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Abstract
Zika virus disease is a viral disease primarily transmitted to humans through the bite
of infected female mosquitoes. Recent evidence indicates that the virus can also be
sexually transmitted in hosts and vertically transmitted in vectors. In this paper, we
propose a Zikamodel with three transmission routes, that is, vector-borne transmission
between humans and mosquitoes, sexual transmission within humans and vertical
transmission within mosquitoes. The basic reproduction numberR0 is computed and
shown to be a sharp threshold quantity.Namely, the disease-free equilibrium is globally
asymptotically stable as R0 ≤ 1, whereas there exists a unique endemic equilibrium
which is globally asymptotically stable asR0 > 1. The relative contributions of each
transmission route on the reproduction number, and the short- and long-term host
infections are analyzed. Numerical simulations confirm that vectorial transmission
contributes the most to the initial and subsequent transmission. The role of sexual
transmission in the early phase of a Zika outbreak is greater than the long term, while
vertical transmission is the opposite. Reducing mosquito bites is the most effective
measure in lowering the risk of Zika virus infection.
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1 Introduction

Zika virus disease (ZVD), also called Zika fever or simply Zika, is a mosquito-borne
disease caused by Zika virus (ZIKV), which belongs to the genus Flavivirus from the
family Flaviviridae. The virus is mainly transmitted to humans by the bites of infected
Aedesmosquitoes, includingAedes aegypti andAedes albopictus. About 20% exposed
humans develop symptoms after the intrinsic incubation period of 3–14 days. Common
symptoms of Zika include fever, skin rashes, conjunctivitis, and headache (Duffy et al.
2009). Women infected by Zika virus during pregnancy may give birth to newborn
babies with microcephaly and other birth defects (Mlakar et al. 2016; Rasmussen et al.
2016). Zika virus infection is also associated with the increasing incidence of some
other neurological disorders including Guillain–Barré syndrome (GBS), neuropathy
andmyelitis (PanAmericanHealth Organization 2016; Parra et al. 2016;World Health
Organization 2021). Moreover, the phenomenon of antibody-dependent enhancement
may or may not occur in ZIKV infections with prior exposure to dengue virus (Sariol
et al. 2018). To date, there is still no licensed vaccine or approved treatment against
the virus.

Zika virus was first isolated from the serum of a rhesus monkey trapped in the
canopy of the Zika forest in Uganda in 1947, and from the Aedes africanus mosquito
in the same forest one year later (Dick et al. 1952). It was subsequently discovered in
humans from Uganda and Tanzania in 1952 (MacNamara 1954). For decades, Zika
virus expanded its geographical distribution from Africa to equatorial Asia, includ-
ing India, Indonesia, Malaysia and Pakistan, where only sporadic human cases were
reported (World Health Organization 2016b). The first recorded Zika virus outbreak
occurred on Yap Island, Federated States of Micronesia in 2007 (Duffy et al. 2009).
In October 2013, the first large-scale ZIKV outbreaks happened in French Polyne-
sia and subsequently in three other groups of Pacific islands (Musso et al. 2014).
Autochthonous cases of Zika virus infection were detected in Brazil in March 2015,
and the virus swiftly spread to many other countries in South and Central America
and the Caribbean (World Health Organization 2017). On February 1, 2016, theWorld
Health Organization (WHO) declared the Zika outbreak a Public Health Emergency
of International Concern (World Health Organization 2016a). An estimated 440,000–
1,300,000 Zika cases occurred in Brazil during 2015 (Heukelbach et al. 2016). The
virus is still circulating in Brazil and other countries and constitutes a major public
health threat.

Besides themosquito-borne transmission pathway (mosquitoes feed on hosts), Zika
virus can also be transmitted through heterosexual or homosexual contact (Moreira
et al. 2017; Polen et al. 2018). The potential for sexual transmission of ZIKV was
initially discovered by Foy et al. (2011). During the 2015–2016 Zika virus epidemic,
the first sexually transmitted Zika case was diagnosed in Dallas County in the USA
on February 2, 2016 (DCHHS 2016). Later on, more cases via sexual transmission
were documented in the USA and other countries such as Argentina, Canada, Chile,
France, Germany, Italy, New Zealand, Peru, Portugal and Spain (Moreira et al. 2017).
Meanwhile, recent experimental evidences have confirmed that Zika virus can be
transmitted vertically from infected female mosquitoes to their offspring. Thangamani
et al. (2016) injected ZIKV into femaleAedes aegyptimosquitoes and tested that six of
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1,738 F1 adult progeny yielded ZIKV, giving a minimum filial infection rate of 1:290.
Lai et al. (2020) found that the vertical transmission rates in F1 Aedes albopictus eggs
and adults were 2.06% and 1.87%, respectively. In addition, Zika virus is occasionally
transmitted through blood transfusion, organ transplantation and laboratory exposure.
For pregnant women infected with Zika virus, there is a possibility that they will infect
the fetus through perinatal transmission (Besnard et al. 2014).

Since 2015–16 Zika outbreak, mathematical modeling of Zika virus disease has
attracted considerable attention (Wiratsudakul et al. 2018). Kucharski et al. (2016)
used an SEIR-SEI epidemic model with only vector-borne transmission to analyze the
dynamics of ZIKV transmission during the 2013–14 outbreak in French Polynesia.
Gao et al. (2016) proposed a mathematical model on ZIKV taking into account both
mosquito-borne and sexual transmission routes, and found that sexual transmission
contributes little to the basic reproduction number but has the potential to increase
the risk of infection and the scale of the epidemic. Their model was analyzed and
extended by Bates et al. (2021) through incorporating balanced birth and death rates
for humans, and density-dependent birth rate for mosquitoes. Brauer and his collabo-
rators (Brauer et al. 2016; Towers et al. 2016) considered a Zika model similar to that
of Kucharski et al. (2016) but adding sexual transmission and fit the model to the daily
incidence data of the 2015 ZIKV outbreak in Barranquilla, Colombia. Wang et al.
(2017) formulated a Zika model with the consideration of sexual transmission and the
release of genetically modified mosquitoes. Baca-Carrasco and Velasco-Hernández
(2016) studied the combined effect of heterosexual transmission and migration in the
spread of ZIKV. Maxian et al. (2017) developed an age- and sex-structured model
including vectorial and male-to-female and male-to-male sexual transmission and
revealed that sexual transmission makes a 4.8% contribution to the basic reproduction
number. Agusto et al. (2017a) took male-to-female, male-to-male and female-to-male
transmission into consideration and showed that risky sexual behavior among males
substantially increases the number of Zika infections. Saad-Roy et al. (2018) formu-
lated an age-structured Zika model with vectorial transmission and male-to-female
transmission, and they examined the effect of the incidence function for sexual trans-
mission. Tang et al. (2019) developed a coinfection model to investigate the influence
of sexual transmission of Zika on the transmission dynamics of dengue and Zika.
Agusto et al. (2017b) analyzed a Zika model with human vertical transmission, new-
borns with microcephaly and asymptomatic infections. A compartmental model with
vertical transmission for both humans and mosquitoes was presented by Imran et al.
(2021).

