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Background: The emerging virus, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), has caused a large outbreak of novel coronavirus disease (COVID-19)

since the end of 2019. As of February 15, there were 56 COVID-19 cases confirmed in

Hong Kong since the first case with symptom onset on January 23, 2020.

Methods: Based on the publicly available surveillance data in Hong Kong, we identified

21 transmission events as of February 15, 2020. An interval censored likelihood

framework is adopted to fit three different distributions including Gamma, Weibull, and

lognormal, that govern the serial interval (SI) of COVID-19. We selected the distribution

according to the Akaike information criterion corrected for small sample size (AICc).

Findings: We found the lognormal distribution performed slightly better than the other

two distributions in terms of the AICc. Assuming a lognormal distribution model, we

estimated the mean of SI at 4.9 days (95% CI: 3.6–6.2) and SD of SI at 4.4 days (95%

CI: 2.9–8.3) by using the information of all 21 transmission events.

Conclusion: The SI of COVID-19 may be shorter than the preliminary estimates in

previous works. Given the likelihood that SI could be shorter than the incubation period,

pre-symptomatic transmission may occur, and extra efforts on timely contact tracing and

quarantine are crucially needed in combating the COVID-19 outbreak.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) is caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2, formerly known as the “2019-nCoV”), which has emerged
at the end of 2019 [1–5]. COVID-19 cases were soon exported
to many Chinese cities and overseas [6], and the travel-related
risk of disease spread was suggested in previous studies [4, 7–9].
The risks of rapid spreading were evaluated based on the early
surveillance data and also compared to other previous respiratory
infectious diseases [5, 10–14]. Since the first confirmed imported
case in Hong Kong on January 23 [15], the local government
has implemented a series of control and prevention measures
for COVID-19, including enhanced border screening and traffic
restrictions [16, 17].

The COVID-19 pandemic has affected most of the regions
around the world, including places with less developed healthcare
systems. Hong Kong was the hardest hit region in the severe acute
respiratory syndrome (SARS) outbreaks in 2003 [18, 19], and
thus it is expected to be more prepared in mitigation of emerging
infectious disease outbreaks [20]. The lesson in Hong Kong
shall be an example for other regions, in particular those less
developed places with poor settings [21–24]. As of February 15,
there were 56 COVID-19 cases confirmed in Hong Kong [16],
and local transmission was also recognized by the contact tracing
investigation. Given the risk of human-to-human transmission,
the serial interval (SI), which refers to the time interval from
illness onset in a primary case (i.e., infector) to that in a secondary
case (i.e., infectee) [25–28], was of interest to the iterative rate of
transmission generations of COVID-19. SI could be used to assist
strategic decision-making of public health policies and construct
analytical frameworks for studying the transmission dynamics
of SARS-CoV-2.

In this study, we examined the publicly available materials
released by the Center for Health Protection (CHP) of
Hong Kong. Adopting the case-ascertained design [29], we
identified the transmission chain from index cases to secondary
cases. We estimated the SI of COVID-19 based on 21 identified
transmission chains from the surveillance data and contact
tracing data in Hong Kong.

DATA AND METHODS

As of February 15, there were 56 confirmed COVID-19 cases in

Hong Kong [16], which followed the case definition in official

diagnostic protocol released by the World Health Organization
(WHO) [30]. To identify the pairs of infector (i.e., primary
case) and infectee (i.e., secondary case), we scanned all news

press released by the CHP of Hong Kong between January 16
and February 15, 2020 [17]. The exact symptom onset dates
of all individual patients were released by CHP [16], which
were publicly available, and used to match each transmission
chain. For those infectees associated with multiple infectors, we
recorded the range of onset dates of all associated infectors,
i.e., lower and upper bounds. With all publicly available
information from CHP, we constructed the transmission events
by subjectively screening the exposure link between consecutive

COVID-19 infections. We identified 21 transmission events,
including 12 infectees matched with only one infector, that
were used for SI estimation. Note that all the 21 transmission
events occurred in Hong Kong, and most of the cases involved
Hong Kong residents.

