Chapter 2. Parameterized Curves in R’

Def. A smooth curve in R? is a smooth map o : (a,b) — R3.
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For each t € (a,b), o(t) € R3. As t increases from a to b, o(t) traces out a curve in
R3. In terms of components,

o(t) = (z(t),y(t), 2(1)) , (1)
o x = z(t)

o: y=y(t) a<t<b,

z = z(t)
velocity at time ¢: Z—(Z(t) =o'(t) = ('(t),y (1), 2 (1)) ?
; e
speed at time t: ‘d_j(t)‘ = lo’(t)| T(+)
Y

Ex. o0:R —R? o(t) = (rcost,rsint,0) - the standard parameterization of the
unit circle,

T =rcost
o: y=rsint
z2=0
o'(t) = (—rsint,rcost,0)
lo'(t)] = r (constant speed)



Ex. 0:R—R3 o(t) = (rcost,rsint, ht), r,h > 0 constants (helix).

d(t) = (—rsint,rcost,h)

lo’'(t)] = Vr?2+h? (constant)

Def A regular curve in R? is a smooth curve o : (a,b) — R? such that o/(¢) # 0 for
all ¢ € (a,b).

That is, a regular curve is a smooth curve with everywhere nonzero velocity.
Ex. Examples above are regular.

Ex. 0:R—R3 o(t)=(t312,0). o issmooth, but not regular:

o'(t) = (3t%,2t,0), a'(0) = (0,0,0)

Graph:
z =t 2 1/3\2
y =t* = (z'/%)
z =
v

There is a cusp, not because the curve isn’t smooth, but because the velocity = 0
at the origin. A regular curve has a well-defined smoothly turning tangent, and hence
its graph will appear smooth.

The Geometric Action of the Jacobian (exercise)

Given smooth map F : U C R?® — R?, p € U. Let X be any vector based at the
point p. To X at p we associate a vector Y at F(p) as follows.
Let o : (—¢,¢) — R3 be any smooth curve such that,

d
c(0)=p and d—(tj(O) =X,



i.e. o is a curve which passes through p at ¢ = 0 with velocity X. (E.g. one can
take o(t) = p+tX.) Now, look at the image of o under F, i.e. consider § = F oo,
B:(—€e) =R B(t) = Foo(t) = F(o(t)). We have, 3(0) = F(c(0)) = F(p), i.e.,
B passes through F(p) at ¢ = 0. Finally, let

_ 4B
Y == (0).

i.e. Y is the velocity vector of § at ¢t = 0.

|7+ )2

Exercise 2.1. Show that
Y =DF(p)X.

Note: In the above, X and Y are represented as column vectors, and the rhs of the
equation involves matrix multiplication. Hint: Use the chain rule.

Thus, roughly speaking, the geometric effect of the Jacobian is to “send velocity
vectors to velocity vectors”. The same result holds for mappings F': U C R* — R™
(i.e. it is not necessary to restrict to dimension three).

Reparameterizations

Given a regular curve o : (a,b) — R3. Traversing the same path at a different
speed (and perhaps in the opposite direction) amounts to what is called a reparame-
terization.

Def. Let o : (a,b) — R? be a regular curve. Let h : (¢,d) C R — (a,b) C R
be a diffeomorphism (i.e. h is 1-1, onto such that h and h~! are smooth). Then
d=o0co0h:(c,d) — R3is a regular curve, called a reparameterization of o.

(u) = o oh(u) =oc(h(u))

Le., start with curve o = o(t), make a change of parameter t = h(u), obtain repa-
rameterized curve & = o(h(u)); t = original parameter, u = new parameter.



Remarks.

1. o and & describe the same path in space, just traversed at different speeds (and
perhaps in opposite directions).

2. Compare velocities:

Qe
|

o(h(u)) ie.,
o(t), where t = h(u).

Qe

By the chain rule,

o _do dt_do
du dt du dt

h' > 0: orientation preserving reparameterization.

h' < 0: orientation reversing reparameterization.