In this paper, we aim to study the joint effect ofmosquito-borne transmission, sexual
transmission and vertical transmission on the spread of Zika virus. The existing work
that is closest to our expectation comes from Olawoyin and Kribs (2018) who con-
structed a deterministic model of Zika virus that incorporates sexual transmission in
humans and mosquitoes, vertical transmission in mosquitoes and vector-borne trans-
mission between humans and mosquitoes. Due to the complexity of the model, they
only numerically analyzed the potential impact of multiple transmission modes on
infection prevention and control. In the next section, we formulate a mathematically
tractable model with three transmission routes for Zika virus disease. In Sect. 3, we
compute the basic reproduction number, establish the global threshold dynamics and
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Fig. 1 Flow diagram of the Zika model

compare the role of the three routes of themodel on disease transmission. In Sect. 4, we
first fit the model to GBS data during 2015–2016 Zika virus epidemic in northeastern
Brazil. Then, we perform sensitivity analysis with respect to the basic reproduction
number and numerical simulations to investigate the role of extra transmission routes.
Lastly, we draw some conclusions and discuss future work.

2 Model Formulation

To capture the essential features of Zika transmission in a simple way, we split the total
human population H into susceptible humans Sh , infectious humans Ih , and recovered
humans Rh . Meanwhile, the total mosquito population M is divided into susceptible
mosquitoes Sv and infectious mosquitoes Iv . Incubation periods of viruses within
humans and mosquitoes are ignored. We assume that birth and death rates of humans
are balanced, and all newborn babies are susceptible. A susceptible human becomes
infected through the bite of an infectious mosquito or sexual contact with an infected
partner. Vertical transmission in humans is neglected because the infectious period of
Zika is short compared to human longevity and newborns make no contribution to
sexual or vertical transmission (Olawoyin and Kribs 2018). Patients who recover from
the disease are conferred permanent immunity against reinfection. Since the symptoms
of Zika are subclinical or mild and rarely fatal, we omit the disease-caused mortality
in humans. For mosquitoes, we similarly assume that their birth and mortality rates
are equal. Vertical transmission from mother to offspring and vectorial transmission
from hosts to vectors are considered. Infected mosquitoes do not recover due to their
short lifespan.

Based on the above assumptions and the flow diagram in Fig. 1, we arrive at the
following system of ordinary differential equations with nonnegative initial conditions
to describe the transmission dynamics of Zika virus between humans and mosquitoes
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Table 1 Descriptions and ranges of model parameters

Description Range References

a Mosquitoes biting rate (number of bites per mosquito per
day)

0.3−1.0 [1,5]

b Transmission probability from an infectious mosquito to
a susceptible human per bite (dimensionless)

0.1−0.75 [1]

c Transmission probability from an infectious human to a
susceptible mosquito per bite (dimensionless)

0.3−0.75 [2]

β Transmission coefficient from infected humans to sus-
ceptible humans (per day)

0.001−0.1 [3]

γ Recovery rate of humans (per day) 0.07−0.30 [8]

μh Mortality rate of humans (per day) 3.65×10−5 [7]

–4.98×10−5

μv Mortality rate of mosquitoes (per day) 0.029−0.25 [1,2]

θ Proportion of congenital infections in the offspring of
infected female mosquitoes (dimensionless)

0−0.004 [4,9]

m Ratio of mosquitoes to humans (mosquitoes per human) 1−10 [3,6]

The references are: 1- Andraud et al. (2012), 2- Chikaki and Ishikawa (2009), 3- Gao et al. (2016), 4- Lai
et al. (2020), 5- Manore et al. (2014), 6- de Castro Medeiros et al. (2011), 7- Roser et al. (2019), 8- Shutt
et al. (2017), and 9- Thangamani et al. (2016)

dSh
dt

= −
(
ab

Iv
H

Sh + β
Ih
H

Sh

)
+ μh(H − Sh),

dIh
dt

=
(
ab

Iv
H

Sh + β
Ih
H

Sh

)
− (γ + μh)Ih,

dRh

dt
= γ Ih − μh Rh,

dSv

dt
= −ac

Ih
H

Sv + μv(M − Sv − θ Iv),

dIv
dt

= ac
Ih
H

Sv − μv(1 − θ)Iv.

(1)

Here, a is the mosquito biting rate, b and c are the transmission probabilities from
an infectious mosquito to a susceptible human and from an infectious human to a
susceptible mosquito per bite, respectively, β is the transmission coefficient from
infected humans to susceptible humans,γ is the human recovery rate,μh andμv denote
the mortality rates of humans and mosquitoes, respectively, and θ is the proportion of
congenital infections in the offspring of infected female mosquitoes. Until otherwise
stated, all model parameters are positive constants. According to the epidemiology of
Zika, the ranges of parameters involved in model (1) are summarized in Table 1.

Since the total human and mosquito populations, H = Sh + Ih + Rh and M =
Sv + Iv , are constant, system (1) can be reduced to an equivalent system

dIh
dt

=
(
ab

Iv
H

+ β
Ih
H

)
(H − Ih − Rh) − (γ + μh)Ih,
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dRh

dt
= γ Ih − μh Rh,

dIv
dt

= ac
Ih
H

(M − Iv) − μv(1 − θ)Iv. (2)

Clearly, system (2) is mathematically well-posed and biologically meaningful.

Theorem 1 System (2) has a unique solution for all time t ≥ 0 with initial condition
lying in

Ω =
{
(Ih, Rh, Iv) ∈ R

3+ | Ih + Rh ≤ H , Iv ≤ M
}

.

Moreover, Ω is a positively invariant set of system (2).

Proof Since the vector field generated by the right side of (2) is continuously differ-
entiable in Ω , there exists a unique solution for all time t ≥ 0. If Ih = 0, then I ′

h ≥ 0.
Similarly, we can get the relationship about Rh and Iv . Moreover, if Ih + Rh = H ,
then I ′

h +R′
h ≤ 0; if Iv = M , then I ′

v ≤ 0.We have thus proved the positive invariance
of Ω (i.e., the solutions starting in Ω remain in Ω for all time t). ��

3 Mathematical Analysis

In this section, we first calculate the basic reproduction number of model (2), and
then investigate the threshold dynamics of the model. The relative contributions of
each transmission mode on the basic reproduction number and host infection size are
analyzed at the end.

3.1 Basic Reproduction Number

It is easy to see that system (2) has a unique disease-free equilibrium (DFE) at
E0 = (0, 0, 0). Using the next-generation matrix method (Diekmann et al. 1990;
van den Driessche and Watmough 2002), the rates of appearance of new infections
and transition of individuals are

F =
⎛
⎜⎝

(
ab

Iv
H

+ β
Ih
H

)
(H − Ih − Rh)

ac
Ih
H

(M − Iv) + μvθ Iv

⎞
⎟⎠ and V =

(
(γ + μh)Ih

μv Iv

)
,

respectively. So, the new incidence and transition matrices are

F =
(

β ab

ac
M

H
μvθ

)
and V =

(
γ + μh 0

0 μv

)
,
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respectively. Thus, the characteristic equation of the next generation matrix FV−1 is

λ2 − (Rhh + Rvv)λ + (RhhRvv − R2
hv) = 0,

where

Rhh = β

γ + μh
, Rhv =

√
a2bcM

μv(γ + μh)H
and Rvv = θ

are the reproduction numbers caused by sexual transmission, vector-borne transmis-
sion and vertical transmission, respectively. Hence, the basic reproduction number of
model (2) is

R0 = ρ(FV−1)

= 1

2

(
Rhh + Rvv +

√
(Rhh − Rvv)2 + 4R2

hv

)

= 1

2

⎛
⎝ β

γ + μh
+ θ +

√(
β

γ + μh
− θ

)2

+ 4a2bcM

μv(γ + μh)H

⎞
⎠ .

