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A Conformal Infinity Approach to
Asymptotically AdS2 × Sn−1 Spacetimes
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Abstract. It is well known that the spacetime AdS2×S2 arises as the ‘near-
horizon’ geometry of the extremal Reissner–Nordstrom solution, and for
that reason, it has been studied in connection with the AdS/CFT cor-
respondence. Motivated by a conjectural viewpoint of Juan Maldacena,
Galloway and Graf (Adv Theor Math Phys 23(2):403–435, 2019) studied
the rigidity of asymptotically AdS2 × S2 spacetimes satisfying the null
energy condition. In this paper, we take an entirely different and more
general approach to the asymptotics based on the notion of conformal
infinity. This involves a natural modification of the usual notion of time-
like conformal infinity for asymptotically anti-de Sitter spacetimes. As a
consequence, we are able to obtain a variety of new results, including sim-
ilar results to those in Galloway and Graf (2019) (but now allowing both
higher dimensions and more than two ends) and a version of topological
censorship.
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1. Introduction

It is a well-known fact that the spacetime AdS2×S2 arises as the ‘near-horizon’
geometry of the extremal Reissner–Nordstrom solution (see, e.g., [7,11]). In
fact, AdS2 × S2 and also AdS2 × S3 appear in uniqueness results for near-
horizon supersymmetric solutions of minimal supergravity and in near-horizon
solutions in Einstein–Maxwell–Chern–Simons theory in four and five dimen-
sions; see especially the review article [7]. AdS2 ×S2 has also been discussed in
the context of string theory and the AdS/CFT correspondence, as for example
in [11]. Based on certain examples in [11], and other considerations, Maldacena
[10] recently suggested that spacetimes which satisfy the null energy condition
(or average null energy condition) and which asymptote to AdS2 ×S2 at infin-
ity should be quite ‘rigid.’ Following this suggestion, in [4], the authors studied
the rigidity of asymptotically AdS2 × S2 spacetimes satisfying the null energy
condition.

Among the results obtained, we showed that such spacetimes admit two
transverse foliations by totally geodesic null hypersurfaces, each extending
from one end to the other, the intersections of which give rise to a foliation
of spacetime by totally geodesic round 2-spheres. These are standard features
of AdS2 × S2. However, without imposing some stronger condition, we were
unable to conclude that such a spacetime is actually isometric to AdS2×S2. In
fact, using the Newman–Penrose formalism, Tod [16,17] constructed examples
of asymptotically AdS2 × S2 spacetimes satisfying the null energy condition,
having the structural properties established in [4], which are not isometric
to AdS2 × S2. Some further examples will be given in the present paper.
However, in the presence of certain field equations, the only possibility seems
to be AdS2 × S2.

The approach to the asymptotics taken in [4] was to require that on each
of two ‘external’ spacetime regions, the spacetime metric g asymptotes at a
precise rate, with respect to a well-chosen coordinate system, to the AdS2 ×
S2 metric, on approach to infinity. These asymptotic conditions were also
supplemented by certain causal theoretic conditions on the complement of the
external regions. The asymptotic analysis in [4], while fairly technical, gave
very precise control over the causal and geometric properties of asymptotically
AdS2 × S2 spacetimes, defined in this manner.

In this paper, we take an entirely different and more general approach
to the asymptotics, based on the notion of conformal infinity. In the next
section, we define what it means for a spacetime to have an ‘asymptotically
AdS2×Sn−1 end,’ in terms of it admitting a certain type of timelike conformal
boundary. The approach is based on the simple observation, spelled out in the
next section, that AdS2 × Sn−1 conformally embeds in a natural way into the
Einstein static universe (R×Sn,−dt2+dω2

n). Via this embedding, AdS2×Sn−1

acquires two topological boundary components, namely two t-lines, through,
say, the north and south pole of Sn. Thus, as made precise in Definition 2.1, a
spacetime (Mn+1, g) has an asymptotically AdS2 ×Sn−1 end if it conformally
embeds into a globally hyperbolic spacetime (M

n+1
, g), in which the conformal
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boundary consists of a smooth inextendible timelike curve J . This situation,
of course differs, from the standard definition of the conformal boundary of
an asymptotically anti-de Sitter spacetime, in which the conformal boundary
is a timelike hypersurface. Moreover, in our definition, the conformal factor
will not be smooth at J , but rather will only be continuous (in fact Lipschitz)
there. Such is the case with the embedding of AdS2 × Sn−1 into the Einstein
static universe.

As a consequence of the approach taken here, we are able to obtain a
variety of results, including results similar to some of those in [4] (but in
this higher-dimensional setting), in which the analysis is substantially simpli-
fied and more causal theoretic in nature. By our conformal boundary-based
definition, a spacetime can have arbitrarily many AdS2 × Sn−1 ends. But
when the null energy condition is assumed to hold, it is shown that space-
time (M, g) can have at most two AdS2 × Sn−1 ends. Further, for space-
times (Mn+1, g) which satisfy the null energy condition and which have two
communicating AdS2 × Sn−1 ends, it is then shown that (i) (M, g) has spa-
tial topology that of an n-sphere minus two points, (ii) (M, g) admits two
transverse foliations by totally geodesic null hypersurfaces, and (iii) the inter-
sections of these foliations give rise to a foliation of spacetime by totally
geodesic (n − 2)-spheres (not necessarily round). Hence, under the present
asymptotic assumptions, (ii) and (iii) extend results in [4] to this higher-
dimensional situation. A result on topological censorship for such spacetimes
is also obtained.

While the idea behind Definition 2.1 comes from exact AdS2×S2 and our
main examples are AdS2 × S2 and related spacetimes, this definition can also
be read more generally as merely describing the notion of a one-dimensional
conformal timelike infinity and it is perhaps possible that this new version of
a ‘singular’ timelike conformal boundary can be extended in some manner to
other situations.

The paper is organized as follows: In Sect. 2, we define what we mean
by a smooth spacetime having k asymptotically AdS2 × Sn−1 ends. Since
this definition involves non-smooth metrics, we include an appendix on low-
regularity causality theory (“Appendix A”). We then proceed to use the def-
inition to derive basic properties of null geodesics and give a brief overview
of certain classes of examples (which are discussed in more detail in “Appen-
dix B”).

In Sect. 3, we look at spacetimes satisfying the null energy condition
with exactly two asymptotically AdS2 × Sn−1 ends and derive the existence
of totally geodesic null hypersurfaces and of a foliation by (n − 2)-spheres.
These results are similar to the ones in [4]. Next, in Sect. 4, we show that if
the null energy condition holds (M, g) can have at most two asymptotically
AdS2 × Sn−1 ends.

Finally, we prove a version of topological censorship for spacetimes with
k asymptotically AdS2 × Sn−1 ends in Sect. 5.
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2. Definition and Basic Properties

AdS2 ×Sn−1 can be expressed globally as the manifold M = R×(0, π)×Sn−1,
with metric

g =
1

sin2 x
(−dt2 + dx2) + dω2

n−1

=
1

sin2 x

(−dt2 + dx2 + sin2 x dω2
n−1

)
, (2.1)

where dω2
n−1 is the round unit sphere metric on Sn−1. Note that the metric

within the above parentheses is the metric g of the Einstein static universe
defined on M = R × Sn.

