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1.1 Lorentzian causality
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Lorentzian Causality

Lorentzian manifolds

We start with an (n+1)-dimensional Lorentzian manifold (M, g). Thus, at each
p ∈ M,

g : TpM × TpM → R

is a scalar product of signature (−,+, ...,+). With respect to an orthonormal
basis {e0, e1, ..., en}, as a matrix,

[g(ei , ej )] = diag(−1,+1, ...,+1) .

Example: Minkowski space, the spacetime of Special Relativity. Minkowski

space is Rn+1, equipped with the Minkowski metric η: For vectors X = X i ∂
∂x i ,

Y = Y i ∂
∂x i at p, (where x i are standard Cartesian coordinates on Rn+1),

η(X ,Y ) = ηij X
i X j = −X 0Y 0 +

n∑
i=1

X i Y i .

Thus, each tangent space of a Lorentzian manifold is isometric to Minkowski
space. This builds in the locally accuracy of Special Relativity in General
Relativity.
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Causal character of vectors.

At each point, vectors fall into three classes, as follows:

X is


timelike if g(X ,X ) < 0

null if g(X ,X ) = 0

spacelike if g(X ,X ) > 0 .

A vector X is causal if it is either timelike or null.

The set of null vectors X ∈ TpM forms a double cone Vp in the tangent space
TpM:

called the null cone (or light cone) at p.
Timelike vectors point inside the null cone and spacelike vectors point outside.

Time orientability.

At each p ∈ M we have a double cone; label one cone the future cone and the
other a past cone.

If this assignment of a past and future cone can be made in a continuous
manner over all of M then we say that M is time-orientable.
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Time orientability (cont.).

There are various ways to make the phrase “continuous assignment” precise
(see e.g., O’Neill p. 145), but they all result in the following:

Fact: A Lorentzian manifold Mn+1 is time-orientable iff it admits a smooth
timelike vector field T .

If M is time-orientable, the choice of a smooth time-like vector field T fixes a
time orientation on M: A causal vector X ∈ TpM is future pointing if it points
into the same half-cone as T , and past pointing otherwise.

(Remark: If M is not time-orientable, it admits a double cover that is.)

By a spacetime we mean a connected time-oriented Lorentzian manifold
(Mn+1, g).
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Causal character of curves.

Let γ : I → M, t → γ(t) be a smooth curve in M.

I γ is said to be timelike provided γ′(t) is timelike for all t ∈ I .

In GR, a timelike curve corresponds to the history (or worldline) of an
observer.

I Null curves and spacelike curves are defined analogously.

A causal curve is a curve whose tangent is either timelike or null at each
point.

I The length of a causal curve γ : [a, b]→ M, is defined by

L(γ) = Length of γ =

∫ b

a

|γ′(t)|dt =

∫ b

a

√
−〈γ′(t), γ′(t)〉 dt .

Owing to the Lorentz signature, causal geodesics locally maximize length.

If γ is timelike one can introduce arc length parameter along γ. In general
relativity, the arc length parameter along a timelike curve is called proper
time, and corresponds to time kept by the observer.
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Futures and Pasts

Let (M, g) be a spacetime. A timelike (resp. causal) curve γ : I → M is said to
be future directed provided each tangent vector γ′(t), t ∈ I , is future pointing.
(Past-directed timelike and causal curves are defined in a time-dual manner.)

Causal theory is the study of the causal relations � and <:

Definition 1.1

For p, q ∈ M,

1. p � q means there exists a future directed timelike curve in M from p to
q (we say that q is in the timelike future of p),

2. p < q means there exists a future directed causal curve in M from p to q
(we say that q is in the causal future of p),

We shall use the notation p ≤ q to mean p = q or p < q.

The causal relations � and < are clearly transitive. Also, from variational
considerations, it is heuristically clear that the following holds,

if p � q and q < r then p � r .
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Proposition 1.2 (O’Neill, p. 294)

In a spacetime M, if q is in the causal future of p (p < q) but is not in the
timelike future of p (p 6� q) then any future directed causal curve γ from p to
q must be a null geodesic (when suitably parameterized).

Now introduce standard causal notation:

Definition 1.3

Given any point p in a spacetime M, the timelike future and causal future of p,
denoted I +(p) and J+(p), respectively, are defined as,

I +(p) = {q ∈ M : p � q} and J+(p) = {q ∈ M : p ≤ q} .

The timelike and causal pasts of p, I−(p) and J−(p), respectively, are defined
in a time-dual manner in terms of past directed timelike and causal curves.

With respect to this notation, the above proposition becomes:

Propostion If q ∈ J+(p) \ I +(p) then any future directed causal curve from p
to q is a null geodesic.
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In general, sets of the form I +(p) are open (see e.g. Gal-ESI). However, sets of
the form J+(p) need not be closed, as can be seen by removing a point from
Minkowski space.

For any subset S ⊂ M, we define the timelike and causal future of S , I +(S)
and J+(S), respectively by

I +(S) =
⋃
p∈S

I +(p) = {q ∈ M : p � q for some p ∈ S} (1.1)

J+(S) =
⋃
p∈S

J+(p) = {q ∈ M : p ≤ q for some p ∈ S} . (1.2)

Note:

I S ⊂ J+(S).

I I +(S) is open (union of open sets).

I−(S) and J−(S) are defined in a time-dual manner.
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Achronal Boundaries

Achronal sets play an important role in causal theory.

Definition 1.4

A subset S ⊂ M is achronal provided no two of its points can be joined by a
timelike curve.

Of particular importance are achronal boundaries.

Definition 1.5

An achronal boundary is a set of the form ∂I +(S) (or ∂I−(S)), for some
S ⊂ M.

The following figure illustrates some of the important structural properties of
achronal boundaries.

Proposition 1.6

An achronal boundary ∂I +(S), if nonempty, is a closed achronal C 0

hypersurface in M.
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Fact: If p ∈ ∂I +(S) then I +(p) ⊂ I +(S), and I−(p) ⊂ M \ I +(S) (exercise).

The next two claims follow easily from this fact (see Gal-ESI for details).

Claim A: An achronal boundary ∂I +(S) is achronal.

Definition 1.7

Let S ⊂ M be achronal. Then p ∈ S is an edge point of S provided every
neighborhood U of p contains a timelike curve γ from
I−(p,U) to I +(p,U) that does not meet S.

We denote by edgeS the set of edge points of S . If edgeS = ∅ we say that S
is edgeless.

Claim B: An achronal boundary is edgeless.

Claim C: An edgeless achronal set S , if nonempty, is a C 0 hypersurface in M.

Proof: See O’Neill, p. 413.
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Causality conditions

A number of results in Lorentzian geometry and general relativity require some
sort of causality condition.

Chronology condition: A spacetime M satisfies the chronology condition
provided there are no closed timelike curves in M.

Compact spacetimes have limited interest in general relativity since they all
violate the chronology condition.

Proposition 1.8

Every compact spacetime contains a closed timelike curve.

Proof: The sets {I +(p); p ∈ M} form an open cover of M from which we can
abstract a finite subcover: I +(p1), I +(p2), ..., I +(pk ). We may assume that
this is the minimal number of such sets covering M. Since these sets cover M,
p1 ∈ I +(pi ) for some i . It follows that I +(p1) ⊂ I +(pi ). Hence, if i 6= 1, we
could reduce the number of sets in the cover. Thus, p1 ∈ I +(p1) which implies
that there is a closed timelike curve through p1.

A somewhat stronger condition than the chronology condition is the

Causality condition: A spacetime M satisfies the causality condition provided
there are no closed (nontrivial) causal curves in M.
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A spacetime that satisfies the causality condition can nontheless be on the
verge of failing it, in the sense that there exist causal curves that are “almost
closed”, as illustrated by the following figure.

Strong causality is a condition that rules out almost closed causal curves.

Definition 1.9

An open set U in spacetime M is said to be causally convex provided every
causal curve segment with end points in U lies entirely within U.

Definition 1.10

Strong causality is said to hold at p ∈ M provided p has arbitrarily small
causally convex neighborhoods, i.e., for each neighborhood V of p there exists
a causally convex neighborhood U of p such that U ⊂ V .

Note that strong causality fails at the point p in the figure above. It can be
shown that the set of points at which strong causality holds is open.
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Strong causality condition: A spacetime M is said to be strongly causal if
strong causality holds at all of its points.

This is the “standard” causality condition in spacetime geometry, and, although
there are even stronger causality conditions, it is sufficient for most applications.

The following lemma is often useful.

Lemma 1.11

Suppose strong causality holds at each point of a compact set K in a
spacetime M. If γ : [0, b)→ M is a future inextendible causal curve that starts
in K then eventually it leaves K and does not return, i.e., there exists
t0 ∈ [0, b) such that γ(t) /∈ K for all t ∈ [t0, b).

(γ is future inextendible if it cannot be continuously extended, i.e. if
limt→b− γ(t) does not exist.)

We say that a future inextendible causal curve cannot be “imprisoned” in a
compact set on which strong causality holds.
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Global hyperbolicity

We now come to a fundamental condition in spacetime geometry, that of
global hyperbolicity.

