α,β = 0, . . . , n − 1 so that Hn is totally umbilic with umbilicity factor λ = E
ℓ

.
Conversely, assume that Hn is a spherically symmetric photon surface. Let q ∈ Hn and let X ∈ TqHn be any null tangent vector. Let

ζ : Jmax ∋ 0→ R ×Mn be the maximal null geodesic with ζ(0) = q, ζ̇(0) = X. As Hn is totally umbilic, ζ must remain tangent to Hn on some
maximal open interval 0 ∈ J ⊆ Jmax by Proposition 2.2. By spherical symmetry, Hn is, in fact, generated by ζ∣J .

It remains to discuss the claim about maximality, which is a straightforward consequence of the above argument about the choice of the
interval J ⊆ Jmax. ◻

Remark 3.15. In view of effective one-body dynamics (see Ref. 37), it may be of interest to point out, as a computation shows, that a
spherically symmetric photon surface Pn in a static spherically symmetric spacetime with metric of the form

g = −Gdt2 + 1
f

dr2 + r2 Ω,

where G = G(r) and f = f (r) are smooth, positive functions on an open interval I ⊆ (0,∞), will have a constant umbilicity factor λ if and only if
G = κf along Pn for some κ > 0, with λ = E f (r)

ℓ G(r) characterizing the umbilicity factor along any generating null geodesic with energy E and angular
momentum ℓ.

Remark 3.16. Proposition 3.14 allows us to conclude the existence of (maximal) spherically symmetric photon surfaces in spacetimes of class
S from the existence of (maximal) null geodesics.

A different view on spherically symmetric photon surfaces in spacetimes of class S can be gained by lifting them to the phase space (i.e.,
to the cotangent bundle). We will end this section by proving a partitioning property of the null section of phase space by maximal photon
surfaces and by the so-called maximal principal null hypersurfaces.

Definition 3.17 [(Maximal) Principal null hypersurfaces]. Let (R ×Mn, g) ∈ S, ζ : J → R ×Mn be a null geodesic, and ℓ be its angular
momentum. Then, ζ is called a principal null geodesic if ℓ = 0. A hypersurface Hn

ζ generated by a (maximal) principal null geodesic ζ will be
called a (maximal) principal null hypersurface.

Recall that from the Definition and Proposition 3.13, we know that principal null hypersurfaces are spherically symmetric and indeed
null. Arguing as in the Proof of Proposition 3.14, one sees that a maximal principal null hypersurface will be maximal in the sense that it is
not contained in any strictly larger principal null hypersurface. In particular, if one generating null geodesic is maximal, then all of them are.
Finally, principal null hypersurfaces are connected by definition.

With these considerations at hand, let us prove the following partitioning property of the null section of the phase space of any spacetime
of class S. To express this, we will canonically lift the null bundles over the involved spherically symmetric photon surfaces and principal null
hypersurfaces to the null section of the phase space. Recall that maximal spherically symmetric photon surfaces are connected by definition.

Proposition 3.18. Let (R ×Mn, g) ∈ S. Then, the null section of the phase space of (R ×Mn, g), N := {ω ∈ T∗(R ×Mn) ∣ g(ω#,ω#) = 0},
is partitioned by the canonical lifts N(Pn) ⊂ N of the null bundles over all maximal spherically symmetric photon surfaces Pn and the canonical
lifts N(Hn) ⊂ N of the null bundles over all maximal principal null hypersurfaces Hn.

Proof. Consider ω ∈ N and let ζ : J ∋ 0→ R ×Mn be the unique maximal null geodesic satisfying ζ̇(0) = ω#. Let Hn
ζ be the hypersurface

of R ×Mn generated by ζ, and note that ω ∈ N(Hn
ζ ) holds by construction. By Definition and Propositions 3.13 and 3.14 and Definition 3.17,

we know that Hn
ζ is a maximal photon surface if the angular momentum ℓ of ζ is positive and a maximal principal null hypersurface if

ℓ = 0 vanishes. As ℓ ≥ 0, this shows that ω is either contained in at least one canonical lift of a maximal photon surface or contained in at
least one canonical lift of a maximal principal null hypersurface. Furthermore, ω cannot lie in the canonical lifts of two different maximal
spherically symmetric photon surfaces because these would both be generated by ζ and hence coincide by Proposition 3.14. Finally, ω cannot
lie in the canonical lifts of two different maximal principal null hypersurfaces, which can be seen by repeating the arguments in the Proof of
Proposition 3.14. ◻

