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Appendix A

1.1 The model without diffusion
dN1

dt
= N1(ρ1f(S)− α11N1 − α12N2),

dN2

dt
= N2(ρ2h(S)− α21N1 − α22N2),

dS

dt
= β0g + β1

N2

k +N2

g − εS

(A.1)

with non-negative initial conditions (N1(0), N2(0), S(0)) ∈ R3
+ = {(x1, x2, x3) ∈ R3 : x1 ≥

0, x2 ≥ 0, x3 ≥ 0}. We have the following assumptions:

(1) f(S) =
µ

µ+ S
and h(S) = 1, where µ > 0;

(2) all parameters are positive;

(3) α12α21 − α11α22 > 0.

1.2 Elementary analysis

The Jacobian matrix of (A.1) at (N1, N2, S) ∈ R3
+ is J((N1, N2, S)) =(ρ1f(S)− α11N1 − α12N2)− α11N1 −α12N1 ρ1N1f

′(S)
−α21N2 (ρ2h(S)− α21N1 − α22N2)− α22N2 ρ2N2h

′(S)
0 β1kg/(k +N2)

2 −ε

 .

In particular, if f(S) =
µ

µ+ S
and h(S) = 1, then J((N1, N2, S)) =(ρ1f(S)− α11N1 − α12N2)− α11N1 −α12N1 −ρ1N1f

2(S)/µ
−α21N2 (ρ2 − α21N1 − α22N2)− α22N2 0

0 β1kg/(k +N2)
2 −ε

 .

Using the theory of monotone dynamical systems (Smith [6]) and an approach similar to
that of Jiang and Tang [3], we prove that

Theorem 1.1. Each non-negative solution of (A.1) converges to an equilibrium point.
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1.3 Equilibria and their stabilities

Direct calculation yields that system (A.1) has three boundary equilibria, namely,

E0 = (0, 0,
β0g

ε
), E1 = (

ρ1µ

α11(µ+ β0g/ε)
, 0,

β0g

ε
) and E2 = (0,

ρ2

α22

, (β0 + β1
ρ2

kα22 + ρ2

)
g

ε
).

Proposition 1.2. Let

g∗1 =

εµ
(ρ1α22

ρ2α12

− 1
)

(kα22 + ρ2)

kβ0α22 + (β0 + β1)ρ2

and g∗2 =
(ρ1α21

ρ2α11

− 1
)εµ
β0

.

Then

(1) E0 is unstable and W s(E0) ∩ R3
+ = {(N1, N2, S) ∈ R3

+ : N1 = N2 = 0, S ≥ 0};

(2) E1 is unstable if g > g2, stable if g < g2;

(3) E2 is unstable if g < g1, stable if g > g1.

In addition, if E1 is unstable, then W s(E1) ∩ R3
+ = {(N1, N2, S) ∈ R3

+ : N1 > 0, S ≥ 0};
if E2 is unstable, then W s(E2) ∩ R3

+ = {(N1, N2, S) ∈ R3
+ : N2 > 0, S ≥ 0}. Here W s(E)

denote the stable manifold of an equilibrium E.

Proof. The Jacobian matrices at the three boundary equilibria E0, E1 and E2 are

J(E0) =


ρ1µ

µ+ β0g/ε
0 0

0 ρ2 0
0 β1g/k −ε

 ,

J(E1) =


− ρ1µ

µ+ β0g/ε
− ρ1α12µ

α11(µ+ β0g/ε)
− ρ2

1µ
2

α11(µ+ β0g/ε)3

0 ρ2 −
ρ1α21µ

α11(µ+ β0g/ε)
0

0 β1g/k −ε


and

J(E2) =


ρ1µ

µ+
(
β0 + β1

ρ2

kα22 + ρ2

)g
ε

− ρ2α12

α22

0 0

−ρ2α21/α22 −ρ2 0
0 β1gk/(k + ρ2/α22)

2 −ε

 .

The proposition is immediately proved.