Mathematically, global hyperbolicity is a basic ‘niceness’ condition that often
plays a role analogous to geodesic completeness in Riemannian geometry.
Physically, global hyperbolicity is closely connected to the issue of classical
determinism and the strong cosmic censorship conjecture.

Definition 1.12

A spacetime M is said to be globally hyperbolic provided

I M is strongly causal.

I (Internal Compactness) The sets J+(p) ∩ J−(q) are compact for all
p, q ∈ M.

Remarks:

1. Condition (2) says roughly that M has no holes or gaps.

2. In fact, as shown by Bernal and Sanchez [7], internal compactness +
causality imply strong causality.
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Proposition 1.13

Let M be a globally hyperbolic spacetime. Then,

1. The sets J±(A) are closed, for all compact A ⊂ M.

2. The sets J+(A) ∩ J−(B) are compact, for all compact A,B ⊂ M.

Global hyperbolicity is the standard condition in Lorentzian geometry that
ensures the existence of maximal causal geodesic segments.

Theorem 1.14

Let M be a globally hyperbolic spacetime. If q ∈ J+(p) then there is a maximal
future directed causal geodesic from p to q (i.e., no causal curve from p to q
can have greater length).

See Gal-ESI for discussions of the proofs.

Contrary to the situation in Riemannian geometry, geodesic
completeness does not guarantee the existence of maximal
segments.

Ex. Two-dimensional anti-de Sitter space:

M = {(t, x) : −π/2 < x < π/2}, ds2 = sec2 x(−dt2 + dx2).

All future directed timelike geodesics emanating from p refocus at r .
There is no timelike geodesic from p to q = I +(p).



Lorentzian Causality

Cauchy hypersurfaces

Global hyperbolicity is closely related to the existence of certain ‘ideal initial
value hypersurfaces’, called Cauchy surfaces. There are slight variations in the
literature in the definition of a Cauchy surface. Here we adopt the following
definition.

Definition 1.15

A Cauchy surface for a spacetime M is an achronal subset S of M which is met
by every inextendible causal curve in M.

Observations:

I If S is a Cauchy surface for M then ∂I +(S) = S . (Also ∂I−(S) = S .) It
follows from Proposition 1.6 that a Cauchy surface S is a closed achronal
C 0 hypersurface in M.

I If S is Cauchy then every inextendible timelike curve meets S exactly once.

Theorem 1.16 (Geroch)

If a spacetime M is globally hyperbolic then it has a Cauchy surface S.

We make some comments about the proof. (As discussed later, the converse
also holds.)
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I Introduce a measure µ on M such that µ(M) = 1, and consider the
function
f : M → (0,∞) defined by

f (p) =
µ(J−(p))

µ(J+(p))
.

I Internal compactness is used to show that f is continuous, and strong
causality is used to show that f is strictly increasing along future directed
causal curves.

I One shows further that f (p)→ +∞ along every future inextendible causal
curve and f (p)→ 0 along every past inextendible causal curve.

I It follows that level sets of f , {f = t : t ∈ (0,∞)} are Cauchy surfaces
for M.

Remark: The function f constructed in the proof is what is referred to as a
time function, namely, a continuous function that is strictly increasing along
future directed causal curves.

In fact it is possible to construct smooth time functions, i.e. smooth functions
with (past directed) timelike gradient, which hence are necessarily time
functions; see Bernal and Sanchez [6] and Chruściel, Grant and Minguzzi [9].



Lorentzian Causality

Proposition 1.17

Let M be globally hyperbolic.

I If S is a Cauchy surface for M then M is homeomorphic to R× S.

I Any two Cauchy surfaces in M are homeomorphic.

Proof: To prove the first, one introduces a future directed timelike vector field
X on M. Each integral curve of X meets S exactly once. These integral
curves, suitably parameterized, provide the desired homeomorphism.

M ⇡ R ⇥ S
X

A similar technique may be used to prove the second.

Remark: In view of Proposition 1.17, any nontrivial topology in a globally
hyperbolic spacetime must reside in its Cauchy surfaces.
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The following fact is often useful.

Proposition 1.18

If S is a compact achronal C 0 hypersurface in a globally hyperbolic spacetime
M then S must be a Cauchy surface for M.

Comments on the proof:

I We have that M = J+(S) ∪ J−(S): J+(S) ∪ J−(S) is closed by
Proposition 1.13, and is also easily shown to be open.

I Let γ be an inextendible causal curve. Suppose γ meets J+(S) at a point
p. Then the portion of γ to the past of p must meet S , otherwise it is
imprisoned in the compact set J+(S) ∩ J−(p).

Ex. S = ∂I +(p) in the flat spacetime cylinder closed in space.



Lorentzian Causality

Domains of Dependence

Definition 1.19

Let S be an achronal set in a spacetime M. The future domain of dependence
of D+(S) of S is defined as follows,

D+(S) = {p ∈ M : every past inextendible causal curve from p meets S}

In physical terms, since information travels along causal curves, a point in
D+(S) only receives information from S . Thus if physical laws are suitably
causal, initial data on S should determine the physics on D+(S).

The past domain of dependence of D−(S) is defined in a time-dual manner.
The (total) domain of dependence of S is the union, D(S) = D+(S) ∪ D−(S).

Below we show a few examples of future and past domains of dependence.

Note: D+(S) ⊃ S .
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The following characterizes Cauchy surfaces in terms of domain of dependence.

Proposition 1.20

Let S be an achronal subset of a spacetime M. Then, S is a Cauchy surface for M if
and only if D(S) = M.

Proof: Exercise.

The following basic result ties domains of dependence to global hyperbolicity.

Proposition 1.21

Let S ⊂ M be achronal.

(1) Strong causality holds on intD(S).

(2) Internal compactness holds on intD(S), i.e., for all p, q ∈ intD(S),
J+(p) ∩ J−(q) is compact.

Proof: See Gal-ESI for a discussion of the proof. A few heuristic remarks:

(1): Suppose γ is a closed timelike curve through p ∈ intD(S). By repeating loops we
obtain an inextendible timelike which hence must meet S, infinitely often, in fact. But
this would violate the achronality of S. More refined arguments show that strong
causality holds on intD(S).

(2): A failure of internal compactness suggests the existence of a “hole” in intD(S).
This, one expects, would lead to the existence of a past inextendible (resp. future
inextendible) causal curve starting at p ∈ intD+(S) (resp. p ∈ intD−(S)) that does
not meet S .
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By Proposition 1.21, for S ⊂ M achronal, intD(S) is globally hyperbolic.

Hence, we can now address the converse of Theorem 1.16.

Corollary 1.22

If S is a Cauchy surface for M then M is globally hyperbolic.

Proof: This follows immediately from Propositions 1.20 and 1.21: S Cauchy
=⇒ D(S) = M =⇒ intD(S) = M =⇒ M is globally hyperbolic.

Thus we have that: M is globally hyperbolic if and only if M admits a Cauchy
surface.



Lorentzian Causality

Cauchy horizons

We conclude this section with some comments about Cauchy horizons. If S is
achronal, the future Cauchy horizon H+(S) of S is the future boundary of
D+(S).

This is made precise in the following definition.

Definition 1.23

Let S ⊂ M be achronal. The future Cauchy horizon H+(S) of S is defined as
follows

H+(S) = {p ∈ D+(S) : I +(p) ∩ D+(S) = ∅}

= D+(S) \ I−(D+(S)) .

The past Cauchy horizon H−(S) is defined time-dually. The (total) Cauchy
horizon of S is defined as the union, H(S) = H+(S) ∪ H−(S).
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We record some basic facts about domains of dependence and Cauchy horizons.

Proposition 1.24

Let S be an achronal subset of M. Then the following hold.

1. H+(S) is achronal.

2. ∂D+(S) = H+(S) ∪ S.

3. ∂D(S) = H(S).

Point 3 provides a useful mechanism for showing that an achronal set S is
Cauchy: S is Cauchy iff D(S) = M iff ∂D(S) = ∅ iff H(S) = ∅.

Cauchy horizons have structural properties similar to achronal boundaries, as
indicated in the next two results.

Proposition 1.25

Let S ⊂ M be achronal. Then H+(S) \ edgeH+(S), if nonempty, is an
achronal C 0 hypersurface in M.

Proposition 1.26

Let S be an achronal subset of M. Then H+(S) is ruled by null geodesics, i.e.,
every point of H+(S)\ edgeS is the future endpoint of a null geodesic in H+(S)
which is either past inextendible in M or else has a past end point on edgeS.



1.2 The geometry of null hypersurfaces

In addition to curves, one can discuss the causality of certain higher
dimensional submanifolds. For example, a spacelike hypersurface is a
hypersurface all of whose tangent vectors are spacelike, or, equivalently, whose
normal vectors are timelike:

In other words, a hypersurface is spacelike iff the induced metric is positive
definite (i.e. Riemannian). In GR, a spacelike hypersurface represents space at
a given instant of time.