Hence, in this simple manner, we see that (M, g) conformally embeds
into the Einstein static universe (M, g), with g = 1

Ω2 g and Ω = sinx. Fur-
ther, (M, g) is a spacetime extension of (M,Ω2g), with the latter missing two
timelike lines R × {n} and R × {s}, where n, s are antipodal points on Sn.
By defining Ω = 0 on these timelike lines, Ω extends to a Lipschitz function
on M . Although dΩ is not defined on these timelike lines, it remains bounded
on approach to them. One is led to think of each of these timelike lines as
representing a lower-dimensional timelike conformal infinity. This situation
motivates the following definition.1

Definition 2.1. A smooth spacetime (Mn+1, g) is said to have k asymptotically
AdS2 ×Sn−1 ends (where k ∈ {1, 2, . . . ,∞}) provided there exists a spacetime
(M, g), where g is a C0,1 metric, and a function Ω ∈ C0,1(M) such that the
following hold:

(i) (M, g) is globally hyperbolic.
(ii) M = M ∪ ∂M and ∂M = J , where J is the disjoint union J =

⊔k
i=1 Ji

where each Ji is a smooth inextendible timelike curve in M .
(iii) Ω|M ∈ C∞(M), Ω > 0 on M and Ω = 0 on J . Further, for any point

p ∈ J there exists a neighborhood U of p such that U ∩ J is connected
and dΩ remains bounded on U\J .2

(iv) On M , g = Ω2g. (In particular, g is smooth on M .)

For example, in the sense of this definition, AdS2 ×Sn−1 has two asymp-
totically AdS2 × Sn−1 ends.

Remark. Note that J has to be closed: Any finite union of inextendible time-
like curves in a strongly causal spacetime must be closed. This is no longer true
for countably infinite unions; nevertheless, even in the countably infinite case,
closedness of J is ensured by point (ii) in the definition. Also, (iii) implies that
any Ji ⊂ J =

⊔
l∈I Jl has a neighborhood U in M that doesn’t intersect any

other Jl, i.e., U ∩ Jl = ∅ for all l �= i.

We also point out that in the standard treatment of conformal infinity,
where Ω is smooth, with Ω = 0 and dΩ �= 0 on J , condition (iii) is trivially

1In this paper, all manifolds are smooth.
2Technically boundedness of dΩ is already implied by assuming that Ω is Lipschitz on M .
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satisfied. We will use condition (iii) in conjunction with the following result
proved in [5].

Lemma 2.1. Let (M, g) be a spacetime with Lipschitz metric. Assume g is C1

on some open subset O ⊂ M and γ : [0, 1) → O is a causal curve that is a
solution of the geodesic equation. If γ is continuously extendible to p := γ(1) ∈
∂O, then γ̇ remains bounded on [0, 1).

The following proposition extends to the present setting a basic result for
spacetimes with conformal infinity in the conventional sense.

Proposition 2.2. Suppose (M, g) has an asymptotically AdS2 × S2 end J . Let
γ : (0, a) → M be a future-directed g-null geodesic with past end point p ∈ J .
Then γ is past null complete as a g-geodesic.

Proof. Let γ : (0, a) → M be our ḡ-null geodesic with g-affine parameter s. By
assumption, γ extends continuously to γ(0) = p. It is a standard fact [18] that
γ|M is a null g-geodesic with g-affine parameter s satisfying ds/ds = cΩ−2 for
some constant c. Then, fixing b ∈ (0, a), γ is past complete with respect to g
provided the integral ∫ b

0

1
f(s̄)

ds (2.2)

diverges, where f(s̄) = Ω2(γ(s̄)). We have f(s̄) > 0 for s̄ ∈ (0, a) and f(0) = 0.
Moreover, Lemma 2.1 and condition (iii) imply that there exists A > 0 such
that f ′(s̄) = 2Ω(γ(s̄))dΩ(γ̇(s̄)) ≤ A for all s̄ ∈ (0, a). This implies that f(s̄) ≤
As̄ for all s̄ ∈ (0, a), from which it follows that (2.2) diverges. �
Examples. We conclude this section by describing several examples of space-
times with asymtotically AdS2 × S2 ends in the sense of Definition 2.1.

As a first example, let (M, g) be n+1-dimensional Minkowski space with
standard coordinates (x0 = t, x1, · · · , xn). Let M = M\{t−axis}, with metric

g =
g

Ω2
,

where Ω ∈ C∞(M), Ω > 0, and near the t-axis, Ω = |�x| =
√∑n

i=1(xi)2.
Then (M, g) has exactly one asymptotically AdS2 × Sn−1 end, and J = the
t-axis. By removing other t-lines, this example shows that there are spacetimes
with countably many asymptotically AdS2 × Sn−1 ends. However, as shown
in Sect. 4, if one assumes that the null energy condition (NEC) holds, there
can be at most two asymptotically AdS2 ×Sn−1 ends. In the appendix of [16],
Paul Tod presents an interesting example of a four-dimensional spacetime with
exactly one asymptotically AdS2 × S2 end, which, unlike the above example,
satisfies the NEC. As described in [16], this example is a solution of the Einstein
equations, with source term the sum of a charged dust and an electromagnetic
field.

In [17], Tod presents a class of examples with metric of the form

g =
e−2f(t,x)

sin2 x
(−dt2 + dx2) + dω2

2 , (2.3)
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which satisfy the NEC and the asymptotic conditions assumed in [4]. For
suitable choices of f , these are examples of spacetimes satisfying the NEC
with two asymptotically AdS2 × S2 ends, as defined here.

Next, we consider examples of the following type: M = R
2 × Sn−1, with

metric,

g = −f(r)dt2 +
1

f(r)
dr2

︸ ︷︷ ︸
g1

+ dω2
n−1

︸ ︷︷ ︸
g2

, (2.4)

where f ∈ C∞(R), f > 0. In “Appendix B,” we show AdS2×Sn−1 corresponds
to the choice f(r) = r2 + 1. We also find conditions on f(r) which ensure that
(M, g) has two asymptotically AdS2 ×Sn−1 ends in the sense of Definition 2.1.

The Ricci tensor of (M, g) is given by,

Ric = (Kg1) ⊕ g2, (2.5)

where K is the Gaussian (i.e., sectional) curvature of the t-r plane. A compu-
tation shows,

K = −1
2

∂2f

∂r2
. (2.6)

We wish to consider circumstances under which the NEC holds. Let {e0 =
∂t/|∂t|, e1 = ∂r/|∂r|, e2, · · · , en} be an orthonormal basis for TpM . Then, it
follows from (2.5) and (2.6), that, for any null vector X =

∑n
i=0 Xiei ∈ TpM ,

Ric(X,X) = (1 − K)

(
n∑

i=2

(Xi)2
)

=
(

1 +
1
2

∂2f

∂r2

) (
n∑

i=2

(Xi)2
)

. (2.7)

Thus, the NEC holds at all points where ∂2f
∂r2 ≥ −2.

Now choose f(r) as follows:
1. f(r) even, f(r) = f(−r), for all r.
2. f is (weakly) concave up, i.e., f ′′(r) ≥ 0 for all r.
3. f(r) = 1 + r2 outside some interval [−r0, r0].

For such a choice (of which there are many), (M, g) satisfies the NEC and is
exactly AdS2 × Sn−1 outside [−r0, r0].

We mention, as a last example, Schwarzschild-AdS2 ×Sn−1, by which we
mean, M ′ = M ∩ {r > 0}, with metric (2.4) where f(r) is given by,

f(r) = 1 − 2m

r
+ r2, (2.8)

see “Appendix B.” Here, we allow f(r) to be negative as well as positive.
(M ′, g) is an asymptotically AdS2 × Sn−1 black hole spacetime, with horizon
located at the single positive root r∗ of f(r) (at which there is a coordinate
singularity; see the recent review [15] for a nice treatment of this). One checks
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that the NEC holds on the region r ≥ m
1
3 , which includes the domain of outer

communications r > r∗, provided m > 1.