Remark 1.3. If g∗2 ≥ 0, that is,
ρ1α21

ρ2α11

− 1 ≥ 0, then g∗1 < g∗2 and
∂(g∗2 − g∗1)

∂β0

< 0. In fact,

α12α21 > α11α22 ⇔
ρ1α21

ρ2α11

− 1 >
ρ1α22

ρ2α12

− 1⇔
(ρ1α21

ρ2α11

− 1
)εµ
β0

>
(ρ1α22

ρ2α12

− 1
)εµ
β0
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⇒ g∗2 =
(ρ1α21

ρ2α11

− 1
)εµ
β0

> g∗1 =

εµ
(ρ1α22

ρ2α12

− 1
)

(kα22 + ρ2)

kβ0α22 + (β0 + β1)ρ2

⇒
(ρ1α21

ρ2α11

− 1
)εµ
β0

>

εµ
(ρ1α22

ρ2α12

− 1
)

(kα22 + ρ2)

kβ0α22 + (β0 + β1)ρ2

× β0(kα22 + ρ2)

kβ0α22 + (β0 + β1)ρ2

⇔ ∂g∗2
∂β0

= −
(ρ1α21

ρ2α11

− 1
)εµ
β2

0

<
∂g∗1
∂β0

= −
εµ
(ρ1α22

ρ2α12

− 1
)

(kα22 + ρ2)
2

(kβ0α22 + (β0 + β1)ρ2)2
.

Let K = {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≤ 0, x3 ≤ 0} and IntK = {(x1, x2, x3) ∈ K :
x1 > 0, x2 < 0, x3 < 0}. For x, y ∈ R3

+, we define x ≤K y if y − x ∈ K, x <K y if
y − x ∈ K\{0}, and x �K y if y − x ∈ IntK. When x, y ∈ R3

+ and x ≤K (�K)y, let
[x, y]K = {w ∈ R3

+ : x ≤K w ≤K y} ((x, y)K = {w ∈ R3
+ : x�K w �K y}).

Remark 1.4. Note that E2 ≤K E0 ≤K E1 and all orbits starting in R3
+ are attracted to

the set [E2, E1]K (see [1]). The set of all positive equilibria, denoted by E+, is a subset of
(E2, E1)K and it is totally strongly ordered with respect to �K , i.e., either E∗ �K Ẽ∗ or
Ẽ∗ �K E∗ for any two points E∗ and Ẽ∗ in E+ satisfying E∗ 6= Ẽ∗.

Theorem 1.5. For system (A.1), both E1 and E2 are stable if and only if there exists a
positive equilibrium E∗. Moreover, it is unique and unstable when E∗ exists.

Proof. Suppose that both E1 and E2 are stable, then g∗1 < g < g∗2.
If E∗ = (N∗1 , N

∗
2 , S

∗) is a positive equilibrium of (A.1), then it satisfies the following three
equations

ρ1
µ

µ+ S
− α11N1 − α12N2 = 0,

ρ2 − α21N1 − α22N2 = 0,

β0g + β1
N2

k +N2

g − εS = 0.

(A.2)

Let ω = α12α21 − α11α22 > 0. After solving N1 and S in terms of N2 from the last two
equations of (A.2), and substituting them into the first equation, we get

ρ1
µ

µ+ (β0g + β1
N2

k +N2

g)/ε
− α11

ρ2 − α22N2

α21

− α12N2 = 0,

which can be simplified to a quadratic equation

F (N2) ≡ AN2
2 +BN2 + C = 0, (A.3)

where A = (β0 + β1 +
εµ

g
)ω > 0, B = (β0 +

εµ

g
)kω + (β0 + β1 +

εµ

g
)ρ2α11 −

εµ

g
ρ1α21 and

C = (β0 +
εµ

g
)kρ2α11 −

εµ

g
kρ1α21.
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Since g < g∗2 implies C < 0, (A.3) has exactly one positive root, N∗2 . To establish the
existence of E∗, we need verify the positivity of

N∗1 = (ρ2 − α22N
∗
2 )/α21 and S∗ = (β0g + β1

N∗2
k +N∗2

g)/ε,

respectively. Obviously, it suffices to show that N∗2 < ρ2/α22 or F (ρ2/α22) > 0. In fact,

