
Chapter 2. Parameterized Curves in R3

Def. A smooth curve in R3 is a smooth map σ : (a, b) → R3.

For each t ∈ (a, b), σ(t) ∈ R3. As t increases from a to b, σ(t) traces out a curve in
R3. In terms of components,

σ(t) = (x(t), y(t), z(t)) , (1)

or

σ :
x = x(t)
y = y(t)
z = z(t)

a < t < b ,

velocity at time t:
dσ

dt
(t) = σ′(t) = (x′(t), y′(t), z′(t)) .

speed at time t:

∣∣∣∣dσ

dt
(t)

∣∣∣∣ = |σ′(t)|

Ex. σ : R → R3, σ(t) = (r cos t, r sin t, 0) - the standard parameterization of the
unit circle,

σ :
x = r cos t
y = r sin t
z = 0

σ′(t) = (−r sin t, r cos t, 0)

|σ′(t)| = r (constant speed)
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Ex. σ : R → R3, σ(t) = (r cos t, r sin t, ht), r, h > 0 constants (helix).

σ′(t) = (−r sin t, r cos t, h)

|σ′(t)| =
√

r2 + h2 (constant)

Def A regular curve in R3 is a smooth curve σ : (a, b) → R3 such that σ′(t) 6= 0 for
all t ∈ (a, b).

That is, a regular curve is a smooth curve with everywhere nonzero velocity.

Ex. Examples above are regular.

Ex. σ : R → R3, σ(t) = (t3, t2, 0). σ is smooth, but not regular:

σ′(t) = (3t2, 2t, 0) , σ′(0) = (0, 0, 0)

Graph:

σ :
x = t3

y = t2

z = 0
⇒ y = t2 = (x1/3)2

y = x2/3

There is a cusp, not because the curve isn’t smooth, but because the velocity = 0
at the origin. A regular curve has a well-defined smoothly turning tangent, and hence
its graph will appear smooth.

The Geometric Action of the Jacobian (exercise)

Given smooth map F : U ⊂ R3 → R3, p ∈ U . Let X be any vector based at the
point p. To X at p we associate a vector Y at F (p) as follows.

Let σ : (−ε, ε) → R3 be any smooth curve such that,

σ(0) = p and
dσ

dt
(0) = X,
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i.e. σ is a curve which passes through p at t = 0 with velocity X. (E.g. one can
take σ(t) = p + tX.) Now, look at the image of σ under F , i.e. consider β = F ◦ σ,
β : (−ε, ε) → R3, β(t) = F ◦ σ(t) = F (σ(t)). We have, β(0) = F (σ(0)) = F (p), i.e.,
β passes through F (p) at t = 0. Finally, let

Y =
dβ

dt
(0).

i.e. Y is the velocity vector of β at t = 0.

Exercise 2.1. Show that

Y = DF (p)X.

Note: In the above, X and Y are represented as column vectors, and the rhs of the
equation involves matrix multiplication. Hint: Use the chain rule.

Thus, roughly speaking, the geometric effect of the Jacobian is to “send velocity
vectors to velocity vectors”. The same result holds for mappings F : U ⊂ Rn → Rm

(i.e. it is not necessary to restrict to dimension three).

Reparameterizations

Given a regular curve σ : (a, b) → R3. Traversing the same path at a different
speed (and perhaps in the opposite direction) amounts to what is called a reparame-
terization.

Def. Let σ : (a, b) → R3 be a regular curve. Let h : (c, d) ⊂ R → (a, b) ⊂ R
be a diffeomorphism (i.e. h is 1-1, onto such that h and h−1 are smooth). Then
σ̃ = σ ◦ h : (c, d) → R3 is a regular curve, called a reparameterization of σ.

σ̃(u) = σ ◦ h(u) = σ(h(u))

I.e., start with curve σ = σ(t), make a change of parameter t = h(u), obtain repa-
rameterized curve σ̃ = σ(h(u)); t = original parameter, u = new parameter.
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Remarks.

1. σ and σ̃ describe the same path in space, just traversed at different speeds (and
perhaps in opposite directions).

2. Compare velocities:

σ̃ = σ(h(u)) i.e.,

σ̃ = σ(t), where t = h(u) .