(3)

Obviously, R0 > max{Rhv,Rhh,Rvv}, which means that the presence of sexual
transmission and vertical transmission increases the risk of infection.

Theorem 2 For system (2), the disease-free equilibrium E0 is globally asymptotically
stable in Ω ifR0 ≤ 1, and unstable otherwise.

Proof It is straightforward to obtain the local stability properties of E0 by applying
Theorem 2 in van den Driessche and Watmough (2002). Next, we prove the global
attractivity of the disease-free equilibrium E0 asR0 ≤ 1. It follows from Ih+Rh ≤ H
and Iv ≤ M that

dIh
dt

≤ (abIv + β Ih) − (γ + μh)Ih,

dIv
dt

≤ ac
M

H
Ih − μv(1 − θ)Iv,

or equivalently,

(
dIh
dt

,
dIv
dt

)T

≤
(

β − γ − μh ab

ac
M

H
−μv(1 − θ)

) (
Ih
Iv

)
= (F − V )

(
Ih
Iv

)
.

The facts that the matrix V−1F is nonnegative and irreducible andR0 = ρ(FV−1) =
ρ(V−1F) imply that there exists a positive left eigenvector ν such that

νV−1F = R0ν.
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Consider a Lyapunov function

L0(Ih, Iv) = νV−1(Ih, Iv)T.

Differentiating L0 along the trajectories of (2) gives

dL0

dt
= νV−1

(
dIh
dt

,
dIv
dt

)T

≤ νV−1(F − V )(Ih, Iv)T

= (R0 − 1)ν(Ih, Iv)T.

If R0 < 1, then L ′
0 = 0 implies that Ih = Iv = 0. The second equation of (2) gives

R′
h = −μh Rh and thus Rh = 0; ifR0 = 1, the equality L ′

0 = 0 implies that

(
dIh
dt

,
dIv
dt

)T

= (F − V )(Ih, Iv)T,

i.e.,

(
ab

Iv
H

+ β
Ih
H

)
(H − Ih − Rh) = abIv + β Ih,

Ih
H

(M − Iv) = Ih
H

M .

(4)

From the second equation of (4), we conclude that Ih = 0 or Iv = 0. If Ih = 0, then
R′
h = −μh Rh and I ′

v = −μv(1 − θ)Iv . Hence Rh = Iv = 0. If Iv = 0, then the first

equation of (4) gives β
Ih
H (H − Ih − Rh) = β Ih , which implies Ih = 0 and thus we

can again get Rh = Iv = 0.
In conclusion, if R0 ≤ 1, the largest invariant set contained in {(Ih, Rh, Iv) ∈ Ω :

L ′
0 = 0} is the singleton {E0}. By LaSalle’s invariance principle (Lasalle 1976), the

disease-free equilibrium E0 is globally asymptotically stable in Ω when R0 ≤ 1. ��

3.2 Endemic Equilibrium

Besides the disease-free equilibrium, model (2) can have an endemic equilibrium
E∗ = (I ∗

h , R∗
h , I

∗
v ) as R0 > 1, which satisfies

(
ab

I ∗
v

H
+ β

I ∗
h

H

)
(H − I ∗

h − R∗
h) − (γ + μh)I

∗
h = 0,

γ I ∗
h − μh R

∗
h = 0,

ac
I ∗
h

H
(M − I ∗

v ) − μv(1 − θ)I ∗
v = 0.

(5)
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Solving R∗
h and I ∗

v from the second and third equations of (5) gives

R∗
h = γ

μh
I ∗
h and I ∗

v = acM

acI ∗
h + μv(1 − θ)H

I ∗
h ,

respectively, and substituting them into the first equation of (5) gives

(
ab

acM

acI ∗
h + μv(1 − θ)H

I ∗
h

H
+ β

I ∗
h

H

)
(H − I ∗

h − γ

μh
I ∗
h ) − (γ + μh)I

∗
h = 0.

After a straightforward but tedious manipulation, the above equation can be simplified
to

c2(I
∗
h )2 + c1 I

∗
h + c0 = 0,

where

c2 = acβ(γ + μh),

c1 = a2bcM(γ + μh) − acμh(β − γ − μh)H + βμv(1 − θ)(γ + μh)H ,

c0 = −Hμh(a
2bcM + μv(1 − θ)(β − γ − μh)H).

Clearly, c2 > 0. According to the definition ofR0, it follows that c0 andR0 − 1 have
opposite signs. Indeed, note that 1 − Rvv = 1 − θ ≥ 0 and

sgn(c0) = − sgn

(
a2bcM

μv(γ + μh)H
+ μv(1 − θ)(β − γ − μh)H

μv(γ + μh)H

)

= − sgn(R2
hv + (1 − Rvv)(Rhh − 1)).

IfRhh < 1, then

c0 < 0 ⇔ R2
hv + (1 − Rvv)(Rhh − 1) > 0

⇔ 4R2
hv + ((Rhh − 1) + (1 − Rvv))

2 > ((1 − Rhh) + (1 − Rvv))
2

⇔ (Rhh − Rvv)
2 + 4R2

hv > (2 − Rhh − Rvv)
2

⇔
√

(Rhh − Rvv)2 + 4R2
hv > |2 − Rhh − Rvv| = 2 − Rhh − Rvv

⇔ R0 = 1

2

(
Rhh + Rvv +

√
(Rhh − Rvv)2 + 4R2

hv

)
> 1.

IfRhh ≥ 1, then c0 < 0 andR0 > Rhh ≥ 1. This conclusion can be easily seen from
another threshold quantity R̃0 defined in Sect. 3.3.

We are now ready to establish the following result on the existence and local stability
of the endemic equilibrium. The proof is postponed to Appendix A.

Theorem 3 For system (2), there exists a unique endemic equilibrium E∗ =
(I ∗

h , R∗
h , I

∗
v ) if and only ifR0 > 1. Moreover, E∗ is locally asymptotically stable.
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Inwhat follows,we prove that the disease persists in the host populationwhenR0 >

1. So the basic reproduction number R0 is a sharp threshold for disease persistence
and extinction.

Theorem 4 For model (2), ifR0 > 1, then the disease is uniformly persistent as long
as it initially presents. Namely, there exists a constant ε > 0 such that each solution
ϕt (x0) = (Ih(t), Rh(t), Iv(t)) with the initial value x0 = (Ih(0), Rh(0), Iv(0)) in the
interior of Ω satisfies

lim inf
t→∞ (Ih(t), Iv(t)) � (ε, ε).

Proof First, we define

Ω̊ = {(Ih, Rh, Iv) ∈ Ω | Ih > 0, Iv > 0},
∂Ω = Ω\Ω̊ = {(Ih, Rh, Iv) ∈ Ω | Ih = 0 or Iv = 0}.