F (
ρ2

α22

) = A(
ρ2

α22

)2 +B
ρ2

α22

+ C

=(β0 + β1 +
εµ

g
)(ω

ρ2
2

α2
22

+ ρ2α11
ρ2

α22

) + (β0 +
εµ

g
)(kω

ρ2

α22

+ kρ2α11)−
εµ

g
(ρ1α21

ρ2

α22

+ kρ1α21)

=(β0 + β1 +
εµ

g
)
ρ2

2

α2
22

(ω + α11α22) + (β0 +
εµ

g
)k
ρ2

α22

(ω + α11α22)−
εµ

g
ρ1α21(

ρ2

α22

+ k)

=(β0 + β1 +
εµ

g
)
ρ2

2

α2
22

α12α21 + (β0 +
εµ

g
)k
ρ2

α22

α12α21 −
εµ

g
ρ1α21(

ρ2

α22

+ k)

=(β0 + β1)
ρ2

2

α2
22

α12α21 + β0k
ρ2

α22

α12α21 −
εµ

g

(
ρ1α21(

ρ2

α22

+ k)− ρ2
2

α2
22

α12α21 − k
ρ2

α22

α12α21

)
=(β0 + β1)

ρ2
2

α2
22

α12α21 + β0k
ρ2

α22

α12α21 −
εµ

g
(ρ2 + kα22)(

ρ1α22

ρ2α12

− 1)
ρ2

α2
22

α12α21 > 0

is equivalent to g > g∗1. Thus the proof of the necessity is complete.
Conversely, suppose that there is a positive equilibrium E∗ = (N∗1 , N

∗
2 , S

∗). From the
first two equations of (A.2), we can solve N1 and N2 in terms of S, i.e.,

N∗1 = (ρ2α12 − ρ1h(S∗)α22)/ω > 0 and N∗2 = (ρ1h(S∗)α21 − ρ2α11)/ω > 0,

which imply that
ρ2α11

ρ1α21

< f(S∗) <
ρ2α12

ρ1α22

. Note that E∗ ∈ (E2, E1)K and therefore S1 ≡
β0g

ε
< S∗ < S2 ≡ (β0 + β1

ρ2

kα22 + ρ2

)
g

ε
, then f(S2) < f(S∗) < f(S1). Hence f(S2) <

ρ2α12

ρ1α22

and f(S1) >
ρ2α11

ρ1α21

which mean that both E1 and E2 are stable.

When E∗ exists, the Jacobian matrix of (A.1) at E∗ = (N∗1 , N
∗
2 , S

∗) is

J(E∗) =

−α11N
∗
1 −α12N

∗
1 −ρ1N

∗
1 f

2(S∗)/µ
−α21N

∗
2 −α22N

∗
2 0

0 β1kg/(k +N∗2 )2 −ε


and its determinant det(J(E∗)) > ε(α12α21 − α11α22)N

∗
1N
∗
2 = εωN∗1N

∗
2 > 0. Therefore, E∗

must have a positive eigenvalue and it is unstable. By the theory of connecting orbits in
[2], system (A.1) can have at most one positive equilibrium. Otherwise, there must exist a
further positive equilibrium which contradicts to (A.3).

Remark 1.6. From (A.3), we can obtain an explicit expression for the positive equilibrium
when it exists. Since tr(J(E∗)) = −(α11N

∗
1 + α22N

∗
2 + ε) < 0, J(E∗) has one positive

eigenvalue and two eigenvalues with negative real parts. Therefore, the stable manifold
W s(E∗) of E∗ is a two-dimensional smooth surface which separates IntR3

+ into two parts:
the lower one in the order ≤K is the basin of attraction for E2 and the upper one is the basin
of attraction for E1.
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Remark 1.7. In case there is no positive equilibrium, either E1 or E2 is globally globally
asymptotically stable in IntR3

+. More precisely, if g > max{g∗1, g∗2}, then E2 is globally
asymptotically stable in IntR3

+; if g < min{g∗1, g∗2}, then E1 is globally asymptotically stable
in IntR3

+. The scenario g∗2 < g < g∗1 is impossible, if otherwise, this means that g∗2 < 0 <

g∗1⇔
ρ1α21

ρ2α11

< 1 <
ρ1α22

ρ2α12

which contradicts to the assumption α12α21−α11α22 > 0. Thus the

dynamical behavior of system (A.1) is consistent with the competition exclusion principle in
two-species Lotka-Volterra competition model.