Ex. 0:(0,21) — R3 o(t) = (cost,sint,0). Reparameterization function:
h:(0,7) — (0,27),

h:t=h(u)=2u, u e (0,m),
Reparameterized curve:

g(u) = o(t) =o0(2u)

(u) = (cos2u,sin2u,0)

o describes the same circle, but traversed twice as fast,

do
dt

do

—l=2.
du

=1, speed of 6 =

speed of o0 =

Remark Regular curves always admit a very important reparameterization: they
can always be parameterized in terms of arc length.

Length Formula:  Consider a smooth curve defined on a closed interval,
o:la,b] — R3.

g (6) = final bemL

T(@) = ja kel po;n‘f



o is a smooth curve segment. Its length is defined by,
b
length of o0 = / |0’ (t)|dt.

Le., to get the length, integrate speed wrt time.

Ex. o(t) = (rcost, rsint,0) 0<t < 2.

2m 2m
Length of o = / |0’ (t)|dt = / rdt = 27r.
0 0

Fact. The length formula is independent of parameterization, i.e., if 7 : [¢,d] — R?
is a reparameterization of o : [a,b] — R3 then length of & = length of o.

Exercise 2.2 Prove this fact.

Arc Length Parameter:

Along a regular curve o : (a,b) — R? there is a distinguished parameter called arc
length parameter. Fix ty € (a,b). Define the following function (arc length function).

5= s(t), te(ab), s(t)—/t|a/(t)|dt.

Thus,
if t > tog, s(t) = length of o from t( to t st gt
if t <to, s(t) = —length of ¢ from ¢, to t. a(£y)

s = s(t) is smooth and by the Fundamental Theorem of calculus,
s'(t) =|o'(t)| > 0 for all t € (a,b)

Hence s = s(t) is strictly increasing, and so has a smooth inverse - can solve smoothly
for t in terms of s, t = t(s) (reparameterization function).

Then,
d(s) = o(i(s))

is the arc length reparameterization of o.
Fact. A regular curve admits a reparameterization in terms of arc length.
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Ex. Reparameterize the circle o(t) = (rcost,rsint,0), —oo < t < oo, in terms of
arc length parameter.

Obtain the arc length function s = s(t),

t t
s = /|a’(t)\dt:/rdt
0 0
S
=1t = i

s = (reparam. function)
Hence,
. s
5(s) = oltls) = (>)
a(s) = (rcos <§>, rsin <§>,0)
r r
Remarks

1. Often one relaxes the notation and writes o(s) for &(s) (i.e. one drops the tilde).

2. Let 0 = o(t), t € (a,b) be a unit speed curve, |o'(t)] =1 for all t € (a,b). Then,

t t
s = /|a’(t)|dt:/1dt
to to

s = t—t()

L.e. up to a trivial translation of parameter, s = t. Hence unit speed curves are
already parameterized wrt arc length (as measured from some point). Conversely,
if o = o(s) is a regular curve parameterized wrt arc length s then o is unit speed,
i.e. |0'(s)| = 1 for all s (why?). Hence the phrases “unit speed curve” and “curve
parameterized wrt arc length” are used interchangably.

Exercise 2.3. Reparameterize the helix, o : R — R3, o(t) = (rcost,rsint, ht) in
terms of arc length.

Vector fields along a curve.

We will frequently use the notion of a vector field along a curve o.

Def. Given a smooth curve o : (a,b) — R3 a vector field along o is a vector-valued
map X : (a,b) — R?® which assigns to each t € (a,b) a vector X (t) at the point o(t).



XL(t)

7 (e)

Ex. Velocity vector field along o : (a,b) — R3.
o' :(a,b) = R3 t— o'(t); Y

if o(t) = (x(t),y(t), 2(1)), o'(t) = (2'(t),y/(t), 2 (1))- 7)

Ex. Unit tangent vector field along o.

40
()

|T(t)| =1 for all . (Note o must be regular for 7" to be defined).