By the chain rule,

dσ̃

du
=

dσ

dt
· dt

du
=

dσ

dt
· h′

h′ > 0: orientation preserving reparameterization.
h′ < 0: orientation reversing reparameterization.

Ex. σ : (0, 2π) → R3, σ(t) = (cos t, sin t, 0). Reparameterization function:
h : (0, π) → (0, 2π),

h : t = h(u) = 2u , u ∈ (0, π) ,

Reparameterized curve:

σ̃(u) = σ(t) = σ(2u)

σ̃(u) = (cos 2u, sin 2u, 0)

σ̃ describes the same circle, but traversed twice as fast,

speed of σ =

∣∣∣∣dσ

dt

∣∣∣∣ = 1 , speed of σ̃ =

∣∣∣∣dσ̃

du

∣∣∣∣ = 2 .

Remark Regular curves always admit a very important reparameterization: they
can always be parameterized in terms of arc length.

Length Formula: Consider a smooth curve defined on a closed interval,
σ : [a, b] → R3.
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σ is a smooth curve segment. Its length is defined by,

length of σ =

∫ b

a

|σ′(t)|dt.

I.e., to get the length, integrate speed wrt time.

Ex. σ(t) = (r cos t, r sin t, 0) 0 ≤ t ≤ 2π.

Length of σ =

∫ 2π

0

|σ′(t)|dt =

∫ 2π

0

rdt = 2πr.

Fact. The length formula is independent of parameterization, i.e., if σ̃ : [c, d] → R3

is a reparameterization of σ : [a, b] → R3 then length of σ̃ = length of σ.

Exercise 2.2 Prove this fact.

Arc Length Parameter:

Along a regular curve σ : (a, b) → R3 there is a distinguished parameter called arc
length parameter. Fix t0 ∈ (a, b). Define the following function (arc length function).

s = s(t), t ∈ (a, b) , s(t) =

∫ t

t0

|σ′(t)|dt .

Thus,

if t > t0, s(t) = length of σ from t0 to t

if t < t0, s(t) = −length of σ from t0 to t.

s = s(t) is smooth and by the Fundamental Theorem of calculus,

s′(t) = |σ′(t)| > 0 for all t ∈ (a, b)

Hence s = s(t) is strictly increasing, and so has a smooth inverse - can solve smoothly
for t in terms of s, t = t(s) (reparameterization function).
Then,

σ̃(s) = σ(t(s))

is the arc length reparameterization of σ.

Fact. A regular curve admits a reparameterization in terms of arc length.
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Ex. Reparameterize the circle σ(t) = (r cos t, r sin t, 0), −∞ < t < ∞, in terms of
arc length parameter.

Obtain the arc length function s = s(t),

s =

∫ t

0

|σ′(t)|dt =

∫ t

0

rdt

s = rt ⇒ t =
s

r
(reparam. function)

Hence,

σ̃(s) = σ(t(s)) = σ
(s

r

)
σ̃(s) = (r cos

(s

r

)
, r sin

(s

r

)
, 0).

Remarks

1. Often one relaxes the notation and writes σ(s) for σ̃(s) (i.e. one drops the tilde).

2. Let σ = σ(t), t ∈ (a, b) be a unit speed curve, |σ′(t)| = 1 for all t ∈ (a, b). Then,

s =

∫ t

t0

|σ′(t)|dt =

∫ t

t0

1dt

s = t− t0 .

I.e. up to a trivial translation of parameter, s = t. Hence unit speed curves are
already parameterized wrt arc length (as measured from some point). Conversely,
if σ = σ(s) is a regular curve parameterized wrt arc length s then σ is unit speed,
i.e. |σ′(s)| = 1 for all s (why?). Hence the phrases “unit speed curve” and “curve
parameterized wrt arc length” are used interchangably.

Exercise 2.3. Reparameterize the helix, σ : R → R3, σ(t) = (r cos t, r sin t, ht) in
terms of arc length.

Vector fields along a curve.

We will frequently use the notion of a vector field along a curve σ.

Def. Given a smooth curve σ : (a, b) → R3 a vector field along σ is a vector-valued
map X : (a, b) → R3 which assigns to each t ∈ (a, b) a vector X(t) at the point σ(t).
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Ex. Velocity vector field along σ : (a, b) → R3.