A null hypersurface is a hypersurface such that the null cone is tangent to it at
each of its points:

Null hypersurfaces play an important role in GR as they represent horizons of
various sorts. Null hypersurfaces have an interesting geometry which we would
like to discuss in this section.
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Comments on Curvature and the Einstein Equations

I Let ∇ : X(M)× X(M)→ X(M), (X ,Y )→ ∇X Y , be the Levi-Civita
connection with respect to the Lorentz metric g . ∇ is determined locally
by the Christoffel symbols,

∇∂i ∂j =
∑

k

Γk
ij ∂k , (∂i =

∂

∂x i
, etc.)

I Geodesics are curves t → σ(t) of zero covariant acceleration,

∇σ′(t)σ
′(t) = 0 .

Timelike geodesics correspond to free falling observers.
I The Riemann curvature tensor is defined by,

R(X ,Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z

The components R`
kij are determined by,

R(∂i , ∂j )∂k =
∑
`

R`
kij∂`

I The Ricci tensor Ric and scalar curvature R are obtained by taking traces,

Rij =
∑
`

R`
i`j and R =

∑
i,j

g ij Rij
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I The Einstein equations, the field equations of GR, are given by:

Rij −
1

2
Rgij = Tij ,

where Tij is the energy-momentum tensor.

I The vacuum Einstein equations: Tij = 0 ⇐⇒ Rij = 0.

We will sometimes require that a spacetime satisfying the Einstein
equations, obeys an energy condition.

I The null energy condition (NEC) is the requirement that

T (X ,X ) =
∑

i,j

Tij X
i X j ≥ 0 for all null vectors X .

I The stronger dominant energy condtion (DEC) is the requirement,

T (X ,Y ) =
∑

i,j

Tij X
i Y j ≥ 0 for all future directed causal vectors X ,Y .



The geometry of null hypersurfaces

Null Hypersurfaces

Definition 2.1

A null hypersurface in a spacetime (M, g) is a smooth co-dimension one submanifold
S of M, such that at each p ∈ S, g : TpS × TpS → R is degenerate.

This means that there exists a nonzero vector Kp ∈ TpS (the direction of degeneracy)
such that

〈Kp ,X 〉 = 0 for all X ∈ TpS (〈·, ·〉 = g)

In particular,

I Kp is a null vector, 〈Kp ,Kp〉 = 0, which we can choose to be future pointing, and

I [Kp ]⊥ = TpS .

I Moreover, every vector X ∈ TpS that is not a multiple of Kp is spacelike.

Thus, every null hypersurface S gives rise to a smooth future directed null vector field
K on S, unique up to a positive pointwise scale factor.

p ∈ S
K−→ Kp ∈ TpS,
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Ex. Mn+1 = Minkowski space.

I Null hyperplanes in Mn+1: Each nonzero null vector X ∈ TpMn+1

determines a null hyperplane Π = {q ∈ Mn+1 : 〈pq,X 〉 = 0}.
I Null cones in Mn+1: The past and future cones, ∂I−(p) and ∂I +(p),

respectively, are smooth null hypersurfaces away from the vertex p.

The following fact is fundamental.

Proposition 2.2

Let S be a smooth null hypersurface and let K be a smooth future directed
null vector field on S. Then the integral curves of K are null geodesics (when
suitably parameterized),

Remark: The integral curves of K are called the null generators of S .

Proof: Suffices to show:
∇K K = λK

This follows by showing at each p ∈ S ,

∇K K ⊥ TpS , i.e., 〈∇K K ,X 〉 = 0 ∀X ∈ TpS
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Extend X ∈ TpS by making it invariant under the flow generated by K ,

[K ,X ] = ∇K X −∇X K = 0

X remains tangent to S , so along the flow line through p,

〈K ,X 〉 = 0

Differentiating,

K〈K ,X 〉 = 〈∇K K ,X 〉+ 〈K ,∇K X 〉 = 0

〈∇K K ,X 〉 = −〈K ,∇X K〉 = −1

2
X 〈K ,K〉 = 0.

Remark: To study the ‘shape’ of the null hypersurface S we study how the null
vector field K varies along S . Since K is actually orthogonal to S , this is
somewhat analogous to how we study the shape of a hypersurface in a
Riemannian manifold, or spacelike hypersurface in a Lorentzian manifold, by
introducing the shape operator (or Weingarten map) and associated second
fundamental form.
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Null Weingarten Map/Null 2nd Fundamental Form

I We introduce the following equivalence relation on tangent vectors: For
X ,Y ∈ TpS ,

X = Y mod K ⇐⇒ X − Y = λK

Let X denote the equivalence class of X ∈ TpS and let,

TpS/K = {X : X ∈ TpS}

Then,
TS/K = ∪p∈S TpS/K

is a rank n− 1 vector bundle over S (n = dimS). This vector bundle does
not depend on the particular choice of null vector field K .

I There is a natural positive definite metric h on TS/K induced from 〈 , 〉:
For each p ∈ S , define h : TpS/K × TpS/K → R by

h(X ,Y ) = 〈X ,Y 〉.

Well-defined: If X ′ = X mod K , Y ′ = Y mod K then

〈X ′,Y ′〉 = 〈X + αK ,Y + βK〉
= 〈X ,Y 〉+ β〈X ,K〉+ α〈K ,Y 〉+ αβ〈K ,K〉
= 〈X ,Y 〉 .



The geometry of null hypersurfaces

I The null Weingarten map b = bK of S with respect to K is, for each point
p ∈ S , a linear map b : TpS/K → TpS/K defined by

b(X ) = ∇X K .

b is well-defined: X ′ = X mod K ⇒

∇X ′K = ∇X +αK K

= ∇X K + α∇K K = ∇X K + αλK

= ∇X K mod K

I b is self adjoint with respect to h, i.e., h(b(X ),Y ) = h(X , b(Y )), for all
X ,Y ∈ TpS/K .

Proof: Extend X ,Y ∈ TpS to vector fields tangent to S near p. Using
X 〈K ,Y 〉 = 0 and Y 〈K ,X 〉 = 0, we obtain,

h(b(X ),Y ) = h(∇X K ,Y ) = 〈∇X K ,Y 〉
= −〈K ,∇X Y 〉 = −〈K ,∇Y X 〉+ 〈K , [X ,Y ]〉

= 〈∇Y K ,X 〉 = h(X , b(Y )) .
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I The null second fundamental form B = BK of S with respect to K is the
bilinear form associated to b via h:

For each p ∈ S , B : TpS/K × TpS/K → R is defined by,

B(X ,Y ) := h(b(X ),Y ) = h(∇X K ,Y ) = 〈∇X K ,Y 〉 .

Since b is self-adjoint, B is symmetric, B(X̄ , Ȳ ) = B(Ȳ , X̄ ).

I The null mean curvature (or null expansion scalar) of S with respect to K
is the smooth scalar field θ on S defined by,

θ = tr b

θ has a natural geometric interpretation. Let Σ be the intersection of S
with a hypersurface in M which is transverse to K near p ∈ S ; Σ will be a
co-dimension two spacelike submanifold of M, along which K is
orthogonal.
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ei

I Let {e1, e2, · · · , en−1} be an orthonormal basis for TpΣ in the induced
metric. Then {e1, e2, · · · , en−1} is an orthonormal basis for TpS/K .
Hence at p,

θ = tr b =
n−1∑
i=1

h(b(e i ), e i ) =
n−1∑
i=1

B(e i , e i ) =
n−1∑
i=1

〈∇ei K , ei 〉.

= divΣK . (2.1)

where divΣK is the divergence of K along Σ.
I Thus, θ measures the overall expansion of the null generators of S towards

the future.

θ > 0 θ < 0
I Effect of scaling: If K̃ = fK , f ∈ C∞(S), is any other future directed null

vector field on S , then bK̃ = fbK , and hence, θ̃ = f θ.

Hence, b = bK at a point p is uniquely determined by the value of K at p.



The geometry of null hypersurfaces

Comparison Theory

We now study how the null Weingarten map propagates along the null geodesic
generators of S .

Let η : I → M, s → η(s), be a future directed affinely parameterized null geodesic
generator of S . For each s ∈ I , consider the Weingarten map b = b(s) based at η(s)
with respect to the null vector field K which equals η′(s) at η(s),

b(s) = bη′(s) : Tη(s)S/η′(s)→ Tη(s)S/η′(s)

Proposition 2.3

The one parameter family of Weingarten maps s → b(s), obeys the following Riccati
equation,

b′ + b2 + R = 0 , ′ = ∇η′ (2.2)

where R : Tη(s)S/η′(s)→ Tη(s)S/η′(s) is given by R(X ) = R(X , η′(s))η′(s).

Remark on notation: In general, if Y = Y (s) is a vector field along η tangent to S , we

define, (Y )′ = Y ′. Then, if X = X (s) is a vector field along η tangent to S, b′ is
defined by,

b′(X ) := b(X )′ − b(X ′) . (2.3)
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Proof: Fix a point p = η(s0), s0 ∈ (a, b), on η. On a neighborhood U of p in S
we can scale the null vector field K so that K is a geodesic vector field,
∇K K = 0, and so that K , restricted to η, is the velocity vector field to η, i.e.,
for each s near s0, Kη(s) = η′(s). Let X ∈ TpM. Shrinking U if necessary, we
can extend X to a smooth vector field on U so that
[X ,K ] = ∇X K −∇K X = 0. Then,

R(X ,K)K = ∇X∇K K −∇K∇X K −∇[X ,K ]K = −∇K∇K X

Hence along η we have,

X ′′ = −R(X , η′)η′

(which implies that X , restricted to η, is a Jacobi field along η).