Following previous studies [25], we adopted a distribution
function with mean µ and standard deviation (SD) σ , denoted
by g(|µ, σ ), to govern the distribution of SI. We defined g(|µ, σ )
as three different distributions; Gamma, Weibull, and lognormal
distribution. The interval censored likelihood [31], denoted by
L0, of SI estimates is defined in Equation (1). It happens in the
practical analyses of serial interval (as well as incubation period),
observations are typically integer while the population mean can
be a real value.
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The h(·) was the probability density function (PDF) of exposure
following a uniform distribution with a range from Tlow to Tup.
The terms Ti

low and Ti
up denoted the lower and upper bounds,

respectively, for the range of onset dates of multiple infectors
linked to the i-th infectee. The τi was the observed onset date
of the i-th infectee. Hence, the likelihood function in Equation
(1) can be interpreted as the probability of the SI being observed
with uncertain onset dates of infectors but a fixed onset date
of the infectee [25, 31]. We calculated the maximum likelihood
estimates of µ and σ . Their 95% confidence interval (95%
CI) were calculated by using the profile likelihood estimation
framework with a cutoff threshold determined by a Chi-square
quantile [32]. We select the distribution of g(·|µ, σ ) according
to the Akaike information criterion corrected for small sample
size, denoted by AICc. We employed both Pearson’s correlation
and coefficient of determination, i.e., R-squared, to measure the
goodness-of-fit of the selected model.

In addition, as pointed out in [31], it was possible that the
naive likelihood in Equation (1) underestimated the SI due to
sampling biases. Hence, we adjusted for the right truncation
observation bias due to isolation by using an alternative
likelihood function, L, in Equation (2), which is based on the
non-truncated version in Equation (1). The truncation scheme
in Nishiura et al. [31], as well as adopted in Kwok et al. [21],
is relying on prior knowledge of an additional parameter, i.e.,
the intrinsic growth rate of the epidemic, which is commonly
assumed and fixed in the likelihood framework. The truncation
scheme adopted in this work was previously discussed in
Zhao [33], which considers both likelihood of occurrence and
likelihood of being observed subjected to the implementation
of isolation.
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Here, the G(·) was the cumulative distribution function of g(·|µ,
σ ). The di was the isolation date of the infector associated
with the i-th infectee. All other notations were the same as
those in Equation (1). The maximum likelihood estimates were
calculated, and AICc was employed for model selection.

RESULTS AND DISCUSSION

The observed SIs of all 21 samples have a mean of 4.3 days,
median of 4 days, interquartile range (IQR) between 2 and 5, and
a range from 1 to 13 days. For the 12 “infector- infectee” pairs,
the observed SIs have a mean of 3 days, median of 2 days, IQR
between 2 and 4, and range from 1 to 8 days. Figure 1 shows the
likelihood profiles of varying SI with respect to µ and σ of SI. In

FIGURE 1 | The likelihood profile of the varying serial interval (SI) of COVID-19

by using all samples. The color scheme is shown on the right-hand side, and a

darker color indicates a larger log-likelihood, i.e., ln(L), value.

Table 1, for the non-truncated scenario [i.e., using Equation [1]],
we found the three distributions have almost equivalent fitting
performance in terms of the AICc. The lognormal distribution
has the lowest AICc, and thus it is presented as the main result
for the SI estimation. By using all 21 samples, we estimated
the mean of SI at 3.9 days (95% CI: 2.8–7.2) and SD of SI at
2.6 days (95% CI: 1.6–9.3). Between the observed and the fitted
distributions, the Pearson’s correlation is 0.98, and the R-squared
is 0.97. These estimates largely matched the results in the existing
literature [31, 34, 35]. Considering only the 12 “infector-infectee”
pairs, we found the lognormal distribution also outperformed,
and we estimated the mean of SI at 3.0 days (95% CI: 1.9–6.8)
and SD of SI at 2.0 days (95% CI: 1.0–10.5). In this case, the
Pearson’s correlation is 0.96, and the R-squared is 0.92. The fitted
lognormal distributions were shown in Figure 2.

For the right-truncated scenario [i.e., using Equation (2)], the
lognormal distribution also outperformed in terms of the AICc,
see Table 1. By using all 21 samples, we estimated the mean of
SI at 4.9 days (95% CI: 3.6–6.2) and SD of SI at 4.4 days (95%
CI: 2.9–8.3). By only using the 12 “infector-infectee” pairs, we
estimated the mean of SI at 3.0 days (95% CI: 2.1–3.9) and SD
of SI at 2.0 days (95% CI: 1.2–4.6). The Pearson’s correlation
and coefficient of determination were no longer applicable here
since the likelihood function was adjusted and thus not solely
depended on the SI observations.