3. Asymptotically AdS2 × Sn−1 Spacetimes with Two Ends

3.1. Totally Geodesic Null Hypersurfaces

Proposition 3.1. Suppose (M, g) has two asymptotically AdS2 ×Sn−1 ends J1

and J2. Let p ∈ J1. Suppose J+(p,M) ∩ J2 �= ∅. Then
(1) there is a null curve η : [0, 1] → M , contained in ∂J+(p,M), such
that η(0) = p, q := η(1) ∈ J2, and η|(0,1) is a complete null line in M ,
(2) ∂J+(p,M) = ∂J+(η,M),
(3) if γ ⊂ ∂J+(η|(0,1),M) is past inextendible within M , then γ has past
endpoint p or past endpoint q within M .

Recall that a null line is defined as an inextendible achronal null geodesic.

Proof. We first prove (1). Note first that J+(p,M) cannot contain all of J2

(as otherwise a past inextendible portion of J2 would be imprisoned in a
compact set which contradicts strong causality [8, Proposition 3.3]). Together
with J+(p,M)∩J2 �= ∅, this implies that there exists a point q ∈ ∂J+(p,M)∩
J2. By Proposition A.5, we have

∂J+(p,M) = J+(p,M)\I+(p,M). (3.1)

Therefore, there is a causal curve η : [0, 1] → ∂J+(p,M) with η(0) = p and
η(1) = q. Let η̂ = η|(0,1). Since J1 and J2 are disjoint, we can assume
η̂ ⊂ M . We claim that η̂ is achronal in M . Suppose not. Then there are
two values 0 < t1, t2 < 1 and a timelike curve from η(t1) to η(t2). Then the
push-up property (Proposition A.2) implies η(t2) ∈ I+(p,M). This contradicts
η(t2) ∈ ∂J+(p,M) which proves the claim. Therefore, η̂ is an achronal inex-
tendible null geodesic in M . Hence, it is a null line. Completeness follows from
Proposition 2.2.

Now we prove (2). Recall that ∂J+ = J+\I+. Therefore, it suffices to
show J+(p,M) = J+(η,M) and likewise with I+. The equality for J+ holds
trivially since η(0) = p. To show I+(p,M) = I+(η,M), note that the inclu-
sion ⊆ follows trivially and the inclusion ⊇ follows by the push-up property
(Proposition A.2).

Finally we prove (3). Suppose γ : (0, 1) → ∂J+(η̂,M) is past inextendible
within M . By closedness of J+(p,M) and (2), γ ⊆ J+(p,M), so for t ∈ (0, t0),
γ(t) ⊆ J+(p,M) ∩ J−(γ(t0),M). Hence, γ is past imprisoned in a compact
subset of M , so γ extends continuously to p′ := γ(0) ∈ M . By assumption, γ
is past inextendible in M , so p′ �∈ M , i.e., p′ ∈ J1 ∪ J2. Now we show that
this implies p′ = p or p′ = q. First suppose p′ ∈ J2. If p′ ∈ I+(q,M), then
by openness of I+(q,M), see Theorem A.1, for sufficiently small t, we have
γ(t) ∈ I+(q,M). Therefore, there is a timelike curve from p to γ(t) by the
push-up property. This contradicts equation (3.1). Now suppose p′ ∈ I−(q,M).
Then for small t we have γ(t) ∈ I−(q,M), but this gives a timelike curve from
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p to q—another contradiction. Therefore, p′ ∈ J2 implies p′ = q. Now suppose
p′ ∈ J1. If p′ ∈ I+(p,M), then for small t we can find a timelike curve from
p to γ(t)—a contradiction. If p′ ∈ I−(p,M), then for small t we can find a
closed causal curve from γ(t) to p to γ(t) which contradicts causality of (M, g).
Therefore, p′ ∈ J1 implies p′ = p. �

Theorem 3.2. Assume the hypotheses of Proposition 3.1. If (M, g) satisfies the
null energy condition, then there exists a totally geodesic null hypersurface in
M containing η|(0,1).

Proof. As a consequence of Theorem 4.1 in [3], ∂J+
(
η|(0,1),M

)

(= ∂J−(
η|(0,1),M

)
) is a totally geodesic null hypersurface in M . Note that by

Remark 4.2 in [3], it suffices that the generators of ∂J+
(
η|(0,1),M

)
are past

complete and the generators of ∂J−(
η|(0,1),M

)
are future complete. This fol-

lows from Proposition 2.2 and (3) in Proposition 3.1 (along with its time-dual
statement). �

Lemma 3.3. Under the hypotheses of Proposition 3.1, let η : [0, 1] → M be the
constructed null curve. Then

∂J+(η|(0,1),M) = ∂J+(η,M) ∩ M.

Proof. Denote η̂ = η|(0,1). Recall that η̂ ⊂ M . Since (M, g) is smooth, Corol-

lary A.4 gives ∂J+(η̂,M) = J+(η̂,M)
M\I+(η̂,M). By Proposition A.5, we

have

∂J+(η,M) ∩ M =
[
J+(η,M)\I+(η,M)

] ∩ M

=
[
J+(η,M) ∩ M

]\[
I+(η,M) ∩ M

]
.

Thus, it suffices to show
(1) I+(η̂,M) = I+(η,M) ∩ M

(2) J+(η̂,M)
M

= J+(η,M) ∩ M .
We first prove (1). The left inclusion ⊆ is clear. To show ⊇, first note

the following: For any x ∈ Ji (i ∈ {1, 2} fixed), there exists a neighborhood
U ⊆ M of x such that for any y1, y2 ∈ Ji ∩ U with y2 ∈ I+(y1,M), y1 and
y2 have neighborhoods V1, V2 ⊆ U such that any y′

2 ∈ V2 can be reached from
any y′

1 ∈ V1 by a future-directed timelike curve γ in U such that γ ∩ Ji =
{y′

1, y
′
2}∩Ji (possibly empty). This can be seen, e.g., by choosing a cylindrical

neighborhood as in [2] such that additionally U ∩Jl = ∅ for l �= i and such that
Ji is the x0-coordinate line. We can now globalize this to obtain that any two
points p, q on Ji with q ∈ I+(p,M) have neighborhoods Vp, Vq such that any
point in Vp ∩ M can be connected to any point in Vq ∩ M by a future-directed
timelike curve lying entirely in M : By compactness of the segment of Ji from
p to q, there exists a finite number of points xk ∈ Ji, k = 1, . . . , N , with
associated neighborhoods Uk as above, which cover this segment. W.l.o.g. the
xk are ordered such that xk ∈ I+(xk−1,M) and p ∈ U1 and q ∈ UN . Choose
points y(k) such that y(0) := p, y(N) := q and y(k) ∈ Uk ∩ Uk+1 for 1 ≤
k ≤ N − 1 and such that y(k) � y(k + 1). Then y(k − 1), y(k) ∈ Uk and by
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the above there exist neighborhoods V1(k), V2(k) ⊆ Uk of y(k − 1) and y(k),
respectively, such that any point in V1(k) ∩ M can be connected to any point
in V2(k)∩M by a future-directed timelike curve lying entirely in M . Since this
property is preserved by shrinking V2(k), we may assume V2(k) ⊆ V1(k + 1).
Thus, we have guaranteed that any point in V1(1) ∩ M can be connected to
any point in V2(N) ∩ M by a future-directed timelike curve lying entirely in
M , so we can simply take V1(1) and V2(N) as the neigborhoods Vp and Vq we
were looking for.

Continuing the proof of (1), take z ∈ I+(η,M) ∩ M . Since I−(z,M) is
open, there is a timelike curve γ : [0, 1] → M such that γ(0) ∈ η̂ and γ(1) = z.
If γ is contained in M , then we are done. If γ intersects just one Ji, say
J1, then let s0 := min{s : γ(s) ∈ J1} and s1 := max{s : γ(s) ∈ J1}. By
the above paragraph, for small enough ε > 0 the curve γ|[s0−ε,s1+ε] can be
replaced by a timelike curve with the same endpoints contained entirely in M .
Hence, z ∈ I+(η̂,M). If γ intersects both J ′

i s, then we can repeat the above
procedure to get z ∈ I+(η̂,M). This proves (1).