T(t)

Ex. Find unit tangent vector field along o(t) = (r cost, rsint, ht).

d(t) = (—rsint,rcost,h)

o' (t)] = Vr2+h?

1

T(t) = ———(—rsint,rcost,h
N )
Note. If s — o(s) is parameterized wrt arc length then |o’(s)| = 1 (unit speed)
and so,
T(s)=0d'(s).

Differentiation. Analytically vector fields along a curve are just maps,

X :(a,b) CR — R®.

Can differentiate by expressing X = X (¢) in terms of components,
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X(t) = (X'(1),X*(t), X°(t))

dX dX' dXx? dx?
dt dt = dt ’ dt

Ex. Consider the unit tangent field to the helix,

1 .

T(t) = m(—rsmt,reost,h)
1

T'(t) = ———=(—rcost,—rsint,0).

Exercise 2.4. Let X = X(¢) and Y = Y(¢) be two smooth vector fields along
o : (a,b) — R3. Prove the following product rules,

d dX dy
D Lixyy = (2 vy oo 48
o vy =y
d dX dy
9 Lxwxy=2C o yixx®
(2) X~ a St Ty

Hint: Express in terms of components.

Curvature

Curvature of a curve is a measure of how much a curve bends at a given point:

]arﬁe

/7'_—\

srmalf

This is quantified by measuring the rate at which the unit tangent turns wrt distance
along the curve. Given regular curve, ¢ — o(t), reparameterize in terms of arc length,
s — o(s), and consider the unit tangent vector field,

T=T(s)  (T(s) =0'(s)).
Now differentiate T' = T'(s) wrt arc length,

— = curvature vector

ds



dT
The direction of — tells us which way the curve is bending. Its magnitude tells us

s
how much the curve is bending,

dT
ds

= curvature

Def. Let s — o(s) be a unit speed curve. The curvature k = k(s) of o is defined
as follows,

K(s) = T'(s)] (= lo"(s)]),

where ' = di.
S

Ex. Compute the curvature of a circle of radius r.

Standard parameterization:  o(t) = (rcost,rsint,0).

Arc length parameterization: o(s) = (T cos (f) , T sin <§> ,O) :
r r

T(s) = d'(s)= (— sin (;) , COS (;) ,O)

T'(s) = (—% cos (;) ,—% sin (;) ,O)
- ()

W) = IT(s)| =

(Does this answer agree with intuition?)

Exercise 2.5. Let s — o(s) be a unit speed plane curve,

For each s let,

b TE¢)
¢(s) = angle between positive z-axis and T'(s). J Z“jm

T(s)

Show: k(s) =|¢'(s)| (ie k= ‘%’ ). l
Hint: Observe, T'(s) = cos ¢(s)i + sin@(s)j (why?).



Conceptually, the definition of curvature is the right one. But for computational
purposes it’s not so good. For one thing, it would be useful to have a formula for
computing curvature which does not require that the curve be parameterized with
respect to arc length. Using the chain rule, such a formula is easy to obtain.

Given a regular curve t — o(t), it can be reparameterized wrt arc length s — o(s).
Let T'= T'(s) be the unit tangent field to o.

T="T(s), s=s(t),

So by the chain rule,

a1 dT ds
dt —  ds dt
_ |
 ds | dt
4| _ |do |4
dt | |dt||ds
—~—
and hence,
dT
o dt
do”’
dt
1.e.
@) , d

O="Zor T a

Exercise 2.6. Use the above formula to compute the curvature of the helix o(t) =
(rcost,rsint, ht).

Frenet-Equations

Let s — o(s), s € (a,b) be a regular unit speed curve such that x(s) # 0 for all
s € (a,b). (We will refer to such a curve as strongly regular). Along o we are going
to introduce the vector fields,

T =T(s) - unit tangent vector field
N = N(s) - principal normal vector field
B = B(s) - binormal vector field

{T', N, B} is called a Frenet frame.
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At each point of o
B T {T, N, B} forms an
orthonormal basis, i.e.
N T, N, B are mutually

/ / perpendicular unit vectors.