Comparing to the SI of SARS with a mean of 8.4 days
and SD of 3.4 days [36], the estimated 4.9-day SI for COVID-
19 indicated rapid cycles of generation replacement in the
transmission chain. Hence, highly efficient public health control
measures, including contact tracing, isolation, and screening,
were strongly recommended to mitigate the epidemic size.
The timely supply and delivery of healthcare resources, e.g.,
facemasks, alcohol sterilizer, and manpower and equipment
for treatment, were required in response to the rapid growing
incidences of COVID-19 [4, 37]. In the places with less

TABLE 1 | Summary of the estimates of the serial interval (SI) mean and standard deviation (SD) from three different distributions.

Truncation Dataset Distribution Serial interval (day) AICc

Mean SD

Not truncated All transmission events (n = 21) Gamma 4.0 (2.9, 5.9) 2.4 (1.6, 4.5) 95.6

Weibull 4.0 (2.8, 5.8) 2.4 (1.8, 4.5) 96.2

Lognormal 3.9 (2.8, 7.2) 2.6 (1.6, 9.3) 95.5

“Infector-infectee” pairs (n = 12) Gamma 3.0 (1.9, 5.4) 1.8 (1.0, 4.6) 49.9

Weibull 3.0 (1.8, 5.5) 1.9 (1.3, 5.1) 51.0

Lognormal 3.0 (1.9, 6.8) 2.0 (1.0, 10.5) 49.0

Truncated All transmission events (n = 21) Gamma 4.4 (3.2, 5.6) 3.0 (2.1, 4.8) 100.7

Weibull 4.4 (3.1, 5.8) 2.9 (2.0, 5.0) 101.4

Lognormal 4.9 (3.6, 6.2) 4.4 (2.9, 8.3) 99.5

“Infector-infectee” pairs (n = 12) Gamma 3.0 (2.0, 4.0) 1.8 (1.2, 3.3) 49.9

Weibull 3.0 (1.9, 4.2) 1.8 (1.3, 3.6) 51.0

Lognormal 3.0 (2.1, 3.9) 2.0 (1.2, 4.6) 48.9

The highlight estimates are considered as the main results.
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FIGURE 2 | The distribution of serial interval (SI). (A), the red curve is the observed cumulative distribution of SI from 12 transmission pairs, and the blue curve is the

observed cumulative distribution of SI from all 21 transmission events. (A,B), the black bold curve is the fitted lognormal distribution using all 21 transmission events,

and the dashed thin curve is the fitted lognormal distribution using 12 transmission pairs without truncation.

developed healthcare systems and limited medical resources,
such a rapid growth of the epidemic may cause a burden
to the public health system. Therefore, preparedness and
cautiousness for the risk of COVID-19 are crucial to minimize
impacts [38, 39].

As also pointed out by recent works [31, 34, 35, 40], the
mean of SI at 4.9 days is slightly smaller than the mean
incubation period, roughly 5 days, estimated by many previous
studies [41–44]. The pre-symptomatic transmission may occur
when the SI is shorter than the incubation period. If isolation
can be conducted immediately after the symptom onset, the
pre-symptomatic transmission is likely to contribute to most
of SARS-CoV-2 infections. This situation has been recognized
by a recent epidemiological investigation [45], and has been
implemented in themechanistic modeling studies of the COVID-
19 epidemic [4, 46], where the pre-symptomatic cases were
contagious. As such, merely isolating the symptomatic cases
will lead to a considerable proportion of secondary cases, and
thus contact tracing and immediately quarantine were crucial
to reduce the risk of infection. In addition, we would like to
point out that minor negative SI observations were reported
in recent studies [34, 35, 47–49]. The negativity in the SI
may occur when the incubation period is short with a large
variance. However, negative value was not observed in our
dataset, which may be due to the small sample size. We further
remark that this is unlikely to bias the estimation of mean
SI, but may lead to a slight underestimation of the SD of SI.
The purpose of estimating SI is to approximate the generation
interval (time lag of infections of successive cases) which is
strictly positive. Caution should be taken when dealing with
negative SI.