1.4 The model with diffusion

Now, we develop a spatial model for the interaction between salt-tolerant and salt-intolerant
vegetation types by including species diffusion and salt distribution. Thus, we have the
following reaction-diffusion equations (Murray [5]),

∂N1

∂t
= N1(ρ1f(S)− α11N1 − α12N2) +D1

∂2N1

∂z2
in (0, L)× (0,∞),

∂N2

∂t
= N2(ρ2h(S)− α21N1 − α22N2) +D2

∂2N2

∂z2
in (0, L)× (0,∞),

∂S

∂t
= β0g(z) + β1

N2

k +N2

g(z)− εS +DS
∂2S

∂z2
in (0, L)× (0,∞),

∂N1

∂n
=
∂N2

∂n
=
∂S

∂n
= 0 on {0, L} × (0,∞),

(A.4)

with nonnegative initial conditions. Here N1(z, t), N2(z, t) and S(z, t) are the population
density/concentration of N1, N2 and S in altitude z at time t. The diffusion rates D1, D2

and DS are assumed to be positive constants and g(z) is a positive decreasing function of z.
For mathematical tractability, we discretize (A.4) to a two-patch model

dN1

dt
= N1(ρ1f(S)− α11N1 − α12N2) +D1(N̄1 −N1),

dN2

dt
= N2(ρ2h(S)− α21N1 − α22N2) +D2(N̄2 −N2),

dS

dt
= β0g + β1

N2

k +N2

g − εS +DS(S̄ − S),

dN̄1

dt
= N̄1(ρ1f(S̄)− α11N̄1 − α12N̄2) +D1(N1 − N̄1),

dN̄2

dt
= N̄2(ρ2h(S̄)− α21N̄1 − α22N̄2) +D2(N2 − N̄2),

dS̄

dt
= β0ḡ + β1

N̄2

k + N̄2

ḡ − εS̄ +DS(S − S̄),

(A.5)

with nonnegative initial conditions. We assume that α12α21−α11α22 > 0 and g∗1 < g, ḡ < g∗2.
¿From above analysis, we know each isolated patch has four equilibria, i.e., E0 (unstable),

E1 (stable), E2 (stable), E∗ (unstable) for patch 1 and Ē0 (unstable), Ē1 (stable), Ē2 (stable),
Ē∗ (unstable) for patch 2. Moreover, almost all orbits converges to either E1 or E2 in patch
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1, and Ē1 or Ē2 in patch 2. The system (A.5) admits two stable equilibria (E1, Ē2) and
(E2, Ē1) when the two patches are disconnected.

Similar to Levin [4], for small diffusion rates D1, D2 and DS, the equilibria (E1, Ē2) and
(E2, Ē1) do not disappear but move slightly off the boundary. By a perturbation theorem
[4], (E1, Ē2) and (E2, Ē1) remain stable for sufficiently small diffusion rates. When the
diffusion rates are high, the two patches model are approximate to a single patch model,
thus coexistence is again impossible. These indicate that it is possible that one species
persists in one patch to exclude the other and regime shifts still present for system with
diffusion.

References

[1] D. Gao and X. Liang, A competition-diffusion system with a refuge, Discrete Contin.
Dyn. Syst. Ser. B, 8(2007), pp. 435-454.

[2] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Notes in Math
247, Longman Scientific and Technical, New York, 1991.

[3] J. Jiang and F. Tang, The complete classification on a model of two species competition
with an inhibitor, Discrete Contin. Dyn. Syst. Ser. A, 20(2008), pp. 659-672.

[4] S. A. Levin, Dispersion and population interactions. The American Naturalist,
108(1974), pp. 207-228.

[5] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications,
Springer-Verlag, Berlin, 2003.

[6] H. L. Smith, Monotone Dynamical Systems: An Introduction to the theory of Competi-
tive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41, A.M.S.,
Providence, RI, 1995.

6