σ′ : (a, b) → R3, t → σ′(t) ;

if σ(t) = (x(t), y(t), z(t)), σ′(t) = (x′(t), y′(t), z′(t)).

Ex. Unit tangent vector field along σ.

T (t) =
σ′(t)

|σ′(t)|
.

|T (t)| = 1 for all t. (Note σ must be regular for T to be defined).

Ex. Find unit tangent vector field along σ(t) = (r cos t, r sin t, ht).

σ′(t) = (−r sin t, r cos t, h)

|σ′(t)| =
√

r2 + h2

T (t) =
1√

r2 + h2
(−r sin t, r cos t, h)

Note. If s → σ(s) is parameterized wrt arc length then |σ′(s)| = 1 (unit speed)
and so,

T (s) = σ′(s).

Differentiation. Analytically vector fields along a curve are just maps,

X : (a, b) ⊂ R → R3.

Can differentiate by expressing X = X(t) in terms of components,
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X(t) = (X ′(t), X2(t), X3(t)) ,

dX

dt
=

(
dX1

dt
,
dX2

dt
,
dX3

dt

)
.

Ex. Consider the unit tangent field to the helix,

T (t) =
1√

r2 + h2
(−r sin t, r cos t, h)

T ′(t) =
1√

r2 + h2
(−r cos t,−r sin t, 0).

Exercise 2.4. Let X = X(t) and Y = Y (t) be two smooth vector fields along
σ : (a, b) → R3. Prove the following product rules,

(1)
d

dt
〈X, Y 〉 = 〈dX

dt
, Y 〉+ 〈X,

dY

dt
〉

(2)
d

dt
X × Y =

dX

dt
× Y + X × dY

dt

Hint: Express in terms of components.

Curvature

Curvature of a curve is a measure of how much a curve bends at a given point:

This is quantified by measuring the rate at which the unit tangent turns wrt distance
along the curve. Given regular curve, t → σ(t), reparameterize in terms of arc length,
s → σ(s), and consider the unit tangent vector field,

T = T (s) (T (s) = σ′(s)).

Now differentiate T = T (s) wrt arc length,

dT

ds
= curvature vector
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.

The direction of
dT

ds
tells us which way the curve is bending. Its magnitude tells us

how much the curve is bending, ∣∣∣∣dT

ds

∣∣∣∣ = curvature

Def. Let s → σ(s) be a unit speed curve. The curvature κ = κ(s) of σ is defined
as follows,

κ(s) = |T ′(s)| (= |σ′′(s)|) ,

where ′ = d
ds

.

Ex. Compute the curvature of a circle of radius r.

Standard parameterization: σ(t) = (r cos t, r sin t, 0).

Arc length parameterization: σ(s) =
(
r cos

(s

r

)
, r sin

(s

r

)
, 0

)
.

T (s) = σ′(s) =
(
− sin

(s

r

)
, cos

(s

r

)
, 0

)
T ′(s) =

(
−1

r
cos

(s

r

)
,−1

r
sin

(s

r

)
, 0

)
= −1

r

(
cos

(s

r

)
, sin

(s

r

)
, 0

)
κ(s) = |T ′(s)| = 1

r

(Does this answer agree with intuition?)

Exercise 2.5. Let s → σ(s) be a unit speed plane curve,

σ(s) = (x(s), y(s), 0) .

For each s let,

φ(s) = angle between positive x-axis and T (s).

Show: κ(s) = |φ′(s)| (i.e. κ =

∣∣∣∣dφ

ds

∣∣∣∣ ).

Hint: Observe, T (s) = cos φ(s)i + sin φ(s)j (why?).
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Conceptually, the definition of curvature is the right one. But for computational
purposes it’s not so good. For one thing, it would be useful to have a formula for
computing curvature which does not require that the curve be parameterized with
respect to arc length. Using the chain rule, such a formula is easy to obtain.

Given a regular curve t → σ(t), it can be reparameterized wrt arc length s → σ(s).
Let T = T (s) be the unit tangent field to σ.