Thus, from Equation (2.3), at the point p we have,

b′(X ) = ∇X K ′ − b(∇K X ) = ∇K X ′ − b(∇X K)

= X ′′ − b(b(X )) = −R(X , η′)η′ − b2(X )

= −R(X )− b2(X ),

which establishes Equation (2.2).
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By taking the trace of (2.2) we obtain the following formula for the derivative
of the null mean curvature θ = θ(s) along η,

θ′ = −Ric(η′, η′)− σ2 − 1

n − 1
θ2, (2.4)

where σ := (tr b̂2)1/2 is the shear scalar, b̂ := b − 1
n−1

θ · id is the trace free

part of the Weingarten map, and Ric(η′, η′) is the spacetime Ricci tensor
evaluated on the tangent vector η′.

Equation 2.4 is known in relativity as the Raychaudhuri equation (for an
irrotational null geodesic congruence). This equation shows how the Ricci
curvature of spacetime influences the null mean curvature of a null
hypersurface.

We consider a basic application of the Raychaudhuri equation.

Proposition 2.4

Let M be a spacetime which obeys the null enery condition (NEC),
Ric (X ,X ) ≥ 0 for all null vectors X , and let S be a smooth null hypersurface
in M. If the null generators of S are future geodesically complete then S has
nonnegative null expansion, θ ≥ 0.
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Proof: Suppose θ < 0 at p ∈ S . Let s → η(s) be the null generator of S
passing through p = η(0), affinely parametrized. Let b(s) = bη′(s), and take
θ = tr b. By the invariance of sign under scaling, one has θ(0) < 0.

Raychaudhuri’s equation and the NEC imply that θ = θ(s) obeys the inequality,

dθ

ds
≤ − 1

n − 1
θ2 ,

and hence θ < 0 for all s > 0. Dividing through by θ2 then gives,

d

ds

(
1

θ

)
≥ 1

n − 1
,

which implies 1/θ → 0, i.e., θ → −∞ in finite affine parameter time,
contradicting the smoothness of θ.

Remark. Let Σ be a local cross section of the null hypersurface S (see earlier
figure) with volume form ω. If Σ is moved under flow generated by K then
LKω = θ ω, where L = Lie derivative.

Thus, Proposition 2.4 implies, under the given assumptions, that cross sections
of S are nondecreasing in area as one moves towards the future. Proposition
2.4 is the simplest form of Hawking’s black hole area theorem [19]. For a study
of the area theorem, with a focus on issues of regularity, see [9].



1.3 The Penrose singularity theorem and related results

In this section we introduce the important notion of a trapped surface and
present the classical Penrose singularity theorem.

I Let (Mn+1, g) be an (n + 1)-dimensional spacetime, n ≥ 3.

Let Σn−1 be a closed (i.e., compact without boundary) co-dimension two
spacelike submanifold of M.

I Each normal space of Σ, [TpΣ]⊥, p ∈ Σ, is timelike and 2-dimensional,
and hence admits two future directed null directions orthogonal to Σ.

Thus, under appropriate orientation assumptions, Σ admits two smooth
nonvanishing future directed null normal vector fields `+ and `− (unique
up to positive rescaling).
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and if its generators are future complete then Proposition 7.1 implies that E has
nonnegative null expansion. This in turn implies that “cross-sections” of E are
nondecreasing in area as one moves towards the future, as asserted by the area
theorem. In the context of black hole thermodynamics, the area theorem is referred
to as the second law of black mechanics, and provides a link between gravity and
quantum physics. As it turns out, the area theorem remains valid without imposing
any smoothness assumptions; for a recent study of the area theorem, which focuses
on these issues of regularity, see [131].

7.2. Trapped and marginally trapped surfaces. We begin with some defini-
tions. Let Σ = Σn−1, n ≥ 3, be a spacelike submanifold of co-dimension two in a
space-time (M n+1, g). Regardless of the dimension of space-time, we shall refer to
Σ as a surface, which it actually is in the 3 + 1 case. We are primarily interested
in the case where Σ is compact (without boundary), and so we simply assume this
from the outset.

Each normal space of Σ, [TpΣ]⊥, p ∈ Σ, is timelike and 2-dimensional, and
hence admits two future directed null directions orthogonal to Σ. Thus, if the
normal bundle is trivial, Σ admits two smooth nonvanishing future directed null
normal vector fields l+ and l−, which are unique up to positive pointwise scaling,
see Figure 7.1. By convention, we refer to l+ as outward pointing and l− as inward
pointing.21 In relativity it is standard to decompose the second fundamental form

l− l+

Figure 7.1. The null future normals l± to Σ.

of Σ into two scalar valued null second forms χ+ and χ−, associated to l+ and l−,
respectively. For each p ∈ Σ, χ± : TpΣ × TpΣ → R is the bilinear form defined by,

χ±(X, Y ) = g(∇X l±, Y ) for all X, Y ∈ TpΣ .(7.5)

A standard argument shows that χ± is symmetric. Hence, χ+ and χ− can be traced
with respect to the induced metric γ on Σ to obtain the null mean curvatures (or
null expansion scalars),

(7.6) θ± = trγ χ± = γij(χ±)ij = divΣl± .

θ± depends on the scaling of l± in a simple way. As follows from Equation (7.5),
multiplying l± by a positive function f simply scales θ± by the same function.
Thus, the sign of θ± does not depend on the scaling of l±. Physically, θ+ (resp.,
θ−) measures the divergence of the outgoing (resp., ingoing) light rays emanating
from Σ.

It is useful to note the connection between the null expansion scalars θ± and the
expansion of the generators of a null hypersurface, as discussed in Section 7.1. Let
N+ be the null hypersurface, defined and smooth near Σ, generated by the null

21In many situations, there is a natural choice of “inward” and “outward”.

`+`�

⌃

By convention, we refer to `+ as outward pointing and `− as inward
pointing.
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I Associated to `+ and `−, are the two null second fundamental forms, χ+

and χ−, respectively, defined as

χ± : TpΣ× TpΣ→ R, χ±(X ,Y ) = g(∇X `±,Y ) .

I The null expansion scalars (or null mean curvatures) θ± of Σ are obtained
by tracing χ± with respect to the induced metric γ on Σ,

θ± = trγχ± = γABχ±AB = div Σ`± .

The sign of θ± does not depend on the scaling of `±. Physically, θ+

(resp., θ−) measures the divergence of the outgoing (resp., ingoing) light
rays emanating orthogonally from Σ.

Remark: There is a natural connection between these null expansion
scalars θ± and the null expansion of null hypersurfaces: `+ locally
generates a smooth null hypersurface S+. Then θ+ is the null expansion of
S+ restricted to Σ; θ− may be described similarly.
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I For round spheres in Euclidean slices in Minkowski space (and, more
generally, large “radial” spheres in AF spacelike hypersurfaces),

§

 0> +µ 0< {µ

I However, in regions of spacetime where the gravitational field is strong,
one can have both

θ− < 0 and θ+ < 0 ,

in which case Σ is called a trapped surface. (See e.g. [8, 22] for results
concerning the dynamical formation of trapped surfaces.)

I As we now discuss, assuming appropriate energy and causality conditions,
if a trapped surface forms, then the development of singularities is
inevitable.
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Theorem 3.1 (Penrose singularity theorem)

Let M be a globally hyperbolic spacetime which satisfies the NEC,
Ric(X ,X ) ≥ 0 for all null vectors X , and which has a noncompact Cauchy
surface S. If M contains a trapped surface Σ then M is future null geodesically
incomplete.

Proof: We first observe the following.

Claim: ∂I +(Σ) is noncompact.

Proof of Claim: ∂I +(Σ) is an achronal boundary, and hence, by
Proposition 1.6, is an achronal C 0 hypersurface. If ∂I +(Σ) were compact then,
by Proposition 1.18, ∂I +(Σ) would be a compact Cauchy surface. But this
would contradict the assumption that S is noncompact (all Cauchy surfaces are
homeomorphic).

We now construct a future inextendible null geodesic in ∂I +(Σ), which we
show must be future incomplete.
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I We have that

∂I +(Σ) = I +(Σ) \ int I +(Σ) = J+(Σ) \ I +(Σ) .

It then follows from Proposition 1.2 that each q ∈ ∂I +(Σ) lies on a null
geodesic in ∂I +(Σ) with past end point on Σ. Moreover this null geodesic
meets Σ orthogonally (due to achronality, cf. O’Neill [25, Lemma 50, p.
298]).

I Since ∂I +(Σ) is closed and noncompact, there exists a sequence of points
{qk} ⊂ ∂I +(Σ) that diverges to infinity. For each k, there is a null
geodesic ηk from Σ to qk , which is contained in ∂I +(Σ) and meets Σ
orthogonally.

I By compactness of Σ, some subsequence ηkj converges to a future
inextendible null geodesic η contained in ∂I +(Σ), and meeting Σ
orthogonally (at p, say).