To begin the construction of the Frenet frame, we have the unit tangent vector
field,

T(s) =d'(s), = —

Consider the derivative 7" = T"(s).

Claim. T7’1T along o.
Proof. Tt suffices to show (T",T) = 0 for all s € (a,b). Along o,

(I\T) = |T]* =1.

Differentiating both sides,

d d
—(TTY=—1 = 0
ds<’ ) ds
dT’ dT
Yoy =
dT
20— T) = 0
<d87 >
(T',T) = 0.

Def. Let s — o(s) be a strongly regular unit speed curve. The principal normal
vector field along o is defined by
T'(s) _ T'(s)

“EE T A O F

N(s)
The binormal vector field along o is defined by
B(s) =T(s) x N(s).
Note, the definition of N = N(s) implies the equation
T = kN

11



Claim. For each s, {T(s), N(s), B(s)} is an orthonormal basis for vectors in space
based at o(s).

Mutually perpendicular:

@, Ny = (1, Ly =

K K

(T, T') = 0.

B=TxN = (B,T) = (B,N) = 0.
Unit length: |7 =1, and

T/

/
T
T

IN| = =11,
|T"]

BI* = |T xN|*

= |T’IN|* = (T,N)* = 1.

Remark on o.n. bases.

X

X = vector at o(s).
‘T X can be expressed as a linear combination

N Tis) OfT(S),N(S),B(S),

X =aT +bN +c¢B

The constants a, b, ¢ are determined as follows,

(X, Ty = (aI'+bN +cB,T)
= o(T,T) +b(N,T) + c(B,T)

= a

Hence, a = (X,T), and similarly, b = (X,N), ¢ = (X, B). Hence X can be
expressed as,

X = (X, T)T + (X, N)N + (X, B)B.
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Torsion: Torsion is a measure of “twisting”. Curvature is associated with 7”; torsion
is associated with B’

B = TxN
B = T'"xN+TxN
= kNXN+Tx N
Therefore B’ =T x N’ which implies B’ LT, i.e.
(B',T) =0

Also, since B = B(s) is a unit vector along o, (B, B) = 1 which implies by differen-
tiation,

(B',B) =0
It follows that B’ is a multiple of N,

B' = (B',T)T +(B,N)N + (B', B\B
B' = (B',N)N.

Hence, we may write,
B'= —7N
where 7 = torsion := —(B’, N).

Remarks
1. 71is a function of s, 7 = 7(s).
2. T is signed i.e. can be positive or negative.

3. |7(s)| =|B'(s)|, i.e., 7 = | B’|, and hence 7 measuures how B wiggles.

Given a strongly regular unit speed curve o, the collection of quantities T, N, B, k, T
is sometimes referred to as the Frenet apparatus.

Ex. Compute T, N, B, k,7 for the unit speed circle.

o = (res (2)ron (2)0)
r e (D) (2) )
v e (2) o (2) )
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B = TxN
i j k
= —S c 0
—c —s 0
= k=(0,0,1),

(where ¢ = cos <§> and s = sin <f>) Finally, since B’ = 0, 7 = 0, i.e. the torsion
r r

vanishes.

Conjecture. Let s — o(s) be a strongly regular unit speed curve. Then, o is a
plane curve iff its torsion vanishes, 7 = 0.

Exercise 2.7. Consider the helix,
o(t) = (rcost,rsint, ht).
Show that, when parameterized wrt arc length, we obtain,

o(s) = (rcosws, rsinws, hws), (%)
1

Ex. Compute T, N, B, k,7 for the unit speed helix (x).

where w =

T = o = (—rwsinws,rwcosws, hw)
T = —wr(cosws,sinws,0)
r
k = |T'| = w’r = 7 = const.
r?+h

/
N = — =(—cosws,—sinws,0)

K
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i j k

B = TxN=| —rwsinws rwcosws hw
— COS WS —stnmws 0

B = (hwsinws, —hw cosws, rw)

B' = (hw’®cosws, hw’sinws,0)

= hw?(cosws, sinws, 0)

B = —hu®:N

o
r2 4 h?