T = T (s), s = s(t),

So by the chain rule,

dT

dt
=

dT

ds
· ds

dt

=
dT

ds

∣∣∣∣dσ

dt

∣∣∣∣∣∣∣∣dT

dt

∣∣∣∣ =

∣∣∣∣dσ

dt

∣∣∣∣ ∣∣∣∣dT

ds

∣∣∣∣︸ ︷︷ ︸
κ

and hence,

κ =

∣∣∣∣dT

dt

∣∣∣∣∣∣∣∣dσ

dt

∣∣∣∣ ,

i.e.

κ(t) =
|T ′(t)|
|σ′(t)|

, ′ =
d

dt
.

Exercise 2.6. Use the above formula to compute the curvature of the helix σ(t) =
(r cos t, r sin t, ht).

Frenet-Equations

Let s → σ(s), s ∈ (a, b) be a regular unit speed curve such that κ(s) 6= 0 for all
s ∈ (a, b). (We will refer to such a curve as strongly regular). Along σ we are going
to introduce the vector fields,

T = T (s) - unit tangent vector field
N = N(s) - principal normal vector field
B = B(s) - binormal vector field

{T, N, B} is called a Frenet frame.
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At each point of σ
{T, N, B} forms an
orthonormal basis, i.e.
T,N, B are mutually
perpendicular unit vectors.

To begin the construction of the Frenet frame, we have the unit tangent vector
field,

T (s) = σ′(s), ′ =
d

ds

Consider the derivative T ′ = T ′(s).

Claim. T ′⊥T along σ.

Proof. It suffices to show 〈T ′, T 〉 = 0 for all s ∈ (a, b). Along σ,

〈T, T 〉 = |T |2 = 1.

Differentiating both sides,

d

ds
〈T, T 〉 =

d

ds
1 = 0

〈dT

ds
, T 〉+ 〈T,

dT

ds
〉 = 0

2〈dT

ds
, T 〉 = 0

〈T ′, T 〉 = 0.

Def. Let s → σ(s) be a strongly regular unit speed curve. The principal normal
vector field along σ is defined by

N(s) =
T ′(s)

|T ′(s)|
=

T ′(s)

κ(s)
(κ(s) 6= 0)

The binormal vector field along σ is defined by

B(s) = T (s)×N(s).

Note, the definition of N = N(s) implies the equation

T ′ = κN
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Claim. For each s, {T (s), N(s), B(s)} is an orthonormal basis for vectors in space
based at σ(s).

Mutually perpendicular:

〈T, N〉 = 〈T,
T ′

κ
〉 =

1

κ
〈T, T ′〉 = 0.

B = T ×N ⇒ 〈B, T 〉 = 〈B, N〉 = 0.

Unit length: |T | = 1, and

|N | =

∣∣∣∣ T ′

|T ′|

∣∣∣∣ =
|T ′|
|T ′|

= 1,

|B|2 = |T ×N |2

= |T |2|N |2 − 〈T, N〉2 = 1.

Remark on o.n. bases.

X = vector at σ(s).
X can be expressed as a linear combination
of T (s), N(s), B(s),

X = aT + bN + cB

The constants a, b, c are determined as follows,

〈X, T 〉 = 〈aT + bN + cB, T 〉
= a〈T, T 〉+ b〈N, T 〉+ c〈B, T 〉
= a

Hence, a = 〈X, T 〉, and similarly, b = 〈X, N〉, c = 〈X, B〉. Hence X can be
expressed as,

X = 〈X,T 〉T + 〈X,N〉N + 〈X, B〉B.
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Torsion: Torsion is a measure of “twisting”. Curvature is associated with T ′; torsion
is associated with B′:

B = T ×N
B′ = T ′ ×N + T ×N ′

= κN ×N + T ×N ′

Therefore B′ = T ×N ′ which implies B′⊥T , i.e.

〈B′, T 〉 = 0

Also, since B = B(s) is a unit vector along σ, 〈B, B〉 = 1 which implies by differen-
tiation,

〈B′, B〉 = 0

It follows that B′ is a multiple of N ,

B′ = 〈B′, T 〉T + 〈B′, N〉N + 〈B′, B〉B
B′ = 〈B′, N〉N.

Hence, we may write,

B′ = −τN

where τ = torsion := −〈B′, N〉.