Now we prove (2). We have

I+(η̂,M)
M

= I+(η,M) ∩ M
M

= I+(η,M) ∩ M
M ∩ M = I+(η,M)

M ∩ M.

The first equality follows from (1). The second equality follows from basic point
set topology. For the third equality, ⊆ is trivial and ⊇ follows because M is
dense in M . Thus, (2) follows from Corollary A.4 and the fact that J+(η,M)
is closed since (M, g) is globally hyperbolic [8, Proposition 3.5]. �

Proposition 3.4. Under the hypotheses of Theorem 3.2, let η : [0, 1] → M be
the constructed null curve from Proposition 3.1. Let p = η(0) and q = η(1).
Then

∂J+(p,M) = ∂J+(η|(0,1),M) ∪ {p, q} = ∂J−(η|(0,1),M) ∪ {p, q} = ∂J−(q,M).

Proof. Denote η̂ = η|(0,1). First note that by achronality both J1 and J2

can intersect ∂J+(η,M) only once; hence, ∂J+(η,M) = (∂J+(η,M) ∩ M) ∪
{p, q}. So ∂J+(p,M) = ∂J+(η̂,M) ∪ {p, q} follows from Proposition 3.1 (2)
and Lemma 3.3.

Secondly, ∂J+(η̂,M) has only one connected component: From the above,
we know that ∂J+(η̂,M) = ∂J+(p,M)\{p, q}. As the boundary of a future
set ∂J+(p,M) is a C0 hypersurface [8, Corollary 4.8], ∂J+(p,M)\{p, q} is
connected because ∂J+(p,M) is (any point on ∂J+(p,M) ⊂ J+(p,M) can
be connected to p). Thus, Remark 4.2 in [3] gives ∂J+(η̂,M) = ∂J−(η̂,M),
establishing the remaining equalities (using time duality for the last). �

Theorem 3.5. Under the assumptions of Theorem 3.2, let η be an achronal null
curve as constructed in Proposition 3.1. Then

(1) any inextendible causal curve in M must meet ∂J+(η(0),M) and any
inextendible timelike curve in M intersects ∂J+(η(0),M) exactly once,
(2) ∂J+(p,M) is homeomorphic to Sn,
(3) the Cauchy surfaces of M are homeomorphic to Sn and
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(4) M is homeomorphic to R × Sn.

Proof. We start by proving (1): Let p := η(0) and let ǧε be a smooth metric
on M with narrower lightcones than g, i.e., ǧε ≺ g (c.f., [2]). Then (M, ǧε)
is globally hyperbolic and S := ∂J+(p,M) is a ǧε-acausal compact (since it
is contained in the compact diamond J+(p,M) ∩ J−(η(1),M)) topological
hypersurface, hence a ǧε-Cauchy hypersurface (cf., Theorem A.6 in “Appen-
dix A”). This implies that M = I+

ǧε
(S) ∪ S ∪ I−

ǧε
(S). Since I±

ǧε
(S) ⊆ I±(S),

this implies that M = I+(S) ∪ S ∪ I−(S). Hence, any inextendible causal
curve γ : (0, 1) → M not meeting S must intersect at least one of I+(S)
or I−(S). Assume that γ meets I+(S) in γ(s0), but does not intersect
S = J+(η(0))\I+(η(0)) = J+(S)\I+(S) = ∂J+(S), then γ|(0,s0] is impris-
oned in the compact set J−(γ(s0)) ∩ J+(S), a contradiction.

Next, we establish (2): Let U = I × V be a cylindrical neighborhood
around p ≡ (0, p̄) (as defined in [2]), then ∂J+(p, U) is a Lipschitz graph over
V (cf. [2, Prop. 1.10]). Together with achronality of ∂J+(p,M), this implies
∂J+(p,M) ∩ U = ∂J+(p, U) (since any curve t �→ (t, x0) ∈ I × V meets
∂J+(p,M) at most once and ∂J+(p, U) exactly once), so ∂J+(p,M) ∩ U is
a Lipschitz graph over V , hence homeomorphic to V which is diffeomorphic
to R

n. Similarly, there exists a neighborhood Uq around q := η(1) such that
∂J−(p,M) ∩ Uq = ∂J−(q,M) ∩ Uq is homeomorphic to R

n. Now, let S ⊆ V

be a smooth sphere around p̄, then (I × S) ∩ ∂J+(p,M) ⊆ M is a smooth
n − 1-dimensional submanifold homeomorphic to Sn−1 that is met exactly
once by each null geodesic generator of ∂J+(η|(0,1),M). As in the discussion
in [3], Remark 4.1, this implies that ∂J+(p,M)\{p, q} = ∂J+(η|(0,1),M) is
homeomorphic to R× Sn−1. Together with the description of ∂J+(p,M) near
p and q, this shows that ∂J+(p,M) is indeed homeomorphic to Sn.

Now (3) and (4) follow by noting that both ∂J+(η(0),M) and any Cauchy
surface Σ of M are Cauchy surfaces for ǧε; hence, they are homeomorphic, so
Σ ∼= Sn and M ∼= R × Sn. �

3.2. Foliations

In Sect. 3.1, we established the existence of a totally geodesic achronal
null hypersurface for spacetimes obeying the NEC with two asymptotically
AdS2 × Sn−1 ends J1 and J2 if J+(J1) ∩ J2 �= ∅, i.e., if the ends are able
to communicate. In this section, we will show the existence of two transversal
foliations by totally geodesic achronal null hypersurfaces under the following
stronger assumption on the causal relationship between both ends.

Definition 3.1. Two asymptotically AdS2 × Sn−1 ends J1 and J2 are said to
be communicating at all times if J1 ⊆ J±(J2) and J2 ⊆ J±(J1).

Proposition 3.6. Suppose (M, g) has two asymptotically AdS2 ×Sn−1 ends J1

and J2 that are communicating at all times. If (M, g) satisfies the NEC, then
it is continuously foliated by totally geodesic achronal null hypersurfaces Nt =
∂J+(γ(t),M) ∩ M , where γ : R → J1 is a parametrization of J1.
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Proof. Since J1 and J2 are communicating at all times, J+(p,M)∩J2 �= ∅ for
all p ∈ J1. Thus, we may apply Proposition 3.1 and Theorem 3.2 to each point
on J1 to obtain a family {Nt}t∈R of totally geodesic achronal null hypersurfaces
satisfying Nt = ∂J+(γ(t),M) ∩ M , where γ : R → J1 is a parametrization of
J1. We show that this is a continuous foliation.

Since γ(t1) � γ(t2), if t1 < t2 we have Nt1 ∩ Nt2 = ∅ if t1 �= t2. Next
we show that {Nt}t∈R covers all of M . Let x ∈ M . Suppose x ∈ J+(Nt,M)
for some t. Then J−(x,M) ∩ J1 �= ∅, and since J−(x,M) cannot contain all
of J1 (as otherwise a future inextendible portion of J1 would be imprisoned
in a compact set), there exists tx such that γ(tx) ∈ ∂J−(x,M) ∩ J1 �= ∅. This
implies that x ∈ Ntx

. Suppose, on the other hand, x /∈ J+(Nt,M) for any t.
Then, by Theorem 3.5, x ∈ I−(Nt,M) = I−(qt,M), where qt := J2∩Nt, for all
t ∈ R. Let ηt : [0, 1] → M denote one of the achronal past-directed null geodesic
generators of Nt starting at qt and ending at γ(t). Then ηt(0) ∈ I+(x,M) for
all t, so {ηt(0)}t≤0 is contained in the compact set (J+(x,M)∩J−(q0,M))∩J2;
hence, there exists a sequence tn → −∞ such that ηtn

(0) converges to some
q ∈ J2. Further, since tn → −∞, ηtn

(1) leaves every compact subset of M .
Hence, [12, Theorem 3.1]3 implies that there exists an inextendible achronal
limit curve η starting at q leaving every compact subset of M which contradicts
∂J−(q,M) ∼= Sn−1 which follows from the time dual of Theorem 3.5 (note that
J−(q,M) ∩ J1 �= ∅ by assumption).