Clearly, both Ω and Ω̊ are positively invariant and the set ∂Ω is relatively closed
in Ω . The compactness and positive invariance of Ω imply that system (2) is point
dissipative. It suffices to prove that system (2) is uniformly persistent with respect to
(Ω̊, ∂Ω). Define

Γ = {x0 ∈ ∂Ω : ϕt (x0) ∈ ∂Ω, ∀ t > 0},
D = {(Ih, Rh, Iv) ∈ Ω | Ih = 0, Iv = 0}.

It is easy to see that D ⊆ Γ ⊆ ∂Ω . For any x0 ∈ ∂Ω\D, it follows from the fact

Ih(t) =e−(γ+μh)t
(
Ih(0) +

∫ t

0

(
ab

Iv(s)

H
+ β

Ih(s)

H

)

× (H − Ih(s) − Rh(s))e
(γ+μh)sds

)
> 0,

Rh(t) =e−μh t
(
Rh(0) +

∫ t

0
γ Ih(s)e

μhsds

)
> 0,

Iv(t) =e−μv(1−θ)t
(
Iv(0) +

∫ t

0
ac

Ih(s)

H
(M − Iv(s))e

μv(1−θ)sds

)
> 0,

that ϕt (x0) ∈ Ω̊ for all t > 0 and hence x0 /∈ Γ . Thus, we have Γ ⊆ D and Γ = D.
Moreover,

⋃
x0∈Γ ω(x0) = {E0}. By Theorem 4.6 in Thieme (1993), it only remains

to show that Ws(E0)
⋂

Ω̊ = ∅, where Ws(E0) denotes the stable manifold of E0.
Assume the contrary, there exists x0 ∈ Ω̊ such that ϕt (x0) → E0 as t → +∞.

Denote
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J (η) = F − V − ηG

=
⎛
⎜⎝β

H − 2η

H
− γ − μh

ab(H − 2η)

H
ac(M − η)

H
−μv(1 − θ)

⎞
⎟⎠ with G =

⎛
⎜⎝
2β

H

2ab

H
ac

H
0

⎞
⎟⎠ .

By Theorem 2 in van den Driessche and Watmough (2002), the spectral bound of
F − V , denoted by s(F − V ) = s(J (0)), is positive if and only if R0 > 1. Since
s(J (η)) is continuous for small η, there exists a small enough η1 > 0 such that
s(J (η)) > 0 for η ∈ [0, η1]. Meanwhile, up to a translation, we have

‖ϕt (x0) − E0‖2 = ‖ϕt (x0)‖2 ≤ η1, ∀ t ≥ 0, (6)

where ‖ · ‖2 is the usual Euclidean norm. Therefore,

(
dIh
dt

,
dIv
dt

)T

≥ J (η1)(Ih, Iv)T.

Since J (η1) is irreducible and essentially nonnegative, it has a positive eigenvector
associated with s(J (η1)) > 0. By a simple comparison principle, Ih(t) → +∞ and
Iv(t) → +∞ as t → +∞, contradicting (6). Note that the singleton {E0} is an isolated
invariant set and acyclic. The uniform persistence of system (2) in Ω̊ as R0 > 1 can
be concluded from Theorem 4.6 in Thieme (1993). ��

Before ending this subsection, we show the global attractivity of the endemic equi-
librium which generalizes the important work of Souza (2014).

Theorem 5 For model (2), if R0 > 1, then the unique endemic equilibrium E∗ is
globally asymptotically stable.

Proof We construct a Lyapunov function to prove the global asymptotic stability of
the endemic equilibrium. Introducing the change of variables

X = Sh
H

, Y = Ih
H

, and Z = Iv
M

,

simplifies (1) to the following topologically equivalent system

dX

dt
= −

(
b̃X Z + βXY

)
+ μh(1 − X),

dY

dt
=

(
b̃X Z + βXY

)
− γ̃Y ,

dZ

dt
= c̃(1 − Z)Y − μ̃vZ ,

(7)

where

b̃ = abm, γ̃ = γ + μh, c̃ = ac and μ̃v = μv(1 − θ).
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Let (X∗,Y ∗, Z∗) be the unique endemic equilibrium of system (7). The equilibrium
equations of system (7) lead to

μh = b̃X∗Z∗ + βX∗Y ∗ + μh X
∗, (8a)

γ̃Y ∗ = b̃X∗Z∗ + βX∗Y ∗, (8b)

μ̃vZ
∗ = c̃(1 − Z∗)Y ∗. (8c)

Define

L1 = X∗g
(

X

X∗

)
, L2 = Y ∗g

(
Y

Y ∗

)
and L3 = b̃X∗Z∗

μ̃v

g

(
Z

Z∗

)
,

where g(ξ) = ξ − 1 − ln ξ ≥ 0 with equality if and only if ξ = 1. By using (8a),

L ′
1 =

(
1 − X∗

X

) (
−

(
b̃X Z + βXY

)
+ μh(1 − X)

)

=
(
1 − X∗

X

) (
−b̃X Z − βXY − μh X + b̃X∗Z∗ + βX∗Y ∗ + μh X

∗)

= − μh

X
(X − X∗)2 + b̃X∗Z∗

(
1 − X∗

X
− X Z

X∗Z∗ + Z

Z∗

)

+ βX∗Y ∗
(
1 − X∗

X
− XY

X∗Y ∗ + Y

Y ∗

)
.

Similarly, by applying (8b),

L ′
2 =

(
1 − Y ∗

Y

) (
b̃X Z + βXY − γ̃Y

)

=
(
1 − Y ∗

Y

) (
b̃X Z + βXY −

(
b̃X∗Z∗ + βX∗Y ∗) Y

Y ∗

)

=b̃X∗Z∗
(

X Z

X∗Z∗ − Y ∗X Z

Y X∗Z∗ − Y

Y ∗ + 1

)

+ βX∗Y ∗
(

XY

X∗Y ∗ − X

X∗ − Y

Y ∗ + 1

)
,

and by (8c),

L ′
3 = b̃X∗

μ̃v

(
1 − Z∗

Z

)
(c̃(1 − Z)Y − μ̃vZ)

= b̃X∗

μ̃v

(
1 − Z∗

Z

) (
c̃(1 − Z∗)Y + c̃(Z∗ − Z)Y − μ̃vZ

)

= − b̃X∗c̃Y
μ̃vZ

(Z − Z∗)2 + b̃X∗Z∗

μ̃vZ∗

(
1 − Z∗

Z

) (
c̃(1 − Z∗)Y − μ̃vZ

)
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= − b̃X∗c̃Y
μ̃vZ

(Z − Z∗)2 + b̃X∗Z∗
(

Y

Y ∗ − Y Z∗

Y ∗Z
− Z

Z∗ + 1

)
.