A recently epidemiological study used 5 “infector-infectee”
pairs from contact tracing data in Wuhan, China during the
early outbreak to estimate the mean SI at 7.5 days (95% CI:
5.3–19.0) [42], which appeared larger than our SI estimate of
4.9 days. Although the 95% CIs of SI estimates in this study,
consistent with previous studies [21, 31, 33–35], and those in
Li et al. [42] were not significantly separated, the difference
in the SI estimates might exist. If this difference was not due
to sampling chance, one of the possible explanations could be
enhanced public awareness and swift control measures including
the contact tracing and isolation implemented in Hong Kong.
Since Hong Kong was the hardest hit in the SARS outbreaks
in 2003 [18, 19], the local public health control was one of the
most effective in the world. In the initial phase of the outbreak in
Wuhan, the transmission occurred without sufficient awareness
and effective intervention, thus the SI estimate in Li et al.
[42] may be regarded as the intrinsic (wild) SI, as defined in
Champredon et al. [50], of COVID-19. Whereas, the SI estimate
in Hong Kong may be regarded as the effective SI, in more
practical situations where timely action (quarantining cases and
their close contacts) is in place [23], such that one case could
be isolated before having the chance to further infect others.
If timely action was not in place, infections of longer serial
interval may occur. Thus, shorter SI observations might be an
outcome of effectiveness in control in a location. The practice
in Hong Kong is an example for other regions, including less
developed countries.

The SI estimate can benefit from larger sample size. The
estimates in our study were based on 21 identified transmission
events including 12 “infector-infectee” pairs. Although the
sample size was smaller than 28 transmission events in
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Nishiura et al. [31], 71 in You et al. [35] and 468 in Du
et al. [34], the advantage of this analysis is that all the 21
transmission events were identified in Hong Kong. Hence,
the surveillance data were under consistent reporting and
recording standards, which further reduced the heterogenicity
in the observations. Our analysis can be improved if larger
records on the local transmission events can be produced.
Furthermore, a comparison between different localities is
important, which sheds light on the effects of different external
factors on SI.

Accurate and consistent records on dates of illness onset were
essential to the estimation of the SI. All samples used in this
analysis were identified in Hong Kong and collected consistently
from the CHP [16, 17]. Hence, the reporting criteria were most
likely to be the same for all COVID-19 cases, which potentially
made our findings more robust.

Clusters of cases can occur by person-to-person transmission
within a cluster, e.g.,

• scenario (I): person A infected B, C, and D; or
• scenario (II): A to B to C to D; or
• scenario (III): a mixture of (I) and (II), e.g., A to B, B to

C and D;

or they can occur through common exposure to an unrecognized
source of infection, e.g.,

• scenario (IV): an unknown person X infected A, B, C, and
D; or

• scenario (V): a mixture of (IV) and (I) or (II), e.g., X to A and
B, B to C and D.

The lack of information in the publicly available dataset made
it difficult to disentangle such complicated situations. The
scenarios (I) and (II) can be covered by a pair of “infector-
infectee” such that we could identify the link between two unique
consecutive infections. Under the scenario (III), we cannot
clearly identify the pairwise match between the infector and
infectee, which means there were multiple candidates for the
infector of one infectee. As such, we employed the PDF h(·)
in Equation (1) to account for the possible time of exposure
ranging from Tlow to Tup. There is no information available
on the SI for scenarios (IV) as well as (V) due to the onset
date of person X being unknown, and thus our analysis was
limited in the scenarios (I)-(III). We note that we should be
extra cautious in interpreting the clusters of cases because of
this potential limitation. Although we used interval censoring
likelihood to deal with the multiple-infector matching issue,
more detailed information of the exposure history and clue on
“who acquires infection from whom” (WAIFW) would improve
our estimates.

Longer SI might be difficult to confirm in reality due to the
isolation of confirmed infections [51, 52], or to identify and
link together due to the less accurate information associated
with memory error which occurred in the backward contact
tracing exercise [34]. The issue associated with isolation could
possibly bias the SI estimates and lead to an underestimated

result [31]. It is possible that at the initial stage the SI is longer
than later when strict isolation takes place [23]. Nevertheless,
a comparison of estimated SI for SARS and COVID-19 in
Hong Kong is still meaningful. We found that the estimated SI
of COVID-19 appears shorter than that of SARS. It would be
hard to imagine that isolation is responsible for the difference.
It is unlikely that the isolation is more rapid in cases of
COVID-19 than cases in SARS in Hong Kong, as well as
other limitations, which would have happened for both. Thus,
the difference we observed for COVID-19 and SARS is likely
intrinsic. Given the rapid spreading of COVID-19, effective
contact tracing and quarantine/isolation were even more crucial
for successful control.

CONCLUSION

Together with the basic reproduction number, the serial interval
is one of the most important epidemiological parameters,
although is difficult to estimate and garners less attention
than the former. Here, we found that the SI of COVID-
19 may be shorter than the preliminary estimates seen in
previous works. Since SI could be shorter than the incubation
period among some cases, pre-symptomatic transmission
may occur, and extra efforts on timely contact tracing and
quarantine are crucially needed in combating the COVID-
19 outbreak.
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