So we have established that each x ∈ M belongs to a unique totally
geodesic null hypersurface Ntx

. It remains to show that the map x �→ tx is
continuous. Let xn → x and let ηn : [0, 1] → M be the achronal null geodesic
generator of Ntxn

from γ(txn
) to xn. Let x+, x− be points for which x− ≤ xn, x

and xn, x ≤ x+ for all n. Then tx− ≤ txn
≤ tx+ . Let t0 be any accumulation

point of the sequence txn
. By [12, Theorem 3.1], there exists a subsequence ηnk

converging to an achronal null curve from γ(t0) = lim ηnk
(0) to x = lim ηnk

(1).
But this implies x ∈ ∂J+(γ(t0),M) ∩ M ; hence, t0 = tx. So the sequence txn

has tx as its only accumulation point and hence converges to tx, and thus,
x �→ tx is continuous. �
Remark. While we assumed that the ends are communicating at all times
in Proposition 3.6, this result actually only required that J1 ⊆ J−(J2) (to
ensure that J+(p,M) ∩ J2 �= ∅ for all p ∈ J1) and J2 ⊆ J+(J1) (to ensure
that J−(q,M) ∩ J1 �= ∅ for all q ∈ J2). However, in the next theorem we
need to use a second foliation by null hypersurfaces transverse to the first,
and to obtain this transverse foliation, we will need that J1 ⊆ J+(J2) and
J2 ⊆ J−(J1). Thus, Theorem 3.7 really needs the full definition of both ends
communicating at all times.
Theorem 3.7. Suppose (M, g) has two asymptotically AdS2 × Sn−1 ends J1

and J2 that are communicating at all times. If (M, g) satisfies the NEC, then

3While the cited result is for smooth metrics, the same remains true for merely continuous
metrics. This essentially follows from applying the smooth result to metrics with wider
lightcones and then using a separate argument to show that the obtained limit curve is
causal, see the proof of [14, Thm. 1.5].
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it is continuously foliated by totally geodesic (n− 1)-dimensional submanifolds
homeomorphic to Sn−1. These submanifolds may be obtained as the intersec-
tions of two transverse foliations by totally geodesic achronal null hypersur-
faces.

Proof. Let Nt := ∂J+(γ1(t),M) ∩ M , where γ1 : R → J1 is a parametrization
of J1 and N̂s := ∂J+(γ2(s),M)∩M , where γ2 : R → J2 is a parametrization of
J2 and let St,s := Nt ∩ N̂s. If non-empty, this intersection is a totally geodesic
(n − 1)-dimensional submanifold of M because Nt and N̂s always intersect
transversally. Additionally, every null geodesic generator of Nt must meet St,s

exactly once: It suffices to show that every null geodesic generator of Nt must
meet N̂s exactly once if Nt ∩ N̂s �= ∅. For this intersection to be non-empty,
we must have ∂J+(γ2(s),M) ∩ J1 � γ1(t) and ∂J+(γ1(t),M) ∩ J2 � γ2(s);
hence, every null geodesic generator of Nt starts in I−(N̂s,M) and ends in
I+(N̂s,M), and hence must intersect ∂J+(N̂s,M) ∩ M = N̂s.

So we may use the flow along the null geodesic generators of Nt to con-
clude that St,s is homeomorphic to any other (n−1)-dimensional submanifold
of Nt that is met exactly once by every null geodesic generator. Thus, remem-
bering that by the last paragraph in the proof of (2) in Theorem 3.5 the null
hypersurface Nt always contains an (n − 1)-dimensional submanifold homeo-
morphic to Sn−1, every St,s is homeomorphic to Sn−1.

That this is indeed a continuous foliation follows completely analogously
to the last paragraph in the proof of Theorem 3.16 in [4]. �

4. Asymptotically AdS2 × Sn−1 Spacetimes with More than
Two Ends

Theorem 4.1. Suppose (M, g) has k or countably infinite asymptotically
AdS2 × Sn−1 ends {Jl}l∈I , I = {1, . . . , k}, or I = N. Suppose further that
there exist i, j ∈ I, i �= j, such that J+(p,M) ∩ Jj �= ∅ for some p ∈ Ji. If
(M, g) obeys the null energy condition, then I is finite and k = 2; i.e., (M, g)
can have at most two asymptotically AdS2 × Sn−1 ends.

Proof. W.l.o.g. i = 1, j = 2. Assume k := |I| > 2 (we include the case k = ∞).
Proceeding as in Proposition 3.1, the assumptions allow us to obtain the first
part of Proposition 3.1:

(1) There is an achronal null curve η : [0, 1] → M such that η(0) = p ∈ J1,
η(1) ∈ J2.
We may w.l.o.g. assume that η does not intersect any other Jl: If k is

finite, η intersects
⋃k

l=1 Jl in isolated points, so this can be achieved by cutting
η off at the earliest parameter at which it intersects another Jl, renumbering
the Jl’s and rescaling η. If k = ∞, i.e., I = N, note first that η ∩ M �= ∅ since
η ∩ ⋃

l∈N
Jl contains at most countably infinitely many points. Let t0 ∈ (0, 1)

be such that η(t0) ∈ M , and set t1 := inf{t ∈ [0, t0] : η|(t,t0] ⊂ M} and t2 :=
sup{t ∈ [t0, 1] : η|[t0,t) ⊂ M}. Then, by closedness of J :=

⋃
l∈I Jl (cf. the

remark after Definition 2.1) we have η(t1), η(t2) ∈ J and the desired property



A Conformal Infinity Approach

can again be achieved by cutting off η (this time at t1 and t2), rescaling and
renumbering the Jl’s.

Thus, η|(0,1) ⊆ M and η|(0,1) is a complete null line in M . With this, we
obtain the following versions of the other two parts of Proposition 3.1:

(2) ∂J+(p,M) = ∂J+(η,M) and
(3) if γ ⊂ ∂J+(η|(0,1),M) is past inextendible within M , then γ has
past endpoint on Jl for some l ∈ I. In particular, all generators of
∂J+

(
η|(0,1),M

)
are past complete (and by time duality the generators of

∂J−(
η|(0,1),M

)
are future complete).

Analogous to Theorem 3.2, Lemma 3.3, Proposition 3.4 and Theorem 3.5,
we now may use this to get that ∂J+

(
η|(0,1),M

)
is a totally geodesic null

hypersurface in M and that S := ∂J+(η(0),M) = ∂J−(η(1),M) is a compact
achronal hypersurface in M that is met exactly once by every inextendible
timelike curve. Let x ∈ S be the point where J3 intersects S. Then x �= η(0)
and x �= η(1), η(0) <M x and x is the past endpoint of an achronal null
curve η̃ : [0, 1] → M ending in q := η(1). Again, w.l.o.g. η̃|(0,1) ⊆ M is a null
line in M (else, replace x), and hence, S̃ := ∂J+(η̃(0),M) = ∂J−(η̃(1),M) is
also a compact achronal hypersurface in M that is met exactly once by every
inextendible timelike curve. Further, since η(1) = q = η̃(1), it must be that
S̃ = S. Let p′ be the point where J1 intersects S̃; hence, p′ ∈ J+(x,M)\{x}.
It follows that p′ = η(0) since J1 intersects S in η(0). This is a contradiction
because we obtain η(0) <M x <M p′ = η(0). �

5. Topological Censorship

Let (Mn+1, g) be a spacetime with k ≥ 1 asymptotically AdS2 × Sn−1 ends,
and let J be one such end, i.e., J ≡ J1 is one of the timelike lines J1,J2, . . . .
The domain of outer communications with respect to J is defined as the set

D = I−(J ,M) ∩ I+(J ,M). (5.1)

Note that D is globally hyperbolic. This follows since for p, q ∈ D, the push-
up property (Proposition A.2) can be used to show J+(p,D) ∩ J−(q,D) =
J+(p,M) ∩ J−(q,M).