Consider a Lyapunov function L = L1 + L2 + L3. Then,

L ′ =L ′
1 + L ′

2 + L ′
3

= − μh

X
(X − X∗)2 − b̃X∗c̃Y

μ̃vZ
(Z − Z∗)2

+ b̃X∗Z∗
(
1 − X∗

X
− X Z

X∗Z∗ + Z

Z∗

)

+ b̃X∗Z∗
(

X Z

X∗Z∗ − Y ∗X Z

Y X∗Z∗ − Y

Y ∗ + 1

)

+ b̃X∗Z∗
(

Y

Y ∗ − Y Z∗

Y ∗Z
− Z

Z∗ + 1

)

+ βX∗Y ∗
(
1 − X∗

X
− XY

X∗Y ∗ + Y

Y ∗

)

+ βX∗Y ∗
(

XY

X∗Y ∗ − X

X∗ − Y

Y ∗ + 1

)

= − μh

X
(X − X∗)2 − b̃X∗c̃Y

μ̃vZ
(Z − Z∗)2

+ b̃X∗Z∗
(
3 − X∗

X
− Y ∗X Z

Y X∗Z∗ − Y Z∗

Y ∗Z

)
+ βX∗Y ∗

(
2 − X∗

X
− X

X∗

)
.

Using the inequality of arithmetic and geometric means, we can get L ′ ≤ 0 with
equality if and only if (X ,Y , Z) = (X∗,Y ∗, Z∗). Hence, the endemic equilibrium is
globally asymptotically stable whenever R0 > 1. ��

3.3 Relative Contribution

The basic reproduction numberR0 defined in (3) takes a complicated form that makes
it difficult to compare the relative contribution of different transmission routes. Thus,
we redefine the basic reproduction number in a way similar to that of Section 12.4 in
Brauer et al. (2019) or Brauer et al. (2016). Namely, only host infection is regarded
as new infection, while vector infection is viewed as transition. If so, then the rates of
appearance of new infections and transition of individuals are

F̃ =
(
ab

Iv
H

Sh + β
Ih
H

Sh

0

)
and Ṽ =

(
(γ + μh)Ih

−ac
Ih
H

Sv + μv(1 − θ)Iv

)
,

123



  111 Page 14 of 28 X. Yuan et al.

respectively. Thus, the new incidence and transition matrices are

F̃ =
(

β ab
0 0

)
and Ṽ =

(
γ + μh 0

−ac
M

H
μv(1 − θ)

)
,

respectively. The basic reproduction number of model (1) is now defined as

R̃0 = ρ(F̃ Ṽ−1) = β

γ + μh
+ a2bcM

(γ + μh)μvH

(
1 + θ

1 − θ

)

=R̃hh + R̃hv + R̃vv,

where

R̃hh = β

γ + μh
, R̃hv = a2bcM

(γ + μh)μvH
, and R̃vv = a2bcM

(γ + μh)μvH

∞∑
i=1

θ i

are the reproduction numbers attributed to sexual transmission, vector-borne transmis-
sion and vertical transmission, respectively. Since sgn(R̃0 − 1) = sgn(s(F̃ − Ṽ )) =
sgn(s(F − V )) = sgn(R0 − 1), both R̃0 and R0 are thresholds for disease extinc-
tion and persistence. The respective percentages of contribution of three transmission
mechanisms to R̃0 are

P̃s := R̃hh

R̃0
, P̃m := R̃hv

R̃0
, and P̃v := R̃vv

R̃0
.

Next, we consider the relative contribution of three transmission routes on the
number of new infected humans. According to the first equation of (2), the infection
rates of humans through sexual transmission and vectorial transmission at time t are

β
Ih(t)

H
(H − Ih(t) − Rh(t)) and ab

Iv(t)

H
(H − Ih(t) − Rh(t)),

respectively. By the third equation of (2), the infection rates of mosquitoes through
vectorial transmission and vertical transmission at time t are

ac
Ih(t)

H
(M − Iv(t)) and θμv Iv(t),
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respectively. The respective percentages of instantaneous host infections due to sexual
transmission, vector-borne transmission and vertical transmission at time t are

Ps(t) := β
Ih(t)
H (H − Ih(t) − Rh(t))

ab Iv(t)
H (H − Ih(t) − Rh(t)) + β

Ih(t)
H (H − Ih(t) − Rh(t))

= β Ih(t)

abIv(t) + β Ih(t)
,

Pm(t) := abIv(t)

abIv(t) + β Ih(t)
· ac Ih(t)

H (M − Iv(t))

ac Ih(t)
H (M − Iv(t)) + θμv Iv(t)

,

Pv(t) := abIv(t)

abIv(t) + β Ih(t)
· θμv Iv(t)

ac Ih(t)
H (M − Iv(t)) + θμv Iv(t)

.

When the disease becomes endemic, we naturally evaluate P�(t) for � ∈ {s,m, v} at
the unique endemic equilibrium E∗ = (I ∗

h , R∗
h , I

∗
v ) which is globally asymptotically

stable, that is,

Ps = β I ∗
h

abI ∗
v + β I ∗

h
, Pm = (1 − θ)

abI ∗
v

abI ∗
v + β I ∗

h
, and Pv = θ

abI ∗
v

abI ∗
v + β I ∗

h
.

It is worth mentioning that in reality, P� ≈ P̃� for all � ∈ {s,m, v}. In fact,

P̃s : P̃m : P̃v = R̃hh : R̃hv : R̃vv = β : a
2bcM

μvH
: a

2bcM

μvH
· θ

1 − θ
.

It follows from the second and third equations of (5) and 1/μh � 1/γ that

M − I ∗
v

I ∗
v

= M

I ∗
v

− 1 = μv(1 − θ)

ac
· H

I ∗
h

= μv(1 − θ)

ac
· S

∗
h + I ∗

h + R∗
h

I ∗
h

= μv(1 − θ)

ac
· 1

I ∗
h

(
S∗
h + I ∗

h + γ

μh
I ∗
h

)
>

μv(1 − θ)

ac

(
1 + γ

μh

)
� 1

and hence I ∗
v /M � 1. Thus, again by the third equations of (5),

I ∗
v

I ∗
h

= acM

μv(1 − θ)H

(
1 − I ∗

v

M

)
≈ acM

μv(1 − θ)H
.

At the endemic equilibrium E∗, we have

Ps : Pm : Pv = β I ∗
h : (1 − θ)abI ∗

v : θabI ∗
v = β : (1 − θ)ab

I ∗
v

I ∗
h

: θab
I ∗
v

I ∗
h

≈ β : a
2bcM

μvH
: a

2bcM

μvH
· θ

1 − θ
= P̃s : P̃m : P̃v.
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So the three transmission routes play a similar role in the basic reproduction number
and the new host infections at the endemic equilibrium.

4 Numerical Results

In this section, we fit the Zika model to real data, and then perform some numerical
analysis to investigate the effects of multiple transmission pathways on the transmis-
sion and control of Zika virus disease. The selected parameter values are given in
Table 1 which are mainly adopted from Andraud et al. (2012), Chikaki and Ishikawa
(2009), Gao et al. (2016), Manore et al. (2014), Shutt et al. (2017), Olawoyin and
Kribs (2018) and the references cited therein. The time is measured in day.