η must be future incomplete. Suppose not.
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I By achronality of ∂I +(Σ),

I No other future directed null normal geodesic starting on Σ can meet η.

I There can be no null focal point to Σ along η (cf. O’Neill, Prop. 48,
p. 296).

I It follows that η is contained in a smooth (perhaps very thin) null
hypersurface H ⊂ ∂I +(Σ).

⌃

⌘

✓(0) < 0

H

I Let θ be the null expansion of H along η. Since Σ is a trapped surface
θ(p) < 0. Arguing just as in the “area theorem” (Proposition 2.4), using
Raychaudhuri + NEC, θ must go to −∞ in finite affine parameter time
→←. Hence η must be future incomplete.
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For certain applications, the following variant of the Penrose singularity
theorem is useful.

Theorem 3.2

Let M be a globally hyperbolic spacetime satisfying the null energy condition,
with smooth spacelike Cauchy surface V . Let Σ be a smooth closed (compact
without boundary) hypersurface in V which separates V into an “inside” U
and an “outside” W , i.e., V \ Σ = U ∪W where U,W ⊂ V are connected
disjoint sets. Suppose, further, that W is non-compact. If Σ is outer-trapped
(θ+ < 0) then M is future null geodesically incomplete.

W U

⌃

`+

✓+ < 0

Proof: Exercise. (Hint: Consider the achronal boundary ∂I +(U).)
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This version of the Penrose singularity theorem may be used to prove the
following beautiful result of Gannon [18] and Lee [23].

Theorem 3.3 (Gannon-Lee)

Let M be a globally hyperbolic spacetime which satisfies the null energy
condition and which contains a smooth asymptotically flat spacelike Cauchy
surface V . If V is not simply connected (π1(V ) 6= 0) then M is future null
geodesically incomplete.

Comment on the proof. Let Ṽ be the universal cover of V . If π1(V ) 6= 0 then
Ṽ will have more than one AF end.

Associated to Ṽ is a spacetime M̃ ≈ R× Ṽ which covers M = R× V . Now
apply Theorem 3.2 to M̃ with Cauchy surface Ṽ .

V

ṼB̃

B

S2

S2
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ṼB̃

B

S2

S2



The Penrose singularity theorem and related results

As suggested by Theorem 3.3, nontrivial topology tends to induce gravitational
collapse. This in turn leads to the notion of topological censorship. We return
to these issues in Section 2.2.



Topology and General Relativity



2.1 The topology of black holes

Introduction

Black holes are certainly one of the most remarkable predictions of General
Relativity.

The following depicts the process of gravitational collapse and formation of a
black hole.

singularity

collapse

infty

A stellar object, after its fuel is spent, begins to collapse under its own weight.
As the gravitational field intensifies the light cones bend “inward” (so to
speak).

The shaded region is the black hole region. The boundary of this region is the
black hole event horizon. It is the boundary between points that can send
signals to infinity and points that can’t.
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Ex. The Schwarzshild solution (1916). Static (time-independent, nonrotating)
spherically symmetric, vacuum solution to the Einstein equations.

g = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr 2 + r 2dΩ2

This metric represents the region outside a (collapsing) spherically symmetric
star.

The region 0 < r < 2m is the black hole region; r = 2m corresponds to the
event horizon.

r > 2m

0 < r < 2m
(future null infinity)

(past null infinity)
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Ex. The Kerr solution (1963). Stationary (time-independent, rotating),
axisymmetric, vacuum solution.

The Kerr spacetime: A brief introduction Matt Visser 14

Here the second line is again simply flat 3-space in disguise. An advantage
of this coordinate system is that t can naturally be thought of as a time
coordinate — at least at large distances near spatial infinity. There are
however still 3 off-diagonal terms in the metric so this is not yet any great
advance on the original form (3). One can easily consider the limits m → 0,
a → 0, and the decomposition of this metric into Kerr–Schild form, but there
are no real surprises.

Second, it is now extremely useful to perform a further m-dependent coor-
dinate transformation, which will put the line element into Boyer–Lindquist
form:

t = tBL + 2m

∫
r dr

r2 − 2mr + a2
; φ = −φBL − a

∫
dr

r2 − 2mr + a2
; (55)

r = rBL; θ = θBL. (56)

Making the transformation, and dropping the BL subscript, the Kerr line-
element now takes the form:

ds2 = −
[
1 − 2mr

r2 + a2 cos2 θ

]
dt2 − 4mra sin2 θ

r2 + a2 cos2 θ
dt dφ (57)

+

[
r2 + a2 cos2 θ

r2 − 2mr + a2

]
dr2 + (r2 + a2 cos2 θ) dθ2

+

[
r2 + a2 +

2mra2 sin2 θ

r2 + a2 cos2 θ

]
sin2 θ dφ2.

• These Boyer–Lindquist coordinates are particularly useful in that they
minimize the number of off-diagonal components of the metric — there
is now only one off-diagonal component. We shall subsequently see
that this helps particularly in analyzing the asymptotic behaviour, and
in trying to understand the key difference between an “event horizon”
and an “ergosphere”.

• Another particularly useful feature is that the asymptotic (r → ∞)
behaviour in Boyer–Lindquist coordinates is

ds2 = −
[
1 − 2m

r
+ O

(
1

r3

)]
dt2 −

[
4ma sin2 θ

r
+ O

(
1

r3

)]
dφ dt

+

[
1 +

2m

r
+ O

(
1

r2

)] [
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (58)

The Kerr solution is determined by two parameters: mass parameter m and
angular momentum parameter a. When a = 0, the Kerr solution reduces to the
Schwarzschild solution. The Kerr solution contains an event horizon (provided
a < m), and hence represents a steady state rotating black hole.

It is a widely held belief that “true” astrophysical black holes “settle down” to
a Kerr solution. This belief is based largely on results (“no hair theorems”)
that establish the uniqueness of Kerr among all asymptotically flat stationary,
solutions to the vacuum Einstein equations. (The proof assumes analyticity,
but there has been recent progress in removing this assumption; see e.g [21].)
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A basic step in the proof of the uniqueness of the Kerr solution is Hawking’s
theorem on the topology of black holes in 3 + 1 dimensions.

Theorem 1.1 (Hawking’s black hole topology theorem)

Suppose (M, g) is a (3 + 1)-dimensional asymptotically flat stationary black
hole spacetime obeying the dominant energy condition. Then cross sections Σ
of the event horizon are topologically 2-spheres.

2
S¼§

)
+I({@I = H

Comment on the proof: Hawking’s proof is variational in nature. Using the
dominant energy condition and the Gauss-Bonnet theorem, he shows that if Σ
has genus ≥ 1 then Σ can be deformed outward to an outer trapped surface.
However, there can be no outer trapped surface outside the event horizon.
Such a surface would be visible from ‘null infinity’, but there are arguments
precluding that possibility [27, 10].
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Higher Dimensional Black Holes

I String theory, and various related developments (e.g., the AdS/CFT
correspondence, braneworld scenarios, entropy calculations) have
generated a great deal of interest in gravity in higher dimensions, and in
particular, in higher dimensional black holes.

I One of the first questions to arise was:

Does black hole uniqueness hold in higher dimensions?

I With impetus coming from the development of string theory, in 1986,
Myers and Perry [24] constructed natural higher dimensional
generalizations of the Kerr solution. These models painted a picture
consistent with the situation in 3 + 1 dimensions. In particular, they have
spherical horizon topology.
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I But in 2002, Emparan and Reall [13] discovered a remarkable example of a
4 + 1 dimensional AF stationary vacuum black hole spacetime with horizon
topology S2 × S1 (the black ring).
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Black holes in four spacetime dimensions are highly
constrained objects. A number of classical theorems show
that a stationary, asymptotically flat, vacuum black hole
is completely characterized by its mass and spin [1], and
event horizons of nonspherical topology are forbidden [2].

In this Letter we show explicitly that in five dimen-
sions the situation cannot be so simple by exhibiting an
asymptotically flat, stationary, vacuum solution with a
horizon of topology S1 3 S2: a black ring. The ring
rotates along the S1 and this balances its gravitational
self-attraction. The solution is characterized by its mass
M and spin J. The black hole of [3] with rotation in
a single plane (and horizon of topology S3) can be ob-
tained as a branch of the same family of solutions. We
show that there exist black holes and black rings with
the same values of M and J. They can be distinguished

by their topology and by their mass dipole measured
at infinity. This shows that there is no obvious five-
dimensional analog of the uniqueness theorems.

S1 3 S2 is one of the few possible topologies for the
event horizon in five dimensions that was not ruled out by
the analysis in [4] (although this argument does not apply
directly to our black ring because it assumes time symme-
try). An explicit solution with a regular (but degenerate)
horizon of topology S1 3 S2 and spacelike infinity with
S3 topology has been built recently in [5]. An uncharged
static black ring solution is presented in [6], but it contains
conical singularities. Our solution is the first asymptot-
ically flat vacuum solution that is completely regular on
and outside an event horizon of nonspherical topology.