IV. A RIGIDITY RESULT FOR PHOTON SURFACES WITH EQUIPOTENTIAL TIME SLICES
As discussed in Sec. III (see also Fig. 1), the Schwarzschild spacetime of mass m > 0 in n + 1 dimensions possesses not only the well-known

photon sphere at r = (nm) 1
n−2 but also many other photon surfaces. Except for the planar ones, all these Schwarzschild photon surfaces are

spherically symmetric and thus particularly equipotential, as defined in Sec. II. In this section, we will prove the following theorem that can
be considered complementary to Corollary 3.9 in the context of static, vacuum, and asymptotically flat spacetimes.
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Theorem 4.1. Let (Ln+1, g) be a static, vacuum, and asymptotically isotropic spacetime of mass m. Assume that (Ln+1, g) is geodesically
complete up to its inner boundary ∂L, which is assumed to be a (possibly disconnected) photon surface, ∂L =: Pn. Assume, in addition, that
Pn is equipotential, outward directed, and has compact time slices Σn−1(t) = Pn ∩Mn(t). Then, (Ln+1, g) is isometric to a suitable piece of the
Schwarzschild spacetime of mass m, and in fact, m > 0. In particular, Pn is connected and is (necessarily) a spherically symmetric photon surface
in Schwarzschild spacetime.

The proof relies on the following theorem by the first author.

Theorem 4.2 (Ref. 23). Assume n ≥ 3 and let Mn be a smooth connected n-dimensional manifold with non-empty, possibly disconnected,
smooth compact inner boundary ∂M = .∪I

i=1Σn−1
i . Let g be a smooth Riemannian metric on Mn. Assume that (Mn, g) has a non-negative scalar

curvature,

R ≥ 0,

and that it is geodesically complete up to its inner boundary ∂M. Assume, in addition, that (Mn, g) is asymptotically isotropic with one end of
mass m ∈ R. Assume that the inner boundary ∂M is umbilic in (Mn, g) and that each component Σn−1

i has constant mean curvature Hi with
respect to the outward pointing unit normal νi. Furthermore, assume that there exists a function u : Mn → R with u > 0 away from ∂M, which
is smooth and harmonic on (Mn, g),

△gu = 0.

We ask that u is asymptotically isotropic of the same mass m such that u∣Σn−1
i
≡: ui and the normal derivative of u across Σn−1

i , νi(u)∣Σn−1
i
≡: ν(u)i,

are constant on each Σn−1
i . Finally, we assume that for each i = 1, . . . , I, we are either in the semi-static horizon case,

Hi = 0, ui = 0, ν(u)i ≠ 0, (4.1)

or in the true CMC case Hi > 0, ui > 0, and there exists ci > n−2
n−1 such that

Rσi = ciH2
i , (4.2)

2ν(u)i = (ci −
n − 2
n − 1

)Hiui, (4.3)

where Rσi denotes the scalar curvature of Σn−1
i with respect to its induced metric σi.

Then, m > 0 and (Mn, g) is isometric to a suitable piece (M̃n
m/BS(0), g̃m) of the (isotropic) Schwarzschild manifold of mass m with S ≥ sm.

Moreover, u coincides with the restriction of ũm (up to the isometry), and the isometry is smooth.

Remark 4.3 (Generalization). Our Proof of Theorem 4.1 makes use of the static vacuum Einstein equations (2.4), (2.5), and (2.6). In
fact, as we will see in the proof in the following, it is sufficient to ask that the vacuum Einstein equations hold in a neighborhood of Pn; outside
this neighborhood, it suffices that △gN = 0 and that the dominant energy condition R ≥ 0 holds.

Remark 4.4 (Multiple ends). As Theorem 4.2 generalizes to multiple ends (see Ref. 23), Theorem 4.1 also readily applies in the case of
multiple ends satisfying the decay conditions (2.14) and (2.17) with potentially different masses mi in each end Ei. Note that, in each end Ei, it is
necessary that both gij and N have the same mass mi in their expansions.