4.1 Data Fitting

Since people infected with ZIKV are mostly asymptomatic or have only mild flu-
like illness, the under-reporting rate of Zika cases is high and varies with time and
location (Shutt et al. 2017). Excess GBS cases have been confirmed to be strongly
correlated to ZIKV epidemics in many countries (Mier-y-Teran-Romero et al. 2018).
The typical clinical features and severity of GBS make it easy to identify and record.
For example, He et al. (2020) estimated that 6.1 (95% confidence interval (CI): 5.0–
8.6) GBS cases may appear per 100,000 symptomatic ZIKV infections. Due to the
lack of high-quality ZIKV case data, we fit our model to the reported GBS surveillance
data in the northeastern region of Brazil from January 2015 to September 2016 (de
Oliveira et al. 2017). The region had been worst affected by the Zika outbreak, with
94% (95% CI: 90–97%) of an estimated 8.5 million total symptomatic cases in Brazil
(Brady et al. 2019). It is interesting to note that microcephaly has also been showed
to be associated with Zika virus infections (de Araújo et al. 2018). However, only one
wave ofmicrocephalywas observed in the northeastern region ofBrazil, while the Zika
epidemic showed clearly two waves. A paper by de Oliveira et al. (2017) discussed the
possible reasons behind this inconsistence. On the other hand, GBS clearly showed
two waves, thus it is used here.

Let ρ be the ratio of reported excess GBS cases to ZIKV cases, which is assumed
to be a constant. Some parameter values are fixed as follows:

b = 0.3, c = 0.4, θ = 0.0034, γ = 0.14, μh = 4 × 10−5, μv = 0.125,

where the time unit is one day. The total human population is fixed but the total
vector population is climate-driven. We use the open source R package POMP (par-
tially observed Markov process, also known as hidden Markov model), and one only
needs to insert the equations of the model, fix parameter values, and prior values of
those parameters to be estimated, and data to be fitted. The so-called plug-and-play
likelihood-based inference framework is applied to estimate the remaining parameters
(He et al. 2010). The R package POMP contains a built-in function of B-spline basis
function. Although we use a cubic-spline in this work as an external function, our
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Fig. 2 Comparison of reported and simulated excess GBS cases. Black line with circles denotes the number
of reported excess GBS cases, red solid line is the mean GBS cases averaged from 1000 simulations, grey
shaded region is the 95% CI of the 1000 simulations, and blue dashed line shows the time evolution ofR0
(Color figure online)

results are insensitive to this choice. For more details about the fitting process, the
readers may refer to He et al. (2020) and the references therein. The fitted parameter
values are a = 0.45, β = 0.05, and ρ = 0.0024%. Figure 2 demonstrates the curve of
the average GBS cases of 1000 simulations versus time which matches the trajectory
of the reported GBS cases very well. The gray shaded area gives the 95% confidence
interval for the number of simulated cases per day, all of which completely cover the
associated observations. Thus, our model provides a good fit to the time series of the
weekly reported GBS cases during and following the 2015–16 Zika virus epidemic
in northeastern Brazil. Note that the current estimate of ρ is comparable but smaller
than that obtained by He et al. (2020). The major reason for the difference is that
we consider all infections instead of only symptomatic infections. Moreover, with
the consideration of seasonal climate change, the time-varying reproduction number
R0(t) is estimated to vary between 0.85 and 1.71 over the study period.

4.2 Sensitivity Analysis

We now conduct sensitivity analysis of R0 with respect to model parameters. The
frequently used sensitivity index in mathematical epidemiology is the so-called nor-
malized forward sensitivity index, which is the ratio of the relative change in the
variable to the relative change in the parameter (Arriola and Hyman 2009). Math-
ematically, the sensitivity index (SI) of R0 with respect to parameter p is defined
as

Υ R0
p := ∂R0

∂ p
× p

R0
.

Based on the fitting results in last subsection, we choose a set of baseline values
for system (2) as follows (time unit is one day):

a = 0.45, b = 0.3, c = 0.4, β = 0.05, θ = 0.0034,

γ = 0.14, μh = 4 × 10−5, μv = 0.125, m = M/H = 1.5.
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Fig. 3 Sensitivity analysis for R0 with model parameters: a sensitivity indices (SI), and b partial rank
correlation coefficients (PRCC). See main text for parameter settings

Direct calculation gives the corresponding basic reproduction numberR0 = 1.63. We
calculate the sensitivity indices ofR0 with respect to each model parameter which are
shown in Fig. 3a. Clearly,R0 ismuchmore sensitive to parameters related tomosquito-
borne transmission route, e.g., a, b and c, than those of the other two transmission
routes, β and θ .

Moreover, to globally quantify the uncertainty, we use the Latin hypercube sam-
pling (LHS) method to generate 106 random parameter sets with parameter ranges
from Table 1. Then, we compute the partial rank correlation coefficients (PRCC) of
R0 with respect to model parameters (Marino et al. 2008) (see Fig. 3b). The repro-
duction numberR0 is still most sensitive to mosquito biting rate, a, and least sensitive
to proportion of congenital infections in mosquitoes, θ , human mortality rate, μh ,
and sexual transmission rate, β. However, it is also highly sensitive to the ratio of
mosquitoes to humans, m, followed by mosquito mortality rate, μv , transmission
probability from vector to host, b, and human recovery rate, γ . The results suggest
that reducing exposure to vector bites and mosquito population size is essential for a
successful Zika control program. Moreover, local and global sensitivity analyses on
R̃0 with the same parameter setting give similar results.

4.3 Numerical Simulations

Example 1 Dynamic behaviors ofmodel system.We consider system (2)with the same
parameter setting as that of the local sensitivity analysis in Sect. 4.2. In addition, the
total host and vector populations are H = 105 andM = 1.5×105, respectively. Recall
that the associated basic reproduction numberR0 = 1.63 > 1. For illustrative purpose
only, we choose an initial condition with large fraction of hosts being recovered,
i.e., (Ih(0), Rh(0), Iv(0)) = (40, 60000, 100). Solution curves of Ih(t) and Iv(t) are
shown inFig. 4a. They slowly oscillate and converge to the unique endemic equilibrium
E∗ ≈ (16.9, 59098.3, 36.6). Hence, E∗ is a stable focus, and there is a Zika epidemic
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(a) (b)

Fig. 4 Numerical solutions of system (2) with a R0 = 1.63 (the solution approaches the endemic equi-
librium), and b R0 = 0.92 (the solution approaches the disease-free equilibrium). In both scenarios, the
initial condition is (Ih(0), Rh(0), Iv(0)) = (40, 60000, 100). See main text for parameter values and the
time unit is one day

every 8–10 years. The disease persists at a low endemic level after the initial large
epidemic.

Suppose people take measures, e.g., sleeping inside a mosquito net and applying
mosquito repellent, to reduce mosquito bites such that there is a 50% decrease in
mosquito biting rate, i.e., a = 0.225. Then, the basic reproduction number is calculated
to be R0 = 0.92 < 1 when all other parameter values remain unchanged. It can be
concluded from Fig. 4b that the numbers of infected humans andmosquitoes approach
the disease-free equilibrium E0 = (0, 0, 0), that is, the disease dies out.

Example 2 Contribution of different transmission pathways. To demonstrate the role
of each transmission pathway on host infections during the ZIKV outbreak, we set the
parameter values as follows (time unit is one day):

a = 0.5, b = 0.3, c = 0.4, β = 0.04, θ = 0.0034,

γ = 0.15, μh = 4 × 10−5, μv = 0.125, m = 3, H = 105.