B = —7N=71=hw’=

Remarks.

TT¢s)

II(s) = osculating plane of o at o(s)
= plane passing through o(s) spanned by N(s) and T'(s)
(or equivalently, perpendicular to B(s)).

(1) s — TI(s) is the family of osculating planes along o. The Frenet equation
B’ = —7N shows that the torsion 7 measures how the osculating plane is twisting
along o.

(2) TI(sg) passes through o(sg) and is spanned by o'(sg) and o”(sg). Hence, in a
sense that can be made precise, s — o(s) lies in TI(sp) “ to second order in s”. If
7(s0) # 0 then 0”(sg) is not tangent to II(sy). Hence the torsion 7 gives a measure
of the extent to which o twists out of a given fixed osculating plane
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Theorem. (Frenet Formulas) Let s — o(s) be a strongly regular unit speed curve.
Then the Frenet frame, T', N, B satisfies,

T = kN
N = —kT + 1B
B = —TN

Proof. We have already established the first and third formulas. To establish the
second, observe B =T x N = N = B x T. Hence,

N = (BxT)=B"xT+BxT
= —TNXT+kKBxN
= —7(=B) +k(-T)
= —kI'+7B.

We can express Frenet formulas as a matrix equation,

!/

T 0 k 0 T
N | =|-« 071 N
B 0 —7 0 B
A
A is skew symmetric: A" = —A. A = [a;], then aj; = —ay;.

The Frenet equations can be used to derive various properties of space curves.

Proposition. Let s — o(s), s € (a,b), be a strongly regular unit speed curve.
Then, o is a plane curve iff its torsion vanishes, 7 = 0.

Proof. Recall, the plane II which passes through the point zy € R? and is perpen-
dicular to the unit vector n consists of all points x € R? which satisfy the equation,

(n,x —x9) =0

16



=: Assume s — o(s) lies in the plane II. Then, for all s,
(n,o(s) —xg) =0

Since n is constant, differentiating twice gives,

d N B
£<n,a(s) —z9) = (n,0’y=(n,T) = 0,
d

SnT) = (0. T) = wln, N) = 0,

Since n is a unit vector perpendicular to T and N, n = +B, so B = +n. le,
B = B(s) is constant which implies B’ = 0. Therefore 7 = 0.

«<: Now assume 7 =0. B'= —7N = B’ =0, i.e. B(s) is constant,
B(s) = B = constant vector.

We show s — o(s) lies in the plane, (B,x — o(s¢)) = 0, passing through o(so),
so € (a,b), and perpendicular to B, i.e., will show,

(B,o(s) —o(so)) =0. (%)
for all s € (a,b). Consider the function, f(s) = (B,o(s) — o(sp)). Differentiating,

d

fils) = —-(B,o(s) —a(so))

= (B 0(s) —a(s0)) + (B, d'(s))
= 0+(B,T)=0.

Hence, f(s) = ¢ = const. Since f(so) = (B,0(s9) — o(s9)) = 0., ¢ = 0 and thus
f(s) = 0. Therefore (x) holds, i.e., s — o(s) lies in the plane (B,z — o(sg)) = 0.

Sphere Curves. A sphere curve is a curve in R? which lies on a sphere,

lz — x| = 12, (sphere of radius r centered at x¢)

2

(x —xg, 0 —x0) = T a
"
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Thus, s — o(s) is a sphere curve iff there exists xy € R?, r > 0 such that

(o(8) — 0,0(8) —x0) =72, for all s. (%)

If s — o(s) lies on a sphere of radius r, it is reasonable to conjecture that o has

1
curvature k > — (why?). We prove this.
r

Proposition. Let s — o(s), s € (a,b), be a unit speed curve which lies on a sphere

1
of radius r. Then its curvature function xk = k(s) satisfies, k > —.
r

Proof Differentiating (*) gives,
2(c’ 0 — 1) =0

ie.,
<T'7 g — .Z'0> =0.