Remarks

1. τ is a function of s, τ = τ(s).

2. τ is signed i.e. can be positive or negative.

3. |τ(s)| = |B′(s)|, i.e., τ = ±|B′|, and hence τ measuures how B wiggles.

Given a strongly regular unit speed curve σ, the collection of quantities T, N, B, κ, τ
is sometimes referred to as the Frenet apparatus.

Ex. Compute T, N, B, κ, τ for the unit speed circle.

σ(s) =
(
r cos

(s

r

)
, r sin

(s

r

)
, 0

)
T = σ′ =

(
− sin

(s

r

)
, cos

(s

r

)
, 0

)
T ′ = −1

r

(
cos

(s

r

)
, sin

(s

r

)
, 0

)
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κ = |T ′| = 1

r

N =
T ′

k
= −

(
cos

(s

r

)
, sin

(s

r

)
, 0

)
B = T ×N

=

∣∣∣∣∣∣
i j k

−s c 0
−c −s 0

∣∣∣∣∣∣
= k = (0, 0, 1) ,

(where c = cos
(s

r

)
and s = sin

(s

r

)
). Finally, since B′ = 0, τ = 0, i.e. the torsion

vanishes.

Conjecture. Let s → σ(s) be a strongly regular unit speed curve. Then, σ is a
plane curve iff its torsion vanishes, τ ≡ 0.

Exercise 2.7. Consider the helix,

σ(t) = (r cos t, r sin t, ht).

Show that, when parameterized wrt arc length, we obtain,

σ(s) = (r cos ωs, r sin ωs, hωs), (∗)

where ω =
1√

r2 + h2
.

Ex. Compute T, N, B, κ, τ for the unit speed helix (∗).

T = σ′ = (−rω sin ωs, rω cos ωs, hω)

T ′ = −ω2r(cos ωs, sin ωs, 0)

κ = |T ′| = ω2r =
r

r2 + h2
= const.

N =
T ′

κ
= (− cos ωs,− sin ωs, 0)
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B = T ×N =

∣∣∣∣∣∣
i j k

−rω sin ωs rω cos ωs hω
− cos ωs −sinωs 0

∣∣∣∣∣∣
B = (hω sin ωs,−hω cos ωs, rω)

B′ = (hω2 cos ωs, hω2 sin ωs, 0)

= hω2(cos ωs, sin ωs, 0)

B′ = −hω2N

B′ = −τN ⇒ τ = hw2 =
h

r2 + h2
.

Remarks.

Π(s) = osculating plane of σ at σ(s)
= plane passing through σ(s) spanned by N(s) and T (s)

(or equivalently, perpendicular to B(s)).

(1) s → Π(s) is the family of osculating planes along σ. The Frenet equation
B′ = −τN shows that the torsion τ measures how the osculating plane is twisting
along σ.

(2) Π(s0) passes through σ(s0) and is spanned by σ′(s0) and σ′′(s0). Hence, in a
sense that can be made precise, s → σ(s) lies in Π(s0) “ to second order in s”. If
τ(s0) 6= 0 then σ′′′(s0) is not tangent to Π(s0). Hence the torsion τ gives a measure
of the extent to which σ twists out of a given fixed osculating plane
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Theorem. (Frenet Formulas) Let s → σ(s) be a strongly regular unit speed curve.
Then the Frenet frame, T, N, B satisfies,

T ′ = κN
N ′ = −κT + τB
B′ = −τN

Proof. We have already established the first and third formulas. To establish the
second, observe B = T ×N ⇒ N = B × T . Hence,

N ′ = (B × T )′ = B′ × T + B × T ′

= −τN × T + κB ×N
= −τ(−B) + κ(−T )
= −κT + τB.

We can express Frenet formulas as a matrix equation, T
N
B

′

=

 0 κ 0
−κ 0 τ

0 −τ 0


︸ ︷︷ ︸

A

 T
N
B


A is skew symmetric: At = −A. A = [aij], then aji = −aij.

The Frenet equations can be used to derive various properties of space curves.

Proposition. Let s → σ(s), s ∈ (a, b), be a strongly regular unit speed curve.
Then, σ is a plane curve iff its torsion vanishes, τ ≡ 0.