Further, D ∩ M has k ≥ kD∩M ≥ 1 asymptotically AdS2 × Sn−1 ends,
one of which is J . We are primarily interested in the case that D is a proper
subset of M , which then signifies the presence of a black hole and/or white
hole region.

Roughly speaking, topological censorship asserts, under appropriate
energy and causality conditions, that the topology (at the fundamental group
level) of the domain of outer communications (DOC) can be no more com-
plicated than the topology of conformal infinity. In particular, if conformal
infinity is simply connected, then so is the DOC; see [1] for a recent review.
Since, in our setting, J is simply connected, one would expect D to be simply
connected. This is almost the case.
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Theorem 5.1. Let (Mn+1, g) be a spacetime with k ≥ 1 asymptotically AdS2 ×
Sn−1 ends. Let J be one such end, and let D be the DOC associated with J .
Assume that the NEC holds on D. Then either

(i) D is simply connected or
(ii) M has exactly one asymptotically AdS2 × Sn−1 end (namely J ), D\J

contains a totally geodesic null hypersurface whose null geodesic gener-
ators have past and future end points on J , and the Cauchy surfaces
of D (which are also Cauchy surfaces for M) are double-covered by an
n-sphere. In particular, π1(D) = Z2.

Case (ii) can occur, as can be seen by considering a simple quotient of
the Einstein static universe. By identifying antipodal points on the n-sphere,
we obtain M = R × RPn−1, with obvious product metric. Removing the t-
line through the ‘north pole’ of RPn−1, we obtain, after a conformal change, a
spacetime (M, g) which (i) has one asymptotically AdS2 ×Sn−1 end, (ii) obeys
the NEC, and (iii) has conformal completion (M, g) with Cauchy surfaces
diffeomorphic to RPn.

Proof of Theorem 5.1. Let (D′, g′) be the universal covering spacetime of
(D, g), with covering map p : D′ → D, and g′ = p∗g. Since J is simply con-
nected, J ′ = p−1(J ) consists of a disjoint union of copies of J , J ′ = �α∈AJα,
where |A| = the number of sheets of the covering.

Suppose first that

I−(Jα) ∩ I+(Jβ) = ∅ for all α �= β. (5.2)

Consider the collection of open sets in D′,

Uα = I−(Jα) ∩ I+(Jα). (5.3)

Equation (5.2) implies that the Uα’s are pairwise disjoint. It also implies that
the Uα’s cover D′: Let q′ be any point in D′, and consider q = p(q′) ∈ D.
Equation (5.1) implies that there exists a future-directed timelike curve γ
from J to J passing through q. Lift γ to obtain a timelike curve γ′ in D′,
passing through q′, from Jα to Jβ , for some α, β. Equation (5.2) implies that
α = β, and hence, q′ ∈ Uα. Thus, since D′ is connected, there can be only one
Uα, and hence, D′ is a one-sheeted covering of D, i.e., D is simply connected.

Now suppose,

I−(Jα) ∩ I+(Jβ) �= ∅ for some α �= β. (5.4)

Let K = ∪i=1(Ji), where J = J1,J2, · · · are the asymptotically AdS2 × Sn−1

ends of D0 := D ∩ M , and let K′ = p−1(K). Since the fundamental group of
any manifold is countable, K′ has countably many (perhaps countably infinite)
components. Consideration of the function Ω′ = Ω ◦ p, where Ω : D → R is
as in Definition 2.1, shows that each component of K′ is an asymptotically
AdS2 × Sn−1 end of D′

0 = p−1(D0).
From (5.4), it follows that J+(Jβ) meets Jα. We further know that D′

is globally hyperbolic and satisfies the NEC, as these properties of D lift to
the cover. We may then apply Theorem 4.1 to conclude that D′

0 has at most
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two AdS2 × Sn−1 ends. In fact, it follows from (5.4) that D′
0 has exactly

two AdS2 × Sn−1 ends, say, J ′
1 and J ′

2. If p(J ′
1) �= p(J ′

2), then D0 has two
asymptotically AdS2 ×Sn−1 ends and D′ is a one-sheeted covering of D. So D
is simply connected. If J = p(J ′

1) = p(J ′
2), then D has only one end and D′ is

a double cover of D. Moreover, by Theorem 3.2, there exists a totally geodesic
null hypersurface H ′ in D′\J ′ that extends from J ′

1 and J ′
2. Then H = p(H ′)

is an (immersed) totally geodesic null hypersurface in D whose null geodesic
generators have past and future end points on J .

Let
∑

be a Cauchy surface for D. Then
∑′

2 = p−1(
∑

) is a Cauchy
surface for D′. Using D′ ≈ R × ∑′ and D ≈ R × ∑

, it follows that p|Σ′ :∑′ → ∑
is a double covering of

∑
. Moreover, it follows from Theorem 3.5

that
∑′ is homeomorphic to Sn−1. Hence,

∑
is double-covered by a manifold

homeomorphic to Sn−1, and in particular is compact. It follows that
∑

must
also be a Cauchy surface for M (cf., Theorem A.6 in “Appendix A”). �
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Appendices

A Lipschitz Metrics

Recall that a Cm spacetime (M, g) is a smooth manifold M equipped with
a Cm time-oriented Lorentzian metric g. If a smooth spacetime (M, g) has
k asymptotically AdS2 × Sn−1 ends (see Definition 2.1), then the unphysical
spacetime (M, g) has a C0,1 metric g, i.e., the components gμν = g(∂μ, ∂ν) in
any coordinate system xμ are locally Lipschitz functions. In this case, we say
(M, g) is a Lipschitz spacetime.

Classical references on causal theory such as [6,18] make use of normal
neighborhoods which require a C2 metric. Therefore, classical causal theory
only holds for C2 spacetimes. Since we are working with Lipschitz spacetimes,
we require results from causal theory when the metric is only C0,1. Treatments
of causal theory for metrics with regularity less than C2 can be found in
[2,8,13].

Our definitions of timelike and causal curves will follow the conventions
in [8]. From that paper, we have the following results.
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Theorem A.1 [8]. Let (M, g) be a C0 spacetime, then I+(p) and I−(p) are
open.

The following result is known as the push-up property which is proved in
[8, Theorem 4.5]. See also [2, Lemma 1.15]

Proposition A.2 [2,8]. Let (M, g) be a Lipschitz spacetime. Then

I+
(
J+(p)

)
= I+(p).

The push-up property implies:

Proposition A.3. Let (M, g) be a Lipschitz spacetime. Then
(1) int

[
J+(p)

]
= I+(p).

(2) J+(p) ⊂ I+(p).

Proof. We first prove (1). Since I+(p) ⊂ J+(p) and I+(p) is open, we have
I+(p) ⊂ int

[
J+(p)

]
. Conversely, fix q ∈ int

[
J+(p)

]
and let U ⊂ int

[
J+(p)

]
be

an open neighborhood of q. Let q′ ∈ I−(q, U). Then there is a causal curve
from p to q′ and a timelike curve from q′ to q. Therefore, q ∈ I+(p) by the
push-up property.