The associated basic reproduction number is R̃0 = 5.081 with R̃hh = 0.266, R̃hv =
4.799 and R̃vv = 0.016, which gives

P̃s = 5.246%, P̃m = 94.432%, and P̃v = 0.322%.

Thus, there is a disease outbreak when an infected person is introduced into a totally
susceptible population of hosts and vectors. The real time human infection rate and
number of infected humans, i.e.,

β Ih(t) + abIv(t)

H
(H − Ih(t) − Rh(t)) and Ih(t),

are shown in Fig. 5a. As expected, the host infection rate reaches its peak about 5 days
earlier than the host infection size. The percentage of contribution of each transmission
route to the host infection rate is showed in Fig. 5b. It can be seen that the mosquito-
borne transmission route swiftly plays an absolutely dominant role. Meanwhile, the

123



  111 Page 20 of 28 X. Yuan et al.

(a) (b)

Fig. 5 a The number of infected humans (blue solid line with left y-axis) and the host infection rate (red
dashed line with right y-axis), b the percentage of contribution of mosquito-borne transmission route (red
dotted line), mosquito-borne and sexual transmission routes (blue solid line), and all three transmission
routes (black dashed line), to the host infection rate. The initial condition is (Ih(0), Rh(0), Iv(0)) =
(1, 0, 0). See main text for parameter values and the time unit is one day (Color figure online)

relative contribution of sexual transmission sharply decreases and stays at a lower level
until the host infection rate passes its peak and eventually decreases to an even smaller
level. The relative contribution of vertical transmission inmosquitoes slowly increases
from zero to an extremely small level. Moreover, if no intervention is implemented,
the cumulative number of new host infections during a given time period [0, T ] is

C(T ) :=
∫ T

0

β Ih(t) + abIv(t)

H
(H − Ih(t) − Rh(t))dt .

For the scenario showed in Fig. 5a,we haveC(180) = 98588, ofwhich 9.31%, 90.46%
and 0.23% are contributed by sexual transmission, mosquito-borne transmission and
vertical transmission, respectively. This result can also be viewed as the relative con-
tribution of different routes to the final size when human vital dynamics are ignored.

In the long run, the disease persists at the endemic equilibrium E∗ = (21, 80294,
103), and the percentages of contribution of all three routes are

Ps = 5.248%, Pm = 94.430%, and Pv = 0.322%.

We can see that the role of sexual transmission in the early outbreak is greater than the
long term, but vertical transmission is just the opposite. Furthermore, using the LHS
method, we generate 105 random parameter sets with ranges followed Table 1 and
obtain 99,114 sets whose corresponding R̃0 > 1. For these qualified scenarios, the
medians of the distributions of the percentage of contribution from sexual, mosquito-
borne, and vertical transmission mechanisms are

1.4%, 98.4%, and 0.2%,

respectively, in both R̃0 and long-term new host infections.
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5 Discussion

In this paper, we formulated a new mathematical model for the dynamical transmis-
sion of Zika virus disease. Our model incorporates three transmission modes, that
is, vectorial transmission, sexual transmission and vertical transmission. The human
population is divided into three classes, namely susceptible, infectious and recovered,
while the mosquito population is divided into two classes, namely susceptible and
infectious. We derived the basic reproduction numberR0 and analyzed the dynamical
behavior of the system. Specifically, the disease-free equilibrium E0 is globally asymp-
totically stable when R0 ≤ 1, whereas the disease is uniformly persistent, and there
exists a unique endemic equilibrium which is globally asymptotically stable when
R0 > 1. By treating new mosquito infections as state transition, we defined a new
basic reproduction number R̃0 to compare the contribution of different transmission
mechanisms on the initial infection risk.

Additionally, we fit the model to the reported GBS surveillance data in northeast-
ern region of Brazil and estimated the ratio of reported excess GBS cases to ZIKV
cases. Both local and global sensitivity analysis on the basic reproduction numberR0
were performed.We found that the vector-host interaction parameters, particularly the
mosquito biting rate, ratio of mosquitoes to humans and mortality rate of mosquitoes,
have a strong impact on R0, whereas R0 is much less sensitive to parameters related
to sexual transmission in humans and vertical transmission in mosquitoes. A numer-
ical example was given to demonstrate the sharp threshold dynamics of the model
system. The endemic equilibrium when exists is a stable focus. The second exam-
ple is devoted to quantitatively assess the relative contribution of every transmission
mode. The mosquito-borne transmission makes the biggest contribution to both the
reproduction number and the host infections, following by sexual transmission and
vertical transmission. It is worthy pointing out that their relative contributions vary
over time, and sexual transmission plays an important role in the early phase of a Zika
outbreak. In other words, neglecting sexual transmission will underestimate the basic
reproduction number and the size of human infections where the percentages of rela-
tive underestimation can be over 5% and up to 10%, respectively. From the perspective
of disease control, taking precautions to prevent mosquito bites (via insect repellent,
insecticide-treated net, etc.) is always a core measure in fight against Zika. However,
the importance of avoiding unprotected sexual intercourse need to be addressed espe-
cially before the peak of the first epidemic wave. Although the relative contribution of
vertical transmission to Zika fever is small, it may play an important role in maintain-
ing the circulation of the virus in arid and semiarid areas—like the case of Rift Valley
fever (Linthicum et al. 1999). Since infected Aedes eggs can survive dry conditions
for long periods and hatch following the rainy season, a new wave of Zika infections
could occur once the infected larvae mature.

We generalize the Bailey–Dietz model by incorporating sexual transmission in
hosts and vertical transmission in vectors. Several existing studies assessed the rela-
tive role of sexual transmission on the basic reproduction number of Zika (Gao et al.
2016; Maxian et al. 2017; Towers et al. 2016). Recently, Olawoyin and Kribs (2018)
proposed a complicated epidemic model with four transmission pathways. They did
not do theoretical analysis due to model complexity but performed extensive numer-
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ical simulations to reveal the effects of the secondary transmission routes of Zika on
the basic reproduction number, the peak time and the final size. Differing from Ola-
woyin and Kribs (2018), our model structure enables us to do rigorous mathematical
analysis. Moreover, they discussed the role of secondary transmission routes by com-
paring the models with and without secondary transmission routes, whereas our study
was based on splitting the basic reproduction number and the host infection rate of
a unique model into different parts corresponding to different routes. In particular,
we quantitatively evaluated the relative contribution of each transmission mode on
the basic reproduction number, the short- and long-term host infections. Based on a
complicated epidemic model, Gao et al. (2016) estimated that the percentage of con-
tribution by sexual transmission in the basic reproduction number is 3.044% (95% CI:
0.123–45.73). The fraction of basic reproduction number due to sexual transmission
obtained by Towers et al. (2016) was 23% (95% CI: 1–47), while Maxian et al. (2017)
and Olawoyin and Kribs (2018) estimated that sexual transmission contributes 5%
or less to the reproduction number. In current study, we estimated that sexual trans-
mission and vertical transmission contribute 1.4% and 0.2% to the basic reproduction
number R̃0, respectively, which are relatively small but still comparable with previous
estimates. The sensitivity analysis reveals thatR0 is most sensitive to mosquito biting
rate, and insensitive to parameters involved in the secondary transmission pathways,
which also agrees with existing works (Gao et al. 2016; Maxian et al. 2017; Olawoyin
and Kribs 2018).