Proof. Recall, the plane Π which passes through the point x0 ∈ R3 and is perpen-
dicular to the unit vector n consists of all points x ∈ R3 which satisfy the equation,

〈n, x− x0〉 = 0
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⇒: Assume s → σ(s) lies in the plane Π. Then, for all s,

〈n, σ(s)− x0〉 = 0

Since n is constant, differentiating twice gives,

d

ds
〈n, σ(s)− x0〉 = 〈n, σ′〉 = 〈n, T 〉 = 0 ,

d

ds
〈n, T 〉 = 〈n, T ′〉 = κ〈n,N〉 = 0 ,

Since n is a unit vector perpendicular to T and N , n = ±B, so B = ±n. I.e.,
B = B(s) is constant which implies B′ = 0. Therefore τ ≡ 0.

⇐: Now assume τ ≡ 0. B′ = −τN ⇒ B′ = 0, i.e. B(s) is constant,

B(s) = B = constant vector.

We show s → σ(s) lies in the plane, 〈B, x − σ(s0)〉 = 0, passing through σ(s0),
s0 ∈ (a, b), and perpendicular to B, i.e., will show,

〈B, σ(s)− σ(s0)〉 = 0 . (∗)

for all s ∈ (a, b). Consider the function, f(s) = 〈B, σ(s)− σ(s0)〉. Differentiating,

f ′(s) =
d

ds
〈B, σ(s)− σ(s0)〉

= 〈B′, σ(s)− σ(s0)〉+ 〈B, σ′(s)〉

= 0 + 〈B, T 〉 = 0 .

Hence, f(s) = c = const. Since f(s0) = 〈B, σ(s0) − σ(s0)〉 = 0., c = 0 and thus
f(s) ≡ 0. Therefore (∗) holds, i.e., s → σ(s) lies in the plane 〈B, x− σ(s0)〉 = 0.

Sphere Curves. A sphere curve is a curve in R3 which lies on a sphere,

|x− x0|2 = r2 , (sphere of radius r centered at x0)

〈x− x0, x− x0〉 = r2
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Thus, s → σ(s) is a sphere curve iff there exists x0 ∈ R3, r > 0 such that

〈σ(s)− x0, σ(s)− x0〉 = r2 , for all s. (∗)

If s → σ(s) lies on a sphere of radius r, it is reasonable to conjecture that σ has

curvature κ ≥ 1

r
(why?). We prove this.

Proposition. Let s → σ(s), s ∈ (a, b), be a unit speed curve which lies on a sphere

of radius r. Then its curvature function κ = κ(s) satisfies, κ ≥ 1

r
.

Proof Differentiating (*) gives,

2〈σ′, σ − x0〉 = 0

i.e.,
〈T, σ − x0〉 = 0.

Differentiating again gives:

〈T ′, σ − x0〉+ 〈T, σ′〉 = 0

〈T ′, σ − x0〉+ 〈T, T 〉 = 0

〈T ′, σ − x0〉 = −1 (⇒ T ′ 6= 0)

κ〈N, σ − x0〉 = −1

But,
|〈N, σ − x0〉| = |N ||σ − x0|| cos θ|

= r| cos θ|,
and so,

κ = |κ| = 1

|〈N, σ − x0〉|
=

1

r| cos θ|
≥ 1

r
.

Exercise 2.8. Prove that any unit speed sphere curve s → σ(s) having constant
curvature is a circle (or part of a circle). (Hints: Show that the torsion vanishes
(why is this sufficient?). To show this differentiate (∗) a few times.

Lancrets Theorem.

Consider the unit speed circular helix σ(s) = (r cos ωs, r sin ωs, hωs), ω = 1/
√

r2 + h2.
This curve makes a constant angle wrt the z-axis: T = 〈−rω sin ωs, r cos ωs, hω〉,

cos θ =
〈T,k〉
|T ||k|

= hω = const.
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Def. A unit speed curve s → σ(s) is called a generalized helix if its unit tangent
T makes a constant angle with a fixed unit direction vector u (⇔ 〈T,u〉 = cos θ =
const).