Now we prove (2). Fix q ∈ J+(p). Let U be a neighborhood of q. Consider
a point q′ ∈ I+(q, U). Then q′ ∈ I+(p) by the push-up property. �

Corollary A.4. Let (M, g) be a Lipschitz spacetime. Then
(1) ∂J+(p) = J+(p)\I+(p).
(2) J+(p) = I+(p).

Following [8], a C0 spacetime (M, g) is globally hyperbolic provided it is
strongly causal and J+(p) ∩ J−(q) is compact for all p and q.

Proposition A.5. Let (M, g) be a globally hyperbolic Lipschitz spacetime. Then

∂J+(p) = J+(p)\I+(p).

Proof. By Corollary A.4, it suffices to show J+(p) is closed for globally hyper-
bolic spacetimes. This follows from Proposition 3.5 in [8]. �

A set S ⊂ M is a Cauchy surface for a C0 spacetime (M, g) provided
every inextendible causal curve intersects S exactly once. From [14, Section 5],
we know that a C0 spacetime (M, g) is globally hyperbolic if and only if it has
a Cauchy surface. The following result will be used in this paper.

Theorem A.6. Let (M, g) be a globally hyperbolic and Lipschitz spacetime. If
S ⊂ M is an acausal, compact and C0 hypersurface, then S is a Cauchy
surface.

Sketch of proof. First one shows that J+(S) = S �I+(S). This follows because
S is acausal and a C0 hypersurface, and the proof uses the push-up property.
Next one shows that M = I+(S)�S�I−(S). This follows by showing the right-
hand side is both open and closed (and thus equals M since M is connected).
Open follows by considering a small coordinate neighborhood around a point
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on S and using the fact that S is an acausal C0 hypersurface. Closed follows
because J+(S) = S � I+(S) and the fact that J+(S) is closed, which follows
because (M, g) is globally hyperbolic and S is compact.

Now we show S is a Cauchy surface. Let γ : R → M be an inextendible
causal curve. Let p = γ(0). By above, either p lies in I+(S) or S or I−(S). If
p ∈ S, then we’re done. Suppose p ∈ I+(S). Claim: there exists a t0 < 0 such
that γ(t0) /∈ J+(S). Suppose not. Then γ|(−∞,0) is a past inextendible causal
curve contained in the compact set J−(p) ∩ J+(S) which contradicts strong
causality [8, Prop. 3.3]. This proves the claim. Thus, γ(t0) ∈ I−(S). Since S
separates M , there is a t1 ∈ (t0, 0) such that γ(t1) ∈ S. Hence, γ intersects S.
If p ∈ I−(S), then one applies the time dual of the above proof. �

Remark. Although it is not necessary for our paper, Theorem A.6 holds even
when S is only locally acausal.

B Asymptotics: A Class of Examples

In this section, we consider the class of examples (2.4) from Sect. 2, and obtain
conditions under which these examples are asymptotically AdS2×Sn−1! in the
sense of Definition 2.1. The metric for these examples may be written as,

g = −f(r)dt2 +
1

f(r)
dr2 + dω2

n−1

= f(r)
[
−dt2 +

1
f2(r)

dr2 +
1

f(r)
dω2

n−1

]
,

where f(r) > 0 is a smooth positive function. We define a new coordinate x via
r(x) = − tan(x−π/2). The domain of x is 0 < x < x0 where 0 < x0 < π/2 is a
constant. Note that r(x) is a decreasing function of x and r = ∞ corresponds to
x = 0. We have dr = − sec2(x−π/2)dx = − csc2(x)dx. Letting F (x) = f ◦r(x),
we have

g =
1

Ω2(x)
( − dt2 + G2(x)h

)

︸ ︷︷ ︸
ḡ

,

where
– Ω(x) = 1/

√
F (x)

– G(x) = csc2(x)/F (x)
– h = dx2 + a2(x)dω2

n−1

– a(x) =
√

F (x) sin2(x).

Example. Let f(r) = 1 + r2. Then F (x) = 1 + tan2(x − π/2) = csc2(x).
Therefore, Ω(x) = sin(x) and g = −dt2 + dx2 + sin2(x)dω2

n−1. Hence, g is
the metric for the Einstein static universe. In this case, x = 0 (i.e., r =
∞) corresponds to the north pole of Sn within the Einstein static universe.
From the example in the beginning of Sect. 2, we see that g is the metric
for AdS2 × Sn−1!. In this example, x = 0 is a coordinate singularity which
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represents the north pole of Sn. In the spacetime M , x = 0 represents the
timelike line J .

We want to find sufficient conditions on f(r) such that x = 0 (i.e., r =
∞) represents a coordinate singularity as in the above example. Sufficient
conditions are given in Theorem B.1. Afterward, we show how to apply the
theorem to Schwarzschild-AdS2 × Sn−1.

Theorem B.1. Suppose a(x) is smooth and satisfies

a(x) = x + O(x2) and a′(x) = 1 + O(x).

Then (M, g) satisfies conditions (ii), (iii) and (iv) in Definition 2.1, with J
given by x = 0 in M .

Remark. Any scale factor a(x) with a convergent Taylor expansion of the form
a(x) = x + c2x

2 + c3x
3 + · · · will satisfy the hypotheses of Theorem B.1.

Proof. The metric h is

h = dx2 + a2(x)dω2
n−1

= dx2 + a2(x)
(
dθ2 + sin2 θdω2

n−2

)
.

We define new coordinates z and ρ given by

z(x, θ) = b(x) cos θ and ρ(x, θ) = b(x) sin θ,

where b(x) = e
∫ x
x0

1
a , and where x0 > 0 is the constant given by the domain of

x. Note that b′ = b/a. Therefore,

dz2 + dρ2 =
(

b(x)
a(x)

)2

dx2 + b2(x)dθ2.

Multiplying by (1/b′)2 = (a/b)2, we see that the metric h in these coordinates
is given by

h =
1

b′(x)2
(
dz2 + dρ2 + ρ2dω2

n−2

)
.

Note that the metric in parentheses is just the Euclidean metric on R
n writ-

ten in cylindrical coordinates with ρ denoting the radius variable. A sim-
ple analysis argument shows that the hypothesis a(x) = x + O(x2) implies
b(0) := limx→0 b(x) = 0. Therefore, x = 0 corresponds to the origin z = ρ = 0.
Moreover, the same analysis used in the proof of [9, Theorem 3.4] shows that
0 < b′(0) < ∞ where b′(0) := limx→0 b′(x). Hence, h does not have a degener-
acy at x = 0 and so x = 0 is merely a coordinate singularity.

To finish the proof, we have to show
(1) Ω(0) := limx→0 Ω(x) = 0 and dΩ remains bounded on a neighborhood of

x = 0.
(2) G(0) ∈ (0,∞) where G(0) := limx→0 G(x) and G ◦ x(z, ρ) extends to a

Lipschitz function on a neighborhood of the origin z = ρ = 0.
(3) h extends to a Lipschitz metric on a neighborhood of the origin z = ρ = 0.
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Note that (2) and (3) together imply that G2(x)h extends to a Lipschitz metric
on a neighborhood of the origin; hence, g extends to a Lipschitz metric on the
timelike line x = 0.

We first show (1). Ω(0) = 0 follows from a simple analysis argument
using the fact that Ω(x) = sin2(x)/a(x) and the hypothesis a(x) = x + O(x2).
Now we show dΩ remains bounded on a neighborhood of x = 0. Note that
b is a strictly increasing smooth function which is never zero. Therefore, it is
invertible and the derivative of its inverse is (b−1)′(b(x)

)
= 1/b′(x). Recall that

x = b−1
(√

z2 + ρ2
)
, so ∂x/∂z = z/(b′b) = cos(θ)/b′ and ∂ρ/∂z = ρ/(b′b) =

sin(θ)/b′. Both are bounded near (z, ρ) = (0, 0); hence, dx = 1
b′ (cos(θ)dz +

sin(θ)dρ) is bounded as well. So boundedness of dΩ follows from the limit

Ω′(x) =
2 sin(x) cos(x)a(x) − a′(x) sin2(x)

a2(x)
→ 1 as x → 0.