Remark 4.5 [Discussion of η(N) > 0]. The assumption that Pn is outward directed, η(N) > 0 (hence dN ≠ 0) along Pn, can be removed if
instead, one assumes that m > 0 a priori and that Pn is connected. Using the Laplace equation △gN = 0 and the divergence theorem as well as
the asymptotics (2.14) and (2.17), one computes

1
ωn−1

∫
Σn−1

ν(N) dA = m > 0,

where Σn−1 := Pn ∩ {t = const} and ωn−1 is the volume of (Sn−1,Ω) (see Definition 4.2.1 of Ref. 7 for the n = 3 case); the argument is identical in
higher dimensions. From this and connectedness of Σn−1, we can deduce that ν(N) > 0 and thus, particularly, η(N) > 0 at least in an open subset
of Σn−1. However, we will see in the Proof of Theorem 4.1 that this necessarily implies that ν(N) ≡ const > 0 in this open neighborhood (noting
that all computations performed there are purely local). As Σn−1 is connected, we obtain ν(N) ≡ const > 0, and thus, in particular, η(N) > 0
everywhere on Σn−1 [see Eq. (4.6) in the following].
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Proof. We write Mn(t) for the time slice {t} ×M (cf. Remark 2.4) and consider each connected component Pn
i , i = 1, . . . , I of Pn sepa-

rately. For the component of Pn
i under consideration, let Σn−1

i (t) := Pn
i ∩Mn(t). We will drop the explicit reference to i in the following and

only start reusing it toward the end of the proof, where we bring in global arguments.
Let ν denote the outward unit normal to Σn−1(t) ↪ (Mn(t), g), pointing to the asymptotically isotropic end. Let η denote the outward

unit normal of Pn ↪ (R ×Mn, g). As N =: u(t) on Σn−1(t) and because we assumed η(N) > 0 and hence ν(N) > 0 [see (4.6) below] on Pn,
we have

ν = grad N
∣grad N∣ =

grad N
∣dN∣ =

grad N
ν(N) . (4.4)

Now, let μ(s) = (s, x(s)) be a curve in Pn, i.e., N ○ μ(s) = u(s). This implies by chain rule that dN(μ̇) = u̇. If μ̇(t) � Σn−1(t), the tangent vector
of μ can be computed explicitly as

Z := μ̇ = ∂t + ẋ = ∂t +
u̇

ν(N)ν ∈ Γ(TPn). (4.5)

Expressed in words, Z is the vector field going “straight up” along Pn.
The explicit formula (4.5) for Z allows us to explicitly compute the spacetime unit normal η to Pn too: It has to be perpendicular to Z and

its projection onto Mn has to be proportional to ν. From this, we find

η =
ν + u̇

u2ν(N)2 ∂t
√

1 − u̇2

u2ν(N)2

. (4.6)

From umbilicity of Pn ↪ (R ×Mn, g), it follows that the corresponding second fundamental form h of Pn ↪ (R ×Mn, g) satisfies

h = 1
n
H p, (4.7)

where p is the induced metric on Pn andH := trph. From Proposition 3.3 in Ref. 9, we know thatH ≡ const. Equations (4.7) implies particularly
that, for any tangent vector fields X, Y ∈ Γ(TΣn−1(t)), we have

h(X, Y) = 1
n
H σ(X, Y), (4.8)

where σ denotes the induced metric on Σn−1(t). Now, extend X, Y arbitrarily smoothly along Pn such that they remain tangent to Σn−1
t . We

compute

h(X, Y) = −g(g∇XY ,η)

= − 1√
1 − u̇2

u2ν(N)2

g(g∇XY , ν + u̇
u2ν(N)2 ∂t)

= − 1√
1 − u̇2

u2ν(N)2

{g(g∇XY , ν) + u̇
uν(N)2 g(g∇XY ,

1
u
∂t)}

= − 1√
1 − u̇2

u2ν(N)2

{g(g∇XY , ν) − u̇
uν(N)2 K(X, Y)}

K=0= − 1√
1 − u̇2

u2ν(N)2

g(g∇XY , ν)

g static= − 1√
1 − u̇2

u2ν(N)2

g(g∇XY , ν)

= 1√
1 − u̇2

u2ν(N)2

h(X, Y), (4.9)

where K = 0 denotes the second fundamental form of Mn(t) ↪ (R ×Mn, g) and h denotes the second fundamental form of Σn−1(t) ↪ ({t}
×Mn, g). In particular, Σn−1(t) ↪ ({t} ×Mn, g) is umbilic and its mean curvature H inside Mn can be computed as
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H = n − 1
n

H

√
1 − u̇2

u2ν(N)2 (4.10)

when combining (4.8) with (4.9). Of course, then h = 1
n−1 Hσ. We will now proceed to show that H and ν(N) are constant for each fixed t.