Theorem. (Lancret) Let s → σ(s), s ∈ (a, b) be a strongly regular unit speed curve
such that τ(s) 6= 0 for all s ∈ (a, b). Then σ is a generalized helix iff κ/τ =constant.

Non-unit Speed Curves.

Given a regular curve t → σ(t), it can be reparameterized in terms of arc length
s → σ̃(s), σ̃(s) = σ(t(s)), and the quantities T,N, B, κ, T can be computed. It is
convenient to have formulas for these quantities which do not involve reparameterizing
in terms of arc length.

Proposition. Let t → σ(t) be a strongly regular curve in R3. Then

(a) T =
σ̇

|σ̇|
, · = d

dt

(b) B =
σ̇ × σ̈

|σ̇ × σ̈|

(c) N = B × T

(d) κ =
|σ̇ × σ̈|
|σ̇|3

(e) τ =
〈σ̇ × σ̈,

...
σ〉

|σ̇ × σ̈|2

Proof. We derive some of these. See Theorem 1.4.5, p. 32 in Oprea for details.
Interpreting physically, t=time, σ̇=velocity, σ̈=acceleration. The unit tangent
may be expressed as,

T =
σ̇

|σ̇|
=

σ̇

v

where v = |σ̇| = speed. Hence,
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σ̇ = vT

σ̈ =
d

dt
vt =

dv

dt
T + v

dT

dt

=
dv

dt
T + v

dT

ds
· ds

dt

=
dv

dt
T + v(κN)v

σ̈ = v̇T + v2κN

Side Comment: This is the well-known expression for acceleration in terms of its
tangential and normal components.

v̇ = tangential component of acceleration (v̇ = s̈)

v2κ = normal component of acceleration

= centripetal acceleration (for a circle, v2κ =
v2

r
).

σ̇, σ̈ lie in osculating plane; if τ 6= 0,
...
σ does not.

Continuing the derivation,

σ̇ × σ̈ = vT × (v̇T + v2κN)
= vv̇T × T + v3κT ×N

σ̇ × σ̈ = v3κB
|σ̇ × σ̈| = v3κ|B| = v3κ

Hence,

κ =
|σ̇ × σ̈|

v3
=
|σ̇ × σ̈|
|σ̇|3

Also,
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B = const · σ̇ × σ̈ =
σ̇ × σ̈

|σ̇ × σ̈|
.

Exercise 2.9. Derive the expression for τ . Hint: Compute
...
σ and use Frenet

formulas.

Exercise 2.10. Suppose σ is a regular curve in the x-y plane, σ(t) = (x(t), y(t), 0),
i.e.,

σ :
x = x(t)
y = y(t)

(a) Show that the curvature of σ is given by,

κ =
|ẋÿ − ẏẍ|
[ẋ2 + ẏ2]3/2

(b) Use this formula to compute the curvature κ = κ(t) of the ellipse,

x2

a2
+

y2

b2
= 1 .

Fundamental Theorem of Space Curves

This theorem says basically that any strongly regular unit speed curve is com-
pletely determined by its curvature and torsion (up to a Euclidean motion).

Theorem. Let κ = κ(s) and τ = τ(s) be smooth functions on an interval (a, b) such
that κ(s) > 0 for all s ∈ (a, b). Then there exists a strongly regular unit speed curve
s → σ(s), s ∈ (a, b) whose curvature and torsion functions are κ and τ , respectively.
Moreover, σ is essentially unique, i.e. any other such curve σ̃ can be obtained from
σ by a Euclidean motion (translation and/or rotation).

Remarks

1. The FTSC shows that curvature and torsion are the essential quantities for
describing space curves.

2. The FTSC also illustrates a very important issue in differential geometry.
The problem of establishing the existence of some geometric object having certain
geometric properties often reduces to a problem concerning the existence of a solution
to some differential equation, or system of differential equations.
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Proof: Fix s0 ∈ (a, b), and in space fix P0 = (x0, y0, z0) ∈ R3 and a positively
oriented orthonormal frame of vectors at P0, {T0, N0, B0}.

We show that there exists a unique unit speed curve σ : (a, b) → R3 having
curvature κ and torsion τ such that σ(s0) = P0 and σ has Frenet frame {T0, N0, B0}
at σ(s0).