Our starting point is the following metric, constructed
as a Wick-rotated version of a solution in [7]:

ds2 � 2
F�x�
F�y�

µ
dt 1

r
n

j1

j2 2 y

A
dc

∂2

1
1

A2�x 2 y�2

∑
2F�x�

µ
G� y�dc2 1

F� y�
G� y�

dy2
∂

1 F� y�2
µ

dx2

G�x�
1

G�x�
F�x�

df2
∂∏

, (1)

where j2 is defined below and

F�j� � 1 2 j�j1, G�j� � 1 2 j2 1 nj3. (2)

The solution of [7] was obtained as the electric dual of
the magnetically charged Kaluza-Klein C metric of [8].
Our metric can be related directly to the latter solution by
analytic continuation. When n � 0 we recover the static
black ring solution of [6].

We assume that 0 , n , n� � 2��3
p

3�, which en-
sures that the roots of G�j� are all distinct and real. They
will be ordered as j2 , j3 , j4. It is easy to establish
that 21 , j2 , 0 , 1 , j3 , j4 ,

1
n . A double root

j3 � j4 appears when n � n�. Without loss of generality,
we take A . 0. Taking A , 0 simply reverses the sense
of rotation.

We take x to lie in the range j2 # x # j3 and require
that j1 $ j3, which ensures that gxx , gff $ 0. In order

to avoid a conical singularity at x � j2 we identify f with
period

Df �
4p

p
F�j2�

G0�j2�
�

4p
p

j1 2 j2

n
p

j1 �j3 2 j2� �j4 2 j2�
.

(3)

A metric of Lorentzian signature is obtained by taking
y , j2. Examining the behavior of the constant t slices of
(1), one finds that c must be identified with period Dc �
Df in order to avoid a conical singularity at y � j2 fi x.
Regularity of the full metric here can be demonstrated by
converting from the polar coordinates � y, c � to Cartesian
coordinates —the dtdc term can then be seen to vanish
smoothly at the origin y � j2.

There are now two cases of interest depending on the
value of j1. One of these will correspond to a black ring
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Thus in higher dimensions, black hole uniqueness does not hold and
horizon topology need not be spherical.

This caused a great surge of activity in the study of higher dimensional
black holes.

I Question: What horizon topologies are allowed in higher dimensions?
What restrictions are there?
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Marginally Outer Trapped Surfaces

Want to describe a generalization of Hawking’s theorem to higher dimensions.
This will be based on properties of marginally outer trapped surfaces.

I An initial data set in a spacetime Mn+1 is a triple (V n, h,K), where V n is
a spacelike hypersurface, h is the induced metric and K is the second
fundamental form (K(X , Y ) = g(∇X u, Y )).

V n

u

I Given an initial data set (V , h,K), the spacetime dominant energy
condition (G(X ,Y ) ≥ 0, for X ,Y future causal, where
G := Ric− 1

2
Rg = T ), implies,

µ ≥ |J|

along V , where µ = local energy density = G(u, u), and J = local
momentum density = 1-form G(u, ·) on V .
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I Consider an initial data set (V n, h,K) in a spacetime (Mn+1, g), n ≥ 3.

Let Σn−1 be a closed 2-sided hypersurface in V n. Σ admits a smooth unit
normal field ν in V .

+`{`{1n§
nVu

º

`+ = u + ν f.d. outward null normal

`− = u − ν f.d. inward null normal

I Null second fundamental forms: χ+, χ−

χ±(X ,Y ) = g(∇X `±,Y ) X ,Y ∈ TpΣ

I Null expansion scalars: θ+, θ−

θ± = trγχ± = γAB (χ±)AB = divΣ`±



The topology of black holes

I In terms of initial data (V n, h,K),

θ± = trΣK ± H

where trΣK = the partial trace of K along Σ and where H = mean
curvature of Σ within V .

Note: In the ‘time-symmetric’ case, K = 0, θ+ = H.

I Recall, if both θ+ and θ− are negative, Σ is a trapped surface. Focusing
attention on the outward null normal only:

I If θ+ < 0 - we say Σ is outer trapped.

I If θ+ = 0 - we say Σ is a marginally outer trapped surface
(MOTS).

Note: In the time symmetric case a MOTS is simply a minimal surface.

Let’s consider some examples of MOTSs in the Schwarzschild spacetime.



MOTSs

Ex. The Schwarzschild spacetime.

g = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr 2 + r 2dΩ2

r > 2m

r < 2m

t = 0

MOTS

r = 2m

(minimal surface)



MOTSs

The t = 0 slice in Schwarzschild (the Flamm paraboloid):

MOTS (minimal surface)



MOTSs

r > 2m

r < 2m

r = 2m

. .
MOTS

trapped



The topology of black holes

I In fact, in general, in stationary black hole spacetimes - cross sections of
the event horizon are MOTS.

 = 0+µ

§

H

(In the stationary case, the null generators of the horizon have zero
expansion.)

I In dynamical black hole spacetimes - MOTS typically occur inside the
event horizon:

 = 0+µ

H



The topology of black holes

MOTSs admit a notion of stability based on variations of the null expansion
(Andersson, Mars and Simon [4, 5]).

Let Σ be a MOTS in an initial data set (V , h,K) with outward normal ν.
Consider normal variations of Σ in V , i.e., variations t → Σt of Σ = Σ0 with
variation vector field

V =
∂

∂t

∣∣∣∣
t=0

= φν, φ ∈ C∞(Σ) .

Let
θ(t) = the null expansion of Σt ,

with respect to `t = u + νt , where νt is the unit normal field to Σt in V .

tº
u

t§

§

nV

tº+u = t``

º



The topology of black holes

A computation shows,
∂θ

∂t

∣∣∣∣
t=0

= L(φ) ,

where L : C∞(Σ)→ C∞(Σ) is given by,

L(φ) = −4φ+ 2〈X ,∇φ〉+
(

Q + divX − |X |2
)
φ ,

Q =
1

2
SΣ − (µ+ J(ν))− 1

2
|χ|2 ,

I In the time-symmetric case (K = 0), θ = H, X = 0, and L reduces to the
classical stability operator of minimal surface theory.

I In analogy with minimal surface case, we refer to L as the MOTS stability
operator. Note, however, that L is not in general self-adjoint.



The topology of black holes

Nevertheless, one has the following.

Lemma 1.2 (Andersson, Mars, Simon)

Among eigenvalues with smallest real part, there is a real eigenvalue λ1(L),
called the principal eigenvalue. The associated eigenfunction φ, L(φ) = λ1φ, is
unique up to a multipicative constant, and can be chosen to be strictly positive.

We say that a MOTS Σ is stable provided λ1(L) ≥ 0

Remarks:

I There is a physical characterization of stability: Σ is stable iff there is an
outward variation with ∂θ

∂t

∣∣
t=0
≥ 0.

I In the minimal surface case this is equivalent to the second variation of
area being nonnegative.



The topology of black holes

There is a basic criterion for a MOTS to be stable.

We say a MOTS Σ is outermost provided there are no outer trapped (θ < 0) or
marginally outer trapped (θ = 0) surfaces outside of, and homologous, to Σ.

I Fact. An outermost MOTS is stable.

I Fact: Cross sections of the event horizon in AF stationary black hole
spacetimes obeying the NEC are outermost MOTSs.

0· +µCan't have 

H

§

I More generally, outermost MOTSs can arise as the boundary of the
“trapped region” (Andersson and Metzger, Eichmair).



The topology of black holes

A Generalization of Hawking’s Black Hole Topology Theorem

Theorem 1.3 (G. and Schoen [17])

Let (V , h,K) be an n-dimensional initial data set, n ≥ 3, satisfying the
dominant energy condition (DEC), µ ≥ |J|. If Σ is a stable MOTS in V then
(apart from certain exceptional circumstances) Σ must be of positive Yamabe
type, i.e. must admit a metric of positive scalar curvature.

Remarks.

I The theorem may be viewed as a spacetime analogue of a fundamental
result of Schoen and Yau [26] concerning stable minimal hypersurfaces in
manifolds of positive scalar curvature.

I The ‘exceptional circumstances’ are ruled out if, for example, the DEC
holds strictly at some point of Σ or Σ is not Ricci flat.

I Σ being of positive Yamabe type implies many well-known restrictions on
the topology (see e.g. [20, Chapter 7]).

We consider here two basic examples, and for simplicity we assume Σ is
orientable.
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I dim Σ = 2 (dim M = 3 + 1): Then Σ ≈ S2 by Gauss-Bonnet, and one
recovers Hawking’s theorem.

I dim Σ = 3 (dim M = 4 + 1): We have,

Theorem (Gromov-Lawson, Schoen-Yau) If Σ is a closed orientable
3-manifold of positive Yamabe type then Σ must be diffeomorphic to:

I a spherical space, or
I S2 × S1, or
I a connected sum of the above two types.

Thus, the basic horizon topologies in dim Σ = 3 case are S3 and S2 × S1.

Remark:

- Kunduri and Lucietti have constructed a charged black hole spacetime
with RP3 horizon topology, arXiv 2014.

- Khuri, Weinstein and Yamada have a construction to produce vacuum
black hole spacetimes with L(p, 1) horizon topology (in preparation).



The topology of black holes

Comments on the proof.