Differentiating again gives:

(T',0 —xo) +(T,0"y = 0
(T",0 —xo) + (I, T) = 0
(T'o—x9) = -1 (=T #0)
K(N,o —x9) = —1
But,
|(N,o —x9)|] = |N||lo — ]| cos|
= r|cosb|,
and so,
K=|k| = ! = L > 1
|[(N,o — )| 7|cos@] — r

Exercise 2.8. Prove that any unit speed sphere curve s — o(s) having constant
curvature is a circle (or part of a circle). (Hints: Show that the torsion vanishes
(why is this sufficient?). To show this differentiate (%) a few times.

Lancrets Theorem.

Consider the unit speed circular helix o(s) = (r cosws, rsinws, hws),w = 1/v/r2? + h2.
This curve makes a constant angle wrt the z-axis: T' = (—rwsinws, r cosws, hw),

T k
cosf = u = hw = const.

T |k|
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Def. A unit speed curve s — o(s) is called a generalized helix if its unit tangent
T makes a constant angle with a fixed unit direction vector u (< (T, u) = cosf =
const).

Theorem. (Lancret) Lets — o(s), s € (a,b) be a strongly reqular unit speed curve
such that 7(s) # 0 for all s € (a,b). Then o is a generalized helix iff k/T =constant.

Non-unit Speed Curves.

Given a regular curve t — o(t), it can be reparameterized in terms of arc length
s — a(s), a(s) = o(t(s)), and the quantities T, N, B, k,T can be computed. It is
convenient to have formulas for these quantities which do not involve reparameterizing
in terms of arc length.

Proposition. Let t — o(t) be a strongly regular curve in R3. Then

o d
-2 -2
(&) El dt
o X0
b —
(b) |0 x o

(e)

Proof. ~ We derive some of these. See Theorem 1.4.5, p. 32 in Oprea for details.
Interpreting physically, t=time, o¢=velocity, &=acceleration. The unit tangent
may be expressed as, ' .
o o
T = — = —
v

6]

where v = |d| = speed. Hence,
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o = JvT

s oo 4 dvy dT
T @ T T
dv dT ds
bty IRl
a TV @
dv

= dtT+ v(kN)v

d = 0T +v’kN

Side Comment: This is the well-known expression for acceleration in terms of its
tangential and normal components.

0 = tangential component of acceleration (v = §)

v?k = normal component of acceleration
2

: . : 9 v
= centripetal acceleration (for a circle, vk = —).
r

0, lie in osculating plane; if 7 # 0, 0 does not.

Continuing the derivation,

ogxd = vT x (0T +v*kN)
= 0T xT+v3kT x N
oxs = v’kB
o0 x 5| = v¥k|B|=v3k
Hence,
o x| |oxa|
T |(-7‘3
Also,
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.. oX0o
B=const -0 xXx06=—-—.
|0 x G
Exercise 2.9. Derive the expression for 7. Hint: Compute 0 and use Frenet
formulas.

Exercise 2.10. Suppose o is a regular curve in the z-y plane, o(t) = (z(t),y(t),0),
ie.,

b L= x(t)
y =y(t)
(a) Show that the curvature of o is given by,
- g
[x'z + y'2]3/2

(b) Use this formula to compute the curvature k = k(t) of the ellipse,

2 2
S T
a b2

Fundamental Theorem of Space Curves

This theorem says basically that any strongly regular unit speed curve is com-
pletely determined by its curvature and torsion (up to a Euclidean motion).

Theorem. Letk =F%(s) andT = 7(s) be smooth functions on an interval (a,b) such
that ®(s) > 0 for all s € (a,b). Then there exists a strongly regular unit speed curve
s — o(s), s € (a,b) whose curvature and torsion functions are & and T, respectively.
Moreover, o is essentially unique, i.e. any other such curve ¢ can be obtained from
o by a FEuclidean motion (translation and/or rotation).