There is still much room for improvement. It is helpful to know how the relative
contribution of each transmission mode changes with controllable model parameters.
Since mosquitoes have a short lifespan, ignoring the extrinsic incubation period of the
virus inmosquitoes could result in an overestimate of the infection risk. Further, we can
include more epidemiological and biological factors like seasonal change in mosquito
abundance (Gao et al. 2014), vertical transmission in humans (Besnard et al. 2014),
human behavior change, life cycle of mosquitoes, antibody-dependent enhancement
(Tang et al. 2019), spatial heterogeneity, alternative blood sources and so on.
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Appendix A: Proof of Theorem 3

Proof It follows fromTheorem 2 that the global asymptotic stability of E0 implies that
there is no endemic equilibrium asR0 ≤ 1. The above analysis indicates the existence
and uniqueness of an endemic equilibrium as R0 > 1. It only remains to show the
local asymptotic stability of E∗ = (I ∗

h , R∗
h , I

∗
v ) whenever it exists. The equilibrium
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equations (5) can be rewritten as

(
ab

H
I ∗
v + β

H
I ∗
h

)
S∗
h = (γ + μh)I

∗
h ,

γ I ∗
h = μh R

∗
h ,

ac

H
I ∗
h S

∗
v = μv(1 − θ)I ∗

v ,

(A.1)

where S∗
h = H − I ∗

h − R∗
h and S∗

v = M − I ∗
v . It follows from the first equation of

(A.1) that

γ + μh >
β

H
S∗
h . (A.2)

Multiplying both sides of the first and third equations of (A.1) gives

(
ab

H
I ∗
v + β

H
I ∗
h

)
S∗
h
ac

H
I ∗
h S

∗
v = (γ + μh)I

∗
h μv(1 − θ)I ∗

v .

Thus,

ab

H

ac

H
S∗
h S

∗
v = (γ + μh)μv(1 − θ) − β

H

ac

H
I ∗
h S

∗
h
S∗
v

I ∗
v

. (A.3)

The Jacobian matrix of system (2) at the endemic equilibrium E∗ is

J (E∗) =

⎛
⎜⎜⎝

J11 −ab

H
I ∗
v − β

H
I ∗
h

ab

H
(H − I ∗

h − R∗
h)

γ −μh 0
ac

H
(M − I ∗

v ) 0 −ac

H
I ∗
h − μv(1 − θ)

⎞
⎟⎟⎠ ,

where

J11 = −ab

H
I ∗
v − β

H
I ∗
h + β

H
(H − I ∗

h − R∗
h) − γ − μh .

Using the first and third equations in (A.1), it can be rewritten as

J (E∗) =

⎛
⎜⎜⎜⎝

J ∗
11 −ab

H
I ∗
v − β

H
I ∗
h

ab

H
S∗
h

γ −μh 0
ac

H
S∗
v 0 −μv(1 − θ)

(
1 + I ∗

v

S∗
v

)

⎞
⎟⎟⎟⎠ ,
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where J ∗
11 = −(γ + μh)

(
1 + I ∗

h

S∗
h

)
+ β

H
S∗
h . The characteristic equation of J (E∗) is

given by

p(λ) =(λ + μh)(λ
2 + b1λ + b0)

+ γ

(
λ + μv(1 − θ)

(
1 + I ∗

v

S∗
v

))(
ab

H
I ∗
v + β

H
I ∗
h

)
= 0,

where

b1 =(γ + μh)

(
1 + I ∗

h

S∗
h

)
− β

H
S∗
h + μv(1 − θ)

(
1 + I ∗

v

S∗
v

)

>γ + μh − β

H
S∗
h + μv(1 − θ)

(
1 + I ∗

v

S∗
v

)

>μv(1 − θ)

(
1 + I ∗

v

S∗
v

)
> 0,

(A.4)

and

b0 =
(

(γ + μh)

(
1 + I ∗

h

S∗
h

)
− β

H
S∗
h

)
μv(1 − θ)

(
1 + I ∗

v

S∗
v

)
− ab

H

ac

H
S∗
h S

∗
v .

Substituting (A.3) into the above expression gives

b0 =
(

(γ + μh)

(
1 + I ∗

h

S∗
h

)
− β

H
S∗
h

)
μv(1 − θ)

(
1 + I ∗

v

S∗
v

)

−
(

(γ + μh)μv(1 − θ) − β

H

ac

H
I ∗
h S

∗
h
S∗
v

I ∗
v

)

=(γ + μh)μv(1 − θ)

((
1 + I ∗

h

S∗
h

)(
1 + I ∗

v

S∗
v

)
− 1

)

+ β

H
S∗
h

(
ac

H
I ∗
h
S∗
v

I ∗
v

− μv(1 − θ)

(
1 + I ∗

v

S∗
v

))
,

then, applying the third equation of (A.1) yields

b0 = (γ + μh)μv(1 − θ)

((
1 + I ∗

h

S∗
h

)(
1 + I ∗

v

S∗
v

)
− 1

)
− β

H
S∗
hμv(1 − θ)

I ∗
v

S∗
v

.

Using the inequality (A.2), we obtain

b0 >(γ + μh)μv(1 − θ)

((
1 + I ∗

h

S∗
h

) (
1 + I ∗

v

S∗
v

)
− 1

)
− (γ + μh)μv(1 − θ)

I ∗
v

S∗
v

=(γ + μh)(1 − θ)μv

(
I ∗
h

S∗
h

+ I ∗
h I

∗
v

S∗
h S

∗
v

)
> 0.
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Expanding the characteristic polynomial p(λ) yields

p(λ) = λ3 + B2λ
2 + B1λ + B0 = 0,

where

B2 = b1 + μh > 0,

B1 = b0 + b1μh + γ

(
ab

H
I ∗
v + β

H
I ∗
h

)
,

B0 = b0μh + γμv(1 − θ)

(
1 + I ∗

v

S∗
v

) (
ab

H
I ∗
v + β

H
I ∗
h

)
> 0.

Direct calculation finds

B1B2 − B0 =(b1 + μh)

(
b0 + b1μh + γ

(
ab

H
I ∗
v + β

H
I ∗
h

))

− b0μh − γμv(1 − θ)

(
1 + I ∗

v

S∗
v

) (
ab

H
I ∗
v + β

H
I ∗
h

)

>b1γ

(
ab

H
I ∗
v + β

H
I ∗
h

)
− γμv(1 − θ)

(
1 + I ∗

v

S∗
v

)(
ab

H
I ∗
v + β

H
I ∗
h

)

=γ

(
ab

H
I ∗
v + β

H
I ∗
h

)(
b1 − μv(1 − θ)

(
1 + I ∗

v

S∗
v

))
.

By using inequality (A.4), we finally get

B1B2 − B0 > 0.

Following the Routh–Hurwitz criterion, all eigenvalues of J (E∗) have negative real
parts. Therefore, the endemic equilibrium E∗ of system (2) is locally asymptotically
stable. ��
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