Consider first the contracted Codazzi equation for Σn−1(t) ↪ ({t} ×Mn, g). It gives

Ric(X, ν) = n − 2
n − 1

X(H). (4.11)

On the other hand, using the static equation gives

X(ν(N)) N≡u(t)= X(ν(N)) − g∇Xν(N)
= g∇2N(X, ν)
= NRic(X, ν)
(4.11)= n − 2

n − 1
u X(H). (4.12)

Furthermore, (4.10) allows us to compute

X(H) = (n − 1)H
n
√

1 − u̇2

u2ν(N)2

u̇2

u2 ν(N)3 X(ν(N))

(4.12)= (n − 2) u̇2 H

nu ν(N)3
√

1 − u̇2

u2ν(N)2

X(H). (4.13)

Assume that X(H) ≠ 0 in some open subset U ⊂ Σn−1(t). Then, in U, we have

nu ν(N)3
√

1 − u̇2

u2ν(N)2 = (n − 2) u̇2
H

⇔ ν(N)6(1 − u̇2

u2ν(N)2 ) =
(n − 2)2 u̇4 H2

n2 u2

⇔ ν(N)6 − u̇2

u2 ν(N)
4 − (n − 2)2 u̇4 h2

n2 u2 = 0.

This is a polynomial equation for ν(N) with coefficients that only depend on t. As a consequence, ν(N) has to be constant in U. However,
from (4.12), we know that then, also H has to be constant in U, a contradiction to X(H) ≠ 0 in U. Thus, H and, by (4.12), also ν(N) are
constants along Σn−1(t) and only depend on t. From now on, we will drop the explicit reference to t and also go back to using N instead of
u(t) as the remaining part of the proof applies to each t separately.

Thus, each Σn−1 = Σn−1(t) is an umbilic, CMC, equipotential surface in Mn with ν(N) being constant too. From the usual decomposition
of the Laplacian on functions and the static vacuum Eq. (2.6), we find

0 = △gN = △σN +NRic(ν, ν) +Hν(N) = NRic(ν, ν) +Hν(N)

so that Ric(ν, ν) = −Hν(N)
N must also be constant along Σn−1.

Plugging this into the contracted Gauß equation and using R = 0, we obtain

−2Ric(ν, ν) = Rσ −
n − 2
n − 1

H2

⇔ Rσ =
2Hν(N)

N
+ n − 2

n − 1
H2. (4.14)
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This shows that (Σn−1, σ) also has constant scalar curvature. Now, define the constant c > n−2
n−1 by

c := n − 2
n − 1

+ 2ν(N)
NH

. (4.15)

Together with (4.14), this definition of c ensures that

Rσ = cH2, (4.16)

2ν(N) = (c − n − 2
n − 1

)HN. (4.17)

Let us summarize as follows: Fix t and keep dropping the explicit reference to it. Then, each component of (Σn−1, σ) ↪ (Mn, g) is umbilic,
CMC, equipotential and has constant scalar curvature and constant ν(N), and all these constants together satisfy Eqs. (4.16) and (4.17) with
constant c given by (4.15), which is potentially different for each component of Σn−1. Recall the assumption that (Mn, g) is geodesically
complete up to its inner boundary, so in particular, (Mn/K, g) is geodesically complete up to Σn−1, where K is the compact set such that
Σn−1 = ∂(Mn/K). Moreover, (Mn/K, g) satisfies the static vacuum equations. Altogether, these facts ensure that Theorem 4.2 applies. Thus,
(Mn/K, g) is isometric to a spherically symmetric piece of the spatial Schwarzschild manifold of mass m given by the asymptotics (2.14)
and (2.17), and N corresponds to the Schwarzschild lapse function of the same mass m under this isometry. The area radius r of the inner
boundary Σn−1 in the spatial Schwarzschild manifold is determined by Rσ = (n−1)(n−2)

r2 .
Thus, recalling the dependence on t, the manifold [{t} × (Mn/K(t)), g] outside the photon surface time slice Σn−1(t) is isometric to

a piece of the spatial Schwarzschild manifold of mass m with inner boundary area radius r(t). In particular, Σn−1(t) is a connected sphere
and we find m > 0 (as per Theorem 1.1 in Ref. 23). Recombining the time slices Σn−1(t) to the photon surface Pn, this shows that the part
of the spacetime (R ×Mn, g) lying outside the photon surface Pn is isometric to a piece of the Schwarzschild spacetime of mass m and
m > 0 necessarily. Moreover, Pn is connected and its isometric image in the Schwarzschild spacetime is spherically symmetric with the radius
profile r(t). ◻

We point out in connection with Remarks 4.4 and 4.3 that the assumptions of Theorem 4.2 keep being met if we start with several ends
and the static vacuum equations only holding near Σn−1, with△gN = 0 everywhere in Mn as all the above computations and arguments were
purely local near Pn.
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