Remarks

1. The FTSC shows that curvature and torsion are the essential quantities for
describing space curves.

2. The FTSC also illustrates a very important issue in differential geometry.
The problem of establishing the existence of some geometric object having certain
geometric properties often reduces to a problem concerning the existence of a solution
to some differential equation, or system of differential equations.
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Proof:  Fix sy € (a,b), and in space fix P

(w0, Y0, 20) € R® and a positively

oriented orthonormal frame of vectors at Py, {To, No, Bo}-

We show that there exists a unique unit speed curve o

: (a,b) — R3 having

curvature £ and torsion T such that o(sq) = Fy and ¢ has Frenet frame {1y, Ny, By}

at o(so).

The proof is based on the Frenet formulas:

T/
N/
B/

or, in matrix form,

T
51 B

kN
—kT + 7B
—1tN
0 x O
—K 0 7
0 —7 0

T
N
B

The idea is to mimmick these equations using the given functions &, 7. Consider
the following system of O.D.E.’s in the (as yet unknown) vector-valued functions

e1 = e1(s), e2 = ea(s), e3 = e3(s),

dey
ds
dey _
ds

d63
ds

EGQ

—Ke| + Teg

—?62

We express this system of ODE’s in a notation convenient for the proof:

d €1 0 r 0 €1
d_ €9 = —K 0 7 ()] s

5 €3 0 —7 0 €3

Q
Set,

0 ® O

Q=| -8 0 7 |=[Q7],
0 —7 0
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ie. W1 =0, 02 =%, Q3 =0, etc. Note that Q is skew symmetric, Qf = —Q <=
Q' =-0Q7, 1<4,j<3. Thus we may write,

d €1 [ } €1
- | €2 = Q7 €2 )
ds e e
or,
d 3
d—ez:ZQi ej, 1<i<3
S o
61(80) =T
IC 62(80) = NO
63(80) = BQ

Now, basic existence and unique result for systems of linear ODE’s guarantees
that this system has a unique solution:

s —ei(s), s — eas), s — es(s), s € (a,b)

We show that e; =T, ea = N, e3 = B, Kk = k and T = 7 for some unit speed curve
s — o(s).

Claim {e;(s),ea(s),es(s)} is an orthonormal frame for all s € (a,b), i.e.,
(ei(s),ej(s)) =0i; ¥V s € (a,b)

where 9;; is the “Kronecker delta” symbol:

_J 0 i#g
5“_{1 i=7.

Proof of the claim: We make use of the “Einstein summation convention”:

d L .
Eei = ZQijej = Qi]ej
j=1

Let g;; = (ei,e;), gij = gij(s),1 < 4,7 < 3. Note,

9i5(s0) = (ei(s0),¢€;(s0))
= 0y

The g;;'s satisfy a system of linear ODE'’s,
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dsg” - ds €

= (e}, e;) + (ei, €))
= (QPer,e;) + (e, Q)
= Qik<€k, €j> + Qj£<6i, €[>

Hence,

d K ¢
7590 = Qi g + Q5 gue

IC : gij (80) = 57Lj
Observe, g;; = d;; is a solution to this system,

d d
LHS = %@j = Econst =0.

RHS = Q*6,; + Q%
= 0 (skew symmetry!).

But ODE theory guarantees a unique solution to this system. Therefore g;; = d;; is
the solution, and hence the claim follows.

How to define o: Well, if s — o(s) is a unit speed curve then

d(s)=T(s) = o(s)=o0(s0)+ /S T(s)ds.
Hence, we define s — o(s), s € (a,b) by,
o(s) =Py + /S e1(s)ds

Claim o is unit speed, k =R, 7=7,T =e;, N = e3, B = e3.
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We have,

d S
E(PO —i—/ e1(s)ds) = e;

S0
lex] =1, therefore o is unit speed,
/

g = e

T = |et| = [Feo| =R

TXN:€1><€Q:63

ey =—Teg =—TN =

ml
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