I Formally setting X = 0 in the MOTS stability operator L, we obtain the
”symmetrized” operator

L0(φ) = −4φ+ Q φ .

where Q = 1
2
SΣ − (µ+ J(ν))− 1

2
|χ|2.

I Key Fact: λ1(L0) ≥ λ1(L). ([17, 16])

I Since, by assumption, λ1(L) ≥ 0, we have λ1(L0) ≥ 0.

I Now make the conformal change: γ̃ = φ
2

n−2 γ, where φ is a positive
eigenfunction corresponding to λ1(L0):

−4φ+ Qφ = λ1(L0)φ .

A standard computation shows,

S̃Σ = φ−
n

n−2 (−24φ+ SΣφ+
n − 1

n − 2

|∇φ|2

φ
)

= φ−
2

n−2 (2λ1(L0) + 2(µ+ J(ν)) + |χ|2 +
n − 1

n − 2

|∇φ|2

φ2
) ≥ 0



The topology of black holes

One drawback of the theorem is that it allows certain possibilities that one
would like to rule out. E.g., the theorem does not rule out the possibility of a
vacuum black hole spacetime with toroidal horizon topology.

In a subsequent paper we were able to rule out such possibilities.

Theorem 1.4 (G. (2008))

Let (V , h,K) be an n-dimensional, n ≥ 3 initial data set in a spacetime obeying
the DEC. Suppose Σ is a weakly outermost MOTS in V (i.e., suppose there are
no outer trapped surfaces outside an homologous to Σ). If Σ is not of positive
Yamabe type then an outer neighborhood U ≈ [0, ε)× Σ of Σ is foliated by
MOTS.

Thus, if Σ is outermost then Σ must be of positive Yamabe type without
exception.



2.2 The topology of the exterior region

In principle, the topology of space could be quite complicated. GR does not
rule this out.

In fact, paraphrasing a result of Isenberg-Mazzeo-Pollack (2003), there exist
vacuum solutions to the Einstein equations having asymptotically flat Cauchy
surfaces of arbitrary topology.

However, topological censorship has to do with the idea that such nontrivial
topology should be hidden behind an event horizon. The rationale is roughly as
follows:

I The Theorem of Gannon and Lee discussed in Section 1.3 suggests that
nontrivial topology tends to induce gravitational collapse.

I Weak cosmic censorship conjecture: In the standard collapse scenario, the
process of gravitational collapse leads to the formation of an event horizon
which shields the singularities from view.

I Topological censorship: The nontrivial topology that induced collapse
should end up behind hidden the event horizon, and the region outside the
black hole should have simple topology.



The topology of the exterior region

This circle of ideas was formalized by the Topological Censorship Theorem of
Friedman, Schleich and Witt [14], which says, in physical terms, that observers
who remain outside the event horizon are unable to ‘probe’ nontrivial topology.

Their theorem applies to asymptotically flat spacetimes, i.e. spacetimes that
have an asymptotic structure similar to that of Minkowski space in the sense of
admitting a regular past and future null infinity I− and I +, respectively (cf.
Wald [27]).

DOC

BH I+

I�

DOC = I�(I+) \ I+(I�)

In [15] the following strengthened version was obtained.

Theorem 2.1 (G.)

Let M be an asymptotically flat spacetime, and suppose that the domain of
outer communications (the region outside of all black holes and white holes) is
globally hyperbolic and satisfies the NEC. Then the DOC is simply connected.

(This was first proved by Chruściel and Wald [11] in the stationary case.)



The topology of the exterior region

I These and other results supporting the notion of topological censorship are
spacetime results; they involve assumptions that are essentially global in
time.

It is difficult question to determine whether a given initial data set will
give rise to a spacetime that satisfies these conditions.

I The aim of more recent work with Michael Eichmair and Dan Pollack was
to obtain a result supportive of the principle of topological censorship at
the pure initial data level, thereby circumventing these difficult issues of
global evolution.



The topology of the exterior region

Consider the following schematic Penrose-type diagram of a black hole
spacetime.

I+

I�

H

V
No immersed MOTSs

DOC

I Should think of the initial data manifold V as representing an
asymptotically flat spacelike slice in the domain of outer communications
(DOC) whose boundary ∂V corresponds to a cross section of the event
horizon.

I At the initial data level, we represent this cross section by a MOTS.

I We assume there are no immersed MOTSs in the ‘exterior region’ V \ ∂V .



The topology of the exterior region

Theorem 2.2 (Eichmair, G., Pollack [12])

Let (V , h,K) be a 3-dimensional asymptotically flat (AF) initial data set such
that V is a manifold-with-boundary, whose boundary ∂V is a compact MOTS.
If there are no (immersed) MOTS in V \ ∂V , then V is diffeomorphic to R3

minus an open ball.

AF: V outside a compact set is diffeomorphic to R3 \ B1(0), such that h→ δ
and K → 0 at suitable rates as r →∞.

Remarks

I The proof makes use of powerful existence results for MOTSs (Schoen,
Andersson and Metzger, Eichmair).

I The proof also makes use of an important consequence of geometrization,
namely that the fundamental group of every compact 3-manifold is
residually finite.

I Dominant energy condition not required!

I MOTSs detect nontrivial topology (reminiscent of how minimal surfaces
have been used in Riemannian geometry to detect nontrivial topology, cf.,
Meeks-Simon-Yau).



The topology of the exterior region

Theorem 2.3 (Schoen, Andersson and Metzger, Eichmair)

Let W n be a connected compact manifold-with-boundary in an initial data set
(V n, h,K), 3 ≤ n ≤ 7. Suppose, ∂W = Σin ∪ Σout , such that Σin is outer
trapped (θ+ < 0) and Σout is outer untrapped (θ+ > 0). Then there exists a
smooth compact MOTS in W that separates Σin from Σout .

!"#!

$

!
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Remarks on the proof of existence:

I In their proof of the positive mass theorem in the general (non-time
symmetric case), Schoen and Yau studied in detail the existence and
regularity properties of Jang’s equation, which they interpreted as a
prescribed mean curvature equation of sorts,

HΣ + tr ΣK̄ = 0 ,

where HΣ = the mean curvature of
Σ = graph u in V × R.

JANG’S EQUATION AND MARGINAL SURFACES 3

(M, g, k)

(M̂, ĝ, k̂)

(M × R, g + dt2)

Figure 2.

Assuming that the triple (M, g, k) is the induced geometric data for a hypersurface
in a spacetime satisfying the dominant energy condition, the induced scalar cur-
vature is non-negative modulo a divergence term (which of course can be large).
Jang then, following the approach taken by Geroch in the case of non-negative
scalar curvature, introduces a modified inverse mean curvature flow depending on
a solution of Jang’s equation, as well as an adapted Geroch mass that he shows to
be formally monotone along his flow. If these steps outlined by Jang can be made
rigorous, then his arguments lead to a proof of the positive energy theorem in this
general situation.

Jang’s work has not been developed further due to the fact that an effective
theory for existence and regularity of solutions of Jang’s equation (4) was lacking
until the work of Schoen and Yau, who applied Jang’s equation differently from the
original intention by using it to reduce the space-time positive mass theorem to the
time symmetric case. Further, it is not clear how to define an appropriate weak
solution of the modified IMCF introduced by Jang.

1.1. Jang’s equation and positivity of mass. A complete proof of the positive
mass theorem was first given by Schoen and Yau [51], for the special case of time-
symmetric initial data. They then extended their result to general, asympotically
flat initial data satisfying the dominant energy condition by using Jang’s equation
to “improve” the properties of the initial data in [55]. We describe here several
aspects of Jang’s equation which play a fundamental role in their work.

Firstly, Jang’s equation is closely analogous to the equation

(5) HΣ + trΣ(k) = 0

defining marginally outer trapped surfaces Σ ⊂ M , where as above HΣ, trΣ(k) are
the mean curvature of Σ and the trace of k restricted to Σ, respectively.

Equations of minimal surface type may have blow-up solutions on general do-
mains and an important step in [55] is the analysis of the blow-up sets for the
solutions of Jang’s equation. At the boundaries of the blow-up sets, the graph of u
is asymptotically vertical, asymptotic to cylinders over marginally outer (or inner)
trapped surfaces – here the above mentioned relation of Jang’s equation to the
MOTS equation comes into play.

Secondly, the induced geometry of the graph M̂ of a solution of Jang’s equation
can be confomally changed to a metric with zero scalar curvature without increasing
the mass.

The fundamental reason for this is that the analogue of the stability operator for
M̂ , i.e., the linearization of Jang’s equation, has, in a certain sense, non-negative

(V ⇥ R, h + dt2)

(V, h, K)

⌃ = graph u

I They showed that the only obstruction to global existence is the presence
of MOTSs in the initial data.

I As Schoen described at the 2004 Miami Waves conference, one can turn
this ‘drawback’ into a ‘feature’: One can establish existence by inducing
blow-up of Jang’s equation.

I Detailed proofs were given by Andersson and Metzger (dim = 3), Eichmair
(dim ≥ 3); cf. the excellent survey article by Andersson, Eichmair,
Metzger [2].
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Immersed MOTS

Definition 2.4

A subset Σ ⊂ V is an immersed MOTS in an initial data set (V , h,K) if there
exists a finite cover Ṽ of V with covering map p : Ṽ → V and a MOTS Σ̃ in
(Ṽ , p∗h, p∗K) such that p(Σ̃) = Σ.