The proof is based on the Frenet formulas:

T ′ = κN

N ′ = −κT + τB

B′ = −τN

or, in matrix form,

d

ds

 T
N
B

 =

 0 κ 0
−κ 0 τ

0 −τ 0

 T
N
B

 .

The idea is to mimmick these equations using the given functions κ, τ . Consider
the following system of O.D.E.’s in the (as yet unknown) vector-valued functions
e1 = e1(s), e2 = e2(s), e3 = e3(s),

de1

ds
= κe2

de2

ds
= −κe1 + τe3

de3

ds
= −τe2


(∗)

We express this system of ODE’s in a notation convenient for the proof:

d

ds

 e1

e2

e3

 =

 0 κ 0
−κ 0 τ

0 −τ 0


︸ ︷︷ ︸

Ω

 e1

e2

e3

 ,

Set,

Ω =

 0 κ 0
−κ 0 τ

0 −τ 0

 =
[
Ωi

j
]
,
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i.e. Ω1
1 = 0, Ω1

2 = κ, Ω1
3 = 0, etc. Note that Ω is skew symmetric, Ωt = −Ω ⇐⇒

Ωj
i = −Ωi

j, 1 ≤ i, j ≤ 3. Thus we may write,

d

ds

 e1

e2

e3

 =
[
Ωi

j
]  e1

e2

e3

 ,

or,

d

ds
ei =

3∑
j=1

Ωi
jej , 1 ≤ i ≤ 3

IC :
e1(s0) = T0

e2(s0) = N0

e3(s0) = B0

Now, basic existence and unique result for systems of linear ODE’s guarantees
that this system has a unique solution:

s → e1(s), s → e2(s), s → e3(s), s ∈ (a, b)

We show that e1 = T , e2 = N , e3 = B, κ = κ and τ = τ for some unit speed curve
s → σ(s).

Claim {e1(s), e2(s), e3(s)} is an orthonormal frame for all s ∈ (a, b), i.e.,

〈ei(s), ej(s)〉 = δij ∀ s ∈ (a, b)

where δij is the “Kronecker delta” symbol:

δij =

{
0 i 6= j
1 i = j.

Proof of the claim: We make use of the “Einstein summation convention”:

d

ds
ei =

3∑
j=1

Ωi
jej = Ωi

jej

Let gij = 〈ei, ej〉, gij = gij(s), 1 ≤ i, j ≤ 3. Note,

gij(s0) = 〈ei(s0), ej(s0)〉
= δij

The gij’s satisfy a system of linear ODE’s,
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d

ds
gij =

d

ds
〈ei, ej〉

= 〈e′i, ej〉+ 〈ei, e
′
j〉

= 〈Ωi
kek, ej〉+ 〈ei, Ωj

`e`〉

= Ωi
k〈ek, ej〉+ Ωj

`〈ei, e`〉

Hence,

d

ds
gij = Ωi

kgkj + Ωj
`gi`

IC : gij(s0) = δij

Observe, gij = δij is a solution to this system,

LHS =
d

ds
δij =

d

ds
const = 0.

RHS = Ωi
kδkj + Ωj

`δi`

= Ωi
j + Ωj

i

= 0 (skew symmetry!).

But ODE theory guarantees a unique solution to this system. Therefore gij = δij is
the solution, and hence the claim follows.

How to define σ: Well, if s → σ(s) is a unit speed curve then

σ′(s) = T (s) ⇒ σ(s) = σ(s0) +

∫ s

s0

T (s)ds.

Hence, we define s → σ(s), s ∈ (a, b) by,

σ(s) = P0 +

∫ s

s0

e1(s)ds

Claim σ is unit speed, κ = κ, τ = τ , T = e1, N = e2, B = e3.
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We have,

σ′ =
d

ds
(P0 +

∫ s

s0

e1(s)ds) = e1

|σ′| = |e1| = 1 , therefore σ is unit speed,

T = σ′ = e1

κ = |T ′| = |e′1| = |κe2| = κ

N =
T ′

κ
=

e′1
κ

=
κe2

κ
= e2

B = T ×N = e1 × e2 = e3

B′ = e′3 = −τe2 = −τN ⇒

τ = τ .
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