Now we show (2). In fact, we have G(0) = 1. This follows because a(x) =
sin(x)/

√
G(x) and the hypothesis a(x) = x+O(x2) along with an application

of the squeeze theorem. Now we show G◦x(ρ, z) extends to a Lipschitz function
on a neighborhood of the origin z = ρ = 0. From elementary analysis, it suffices
to show that the limits

lim
(z,ρ)→(0,0)

∂(G ◦ x)
∂z

and lim
(z,ρ)→(0,0)

∂(G ◦ x)
∂ρ

remain bounded. Since G(x) = sin2(x)/a2(x), the chain rule gives

∂G

∂z
= G′(x)

∂x

∂z
=

(
2 sin(x) cos(x)

a2
− 2a′ sin2(x)

a3

) ( z

bb′
)

.

Using b′ = b/a and z = b cos(θ), we get

∂(G ◦ x)
∂z

=
(

2 sin(x) cos(x)
ab

− 2a′ sin2(x)
a2b

)
cos(θ).

Analysis analogous to the proof of [9, Theorem 3.4] shows that b(x) = x/x0 +
O(x2). This combined with the hypotheses on a(x) shows that the term in
the above larger brackets remains bounded as x → 0. Thus, ∂G/∂z remains
bounded as (z, ρ) → (0, 0). Similarly, the same result holds for ∂G/∂ρ.

Now we show (3). A similar argument as used in the proof of (2) shows
that for ω(x) = 1/b′(x), we have that the limits of ∂ω/∂z and ∂ω/∂ρ remain
bounded as (z, ρ) → (0, 0). Hence, ω ◦ x(ρ, z) will be Lipschitz on a neighbor-
hood of the origin. �

Example. Let f(r) = 1 + r2 − 2m/r which corresponds to Schwarzschild-
AdS2 × Sn−1 [see Eq. (2.8)]. We will show this f(r) satisfies the conditions of
Theorem B.1. Since r(x) = − tan(x − π/2) = − cos(x)/ sin(x), we have

F (x) = f ◦ r(x) = 1 +
cos2(x)
sin2(x)

+ 2m tan(x) =
1

sin2(x)
+ 2m tan(x).
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Therefore, F (x) sin4(x) = sin2(x) + 2m tan(x) sin4(x). Hence,

a(x) = sin(x)
√

1 + 2m tan(x) sin2(x) = x − x3

6
+ mx4 + · · ·

Therefore, a(x) satisfies the hypotheses of Theorem B.1 (see the remark after
the theorem).

Now we give general conditions on f(r) in Eq. (2.8) to satisfy the assump-
tions for a(x) in Theorem B.1.

Corollary B.2. If f satisfies f(r) = r2+O(r) and f ′(r) = 2r+O(1) as r → ∞,
then a(x) satisfies a(x) = x + O(x2) and a′(x) = 1 + O(x). If further f :
(−∞,∞) → (0,∞) satisfies these asymptotics as both r → ∞ and r → −∞,
then R × (−∞,∞) × Sn−1 with metric

g = −f(r)dt2 +
1

f(r)
dr2 + dω2

n−1

has two asymptotically AdS2 × Sn−1 ends.

Proof. We first show that a(x) = satisfies a(x) = x + O(x2) and a′(x) =
1 + O(x). We have a(x) =

√
F (x) sin2(x) where F (x) = f(− tan(x − π/2)).

Since − tan(x − π/2) = 1/x + O(x), we get F (x) = 1/x2 + O(1/x) from
f(r) = r2 + O(r). Hence,

√
F (x) = 1/x + O(1) and a(x) = x + O(x2) follows.

For a′, note that

a′(x) =
F ′(x)

2
√

F (x)
sin2(x) + 2

√
F (x) sin(x) cos(x).

Using that
√

F (x) = 1/x+O(1), we immediately get that the second summand
is 2 + O(x). For the first summand, we need to work out F ′(x). We have
F ′(x) = f ′(r(x))r′(x) = −f ′(r(x))1/ sin2(x). Since f ′(r) = 2r + O(1), we get
f ′(r(x)) = 2/x + O(x) + O(1) = 2/x + O(1), and hence, F ′(x) = −2/x3 +
O(1/x2). Using this, we obtain that the first summand in the expression for
a′ is −1 + O(x); hence, a′(x) = 1 + O(x).

If f satisfies the same asymptotics as r → −∞, we clearly get similar
asymptotics for a as x → π using the same change of coordinates: a(x) =
π − x + O((π − x)2) and a′(x) = 1 + O((π − x)). So, as in the proof of
Theorem B.1, we get that ḡ also extends to x = π, so we get a conformal
Lipschitz extension to all of R × Sn =: M . Since ḡ = −dt2 + G2(x)h, any
hypersurface of the form {t0} × Sn is a Cauchy surface, so (M, g) is globally
hyperbolic. �

Comparison with the Asymptotics in [4]. Let M = R×(a,∞)×S2 with metric
g = g̊ + h, where g̊ = gAdS2×S2 = − cosh2(σ)dt2 + dσ2 + dω2 and h decays as
in the definition of asymptotically AdS2 × S2 in [4]. This in particular means
that we have

h(ei, ej) = O(1/σ)

for any g̊-othonormal basis {ei(p)}3
i=0 with e0 = 1

cosh σ
∂
∂t .
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We now show that, similarly to the examples discussed above, we can
interpret x → ∞ as an ‘almost’ asymptotically AdS2 × S2 end: Defining x(σ)
via sinh(σ) = r = − tan(x − π/2), we get M = R × (0, x(a)) × S2 and, as
above, g̊ becomes

g̊ = −(1 + r2)dt2 +
1

1 + r2
dr2 + dω2 =

1
sin2(x)

gR×S3 ,

so we define

ḡ := sin2(x)g = gR×S3 + sin2(x)h on M,

i.e.,

Ω = sin(x) =
1

cosh(σ)
.

To show that this continuously extends to x = 0, we show that sin2(x)h → 0 as
x → 0. To see this, let ē0 := ∂t and let {ēi}3

i=1 be an orthonormal frame for the
round S3 near the north pole. Then ei := Ωēi, i = 0, . . . , 3 is a g̊-orthonormal
frame with e0 = 1/ cosh(σ)∂t, so for any i, j

sin2(x)h(ēi, ēj) = h(ei, ej) = O

(
1
σ

)
→ 0

as x → 0.
Since the conformal factor Ω we used here is the same as for exact AdS2×

S2, we immediately get that dΩ remains bounded as x → ∞.
So, except for ḡ possibly being merely continuous and not Lipschitz,

(M, g) satisfies (ii)–(iv) from Definition 2.1!

Remark. Regarding Lipschitz continuity of ḡ, we observe the following: The
asymptotics in [4] stipulate that

ek(h(ei, ej)) = O
(
1/σ

)
.

Trying to estimate ēk(Ω2h(ēi, ēj)) using this yields

|ēk(Ω2h(ēi, ēj))| =
1
Ω

|ek(h(ei, ej))| ≤ C
1

σ sin(x)

= C
1

sin(x) sinh−1(− tan(x − π/2))
→ ∞ as x → 0.

So the asymptotics in [4] are not sufficient to get Lipschitz continuity of
the extension. Note, however, that replacing ek(h(ei, ej)) = O(1/σ) with the
stronger assumption ek(h(ei, ej)) = O(1/ exp(σ)) would imply boundedness of
the derivatives estimated above, i.e., Lipschitzness of ḡ.
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