A simple example is given by the so called RP3 geon. Consider the T = 0 slice
in the maximally extended Schwarzschild spacetime:

p 2 S2 ! �p 2 S2

⇡ R ⇥ S2

⇡ RP3 � {pt}Immersed MOTS = RP2

MOTS

X ! �X
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Theorem 2.5 (No horizon case)

Let (V 3, h,K) be a 3-dimensional AF initial data set. If there are no immersed
MOTS in V then V is diffeomorphic to R3.

Proof:

I By AFness, may write V as V = R3#N where N is closed (compact
without boundary) 3-manifold.

I Suppose π1(N) 6= ∅. Then by residual finiteness of π1(N), N admits a
finite nontrivial cover. If that’s the case then V admits a finite nontrivial
cover:

Ṽ

W⌃̃
⌃̃in ⌃̃out

Hence V contains an immersed MOTS →←.

I Thus, π1(N) = 0 and so N ≈ S3 by Poincaré. ∴ V ≈ R3#S3 ≈ R3.
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Theorem 2.5 (No horizon case)

Let (V 3, h,K) be a 3-dimensional AF initial data set. If there are no immersed
MOTS in V then V is diffeomorphic to R3.

Proof:

I By AFness, may write V as V = R3#N where N is closed (compact
without boundary) 3-manifold.

I Suppose π1(N) 6= ∅. Then by residual finiteness of π1(N), N admits a
finite nontrivial cover. If that’s the case then V admits a finite nontrivial
cover:

Ṽ

W⌃̃
⌃̃in ⌃̃out

Hence V contains an immersed MOTS →←.

I Thus, π1(N) = 0 and so N ≈ S3 by Poincaré. ∴ V ≈ R3#S3 ≈ R3.



The topology of the exterior region - Higher dimensions

In recent work with Andersson, Dahl and Pollack [1], we have taken an entirely
different approach to the study of the topology of the exterior region.

Theorem 2.6

Let (V n, h,K) be an n-dimensional initial data set, 3 ≤ n ≤ 7, satisfying the
DEC, with MOTS boundary Σ = ∂V , and assume there are no MOTS in the
‘exterior region’ V \ ∂V .

Then the compactification V ′ admits a metric h′ of positive scalar curvature,
S(h′) > 0, such that

I The metric on Σ induced from h′ is conformal to (a small perturbation of)
the metric on Σ induced from h.

I h′ is a product metric in a neighborhood of Σ.

V

⌃
⌃

V 0 S(h0) > 0



2.3 Topology and singularities in cosmology

Let’s switch to cosmology!

I We now consider cosmological spacetimes, i.e. globally hyperbolic
spacetimes (M, g) with compact Cauchy surfaces, which obey the Einstein
equations,

Ric− 1

2
Rg + Λg = T (3.1)

with positive cosmological constant, Λ > 0. (Assume dim M = 3+1).

I Hawking’s classical cosmological singularity theorem [19, p. 272]
establishes past timelike geodesic incompleteness in spatially closed
spacetimes that at some stage are future expanding.

This singularity theorem requires the Ricci tensor of spacetime to satisfy
the strong energy condition, Ric(X ,X ) ≥ 0 for all timelike vectors X .

I The Einstein equations above imply for any unit timelike vector X ,

Ric(X ,X ) = T (X ,X ) +
1

2
trT − Λ

I So, in general, the strong energy condition will not be satisfied if Λ > 0,
and the conclusion of Hawking’s theorem will not hold in general. An
immediate example is de Sitter space.



Topology and singularities in cosmology

I de Sitter space is a geodesically complete spacetime of constant positive
curvature. It is a vacuum solution (T = 0) with Ricci tensor,

Ric = Λg (Λ > 0)

I de Sitter space can be represented as a hyperboloid of one-sheet in
Minkowski space, and may be expressed in global coordinates as the
warped product,

M = R× S3, ds2 = −dt2 + cosh2 t dΩ2 .

S3

H > 0 (future expanding)

t "



Topology and singularities in cosmology

Dust filled FLRW models provide further examples.

I Consider FLRW models with compact Cauchy surfaces:

M = (0,∞)× Σ3, ds2 = −dt2 + R2(t)dσ2
k

where (Σ3, dσ2
k ) is a compact Riemannian manifold of constant curvature

k = −1, 0,+1.

I These three cases are topologically quite distinct. For instance, in the
k = +1 (spherical space) case, the Cauchy surfaces have finite
fundamental group, while in the k = 0,−1 (toroidal and hyperbolic
3-manifold) cases, the fundamental group is infinite.

I Assuming a collisionless perfect fluid (dust),

T = ρ(t)dt ⊗ dt ,

where ρ(t) is the density and ∂/∂t is the fluid 4-velocity, one can solve the
Einstein equations with Λ > 0, and analyze the behavior of the scale factor
R(t).



Topology and singularities in cosmology

From Ray D’Inverno’s “Introducing Einstein’s relatvity”:

 de Sitter-like

I We see that it is only in the k = +1 case, that the past big-bang
singularity can be avoided.

I As it turns out, this behavior holds in a much broader context.



Topology and singularities in cosmology

Theorem 3.1 (G. and Ling)

Suppose V is a smooth compact spacelike Cauchy surface in a 3 + 1
dimensional spacetime (M, g) that satisfies the null energy condition (NEC),
Ric(X ,X ) ≥ 0 for all null vectors X . Suppose further that V is expanding in
all directions Then either

(i) V is a spherical space, or

(ii) M is past null geodesically incomplete.

I V is expanding in all directions: The second fundamental form K of V
(K(X ,Y ) = g(∇X u,Y )) is positive definite, K(X ,X ) > 0 for all
X ,Y ∈ TV .

I By a spherical space, we mean that V is a quotient of the 3-sphere S3,
V = S3/Γ (where, in fact, Γ is isomorphic to a subgroup of SO(4).)
Typical examples are the 3-sphere itself, lens spaces and the Poincaré
dodecahedral space.

I By taking quotients of de Sitter space, we see that there are geodesically
complete spacetimes satisfying the assumptions of the theorem, having
Cauchy surface topology that of any spherical space.

One can, however, view Theorem 3.1 as a singularity theorem.



Topology and singularities in cosmology

We consider a special case (cf., [3]).

Proposition 3.2

Let (M, g) be a 3 + 1 dimensional globally hyperbolic spacetime that satisfies
the NEC, and let V be an orientable smooth compact spacelike Cauchy surface
in (M, g) that is expanding in all directions. If V has nontrivial second
homology, H2(V ,Z) 6= 0, then M is past null geodesically incomplete.

Sketch of proof: The proof is an application of the Penrose singularity theorem.

I Since H2(V ,Z) 6= 0, one can minimize area in homology class to obtain a
homologically nontrivial smooth compact orientable minimal (H = 0)
surface Σ ⊂ V .

I Since Σ is minimal and V is future expanding in all directions, Σ is a past
trapped surface (exercise!).

V ⇢ M

⌃ - past trapped



Topology and singularities in cosmology

I Consider Riemannian covering p : Ṽ → V and associated spacetime
covering P : M̃ → M:

V ⇢ M ⇡ R ⇥ V

Ṽ ⇢ M̃ ⇡ R ⇥ Ṽ

⌃

⌃̃

- past trapped

- past trapped

I M̃ obeys NEC, and has a noncompact Cauchy surface Ṽ containing a past
trapped surface.

I Therefore, by Penrose, M̃, and hence M are past null geodesically
complete.



References

[1] L. Andersson, M. Dahl, G. J. Galloway, and D. Pollack, On the geometry and
topology of initial data sets with horizons, 2015, arXiv:1508.01896.

[2] L. Andersson, M. Eichmair, and J. Metzger, Jang’s equation and its applications
to marginally trapped surfaces, Complex analysis and dynamical systems IV. Part
2, Contemp. Math., vol. 554, Amer. Math. Soc., Providence, RI, 2011, pp. 13–45.

[3] L. Andersson and G. J. Galloway, dS/CFT and spacetime topology, Adv. Theor.
Math. Phys. 6 (2002), no. 2, 307–327.

[4] L. Andersson, M. Mars, and W. Simon, Local existence of dynamical and
trapping horizons, Phys. Rev. Lett. 95 (2005), 111102.

[5] , Stability of marginally outer trapped surfaces and existence of marginally
outer trapped tubes, Adv. Theor. Math. Phys. 12 (2008), no. 4, 853–888.

[6] A. N. Bernal and M. Sánchez, Smoothness of time functions and the metric
splitting of globally hyperbolic spacetimes, Comm. Math. Phys. 257 (2005),
no. 1, 43–50.

[7] , Globally hyperbolic spacetimes can be defined as ‘causal’ instead of
‘strongly causal’, Classical Quantum Gravity 24 (2007), no. 3, 745–749.

[8] D. Christodoulou, The formation of black holes in general relativity, Geometry
and analysis. No. 1, Adv. Lect. Math. (ALM), vol. 17, Int. Press, Somerville, MA,
2011, pp. 247–283.
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