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Abstract Wepropose twodifferential equation-basedmodels to investigate the impact
of awareness programs on cholera dynamics. The first model represents the disease
transmission rates as decreasing functions of the number of awareness programs,
whereas the second model divides the susceptible individuals into two distinct classes
depending on their awareness/unawareness of the risk of infection. We study the
essential dynamical properties of each model, using both analytical and numerical
approaches. We find that the two models, though closely related, exhibit significantly
different dynamical behaviors. Namely, the first model follows regular threshold
dynamics while rich dynamical behaviors such as backward bifurcation may arise
from the second one. Our results highlight the importance of validating key mod-
eling assumptions in the development and selection of mathematical models toward
practical application.

Keywords Cholera · Awareness program · Behavior change · Basic reproduction
number · Threshold dynamics · Backward bifurcation

1 Introduction

Over the last decade, a number of major cholera outbreaks took place that spanned
the continents of Africa, America, and Asia, indicating that cholera, an ancient dis-
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ease, has re-emerged as a serious public health threat worldwide. Cholera is an acute
diarrheal disease that can spread rapidly in populations with limited access to clean
water and sanitation resources, especially in areas where the public health infrastruc-
ture is underdeveloped. The causing agent for human cholera is the bacterium Vibrio
cholerae, either type O1 or O139, which can be transmitted both from the contami-
nated aquatic environment and from human-to-human contacts such as shaking hands
or eating food prepared by infected individuals (Hartley et al. 2006;Mukandavire et al.
2011). About 5% of those who are infected develop severe symptoms including acute
watery diarrhea, vomiting, and leg cramps. Experimental studies show that the fecal
shedding from infected individuals contains large doses of vibrios, and these freshly
shed vibrios have a much higher infectivity (up to 700-fold) than that of the vibrios in
the environment (Faruque and Nair 2008; Nelson et al. 2009).

Several control measures have been recommended in the prevention and control
of cholera epidemics. Investment in water and sanitation is the key for long-term
cholera control, but it is usually not possible to establish or to maintain necessary
hygienic facilities in epidemic and emergency settings. Basic oral rehydration therapy
using drinking water with modest amounts of sugar and salt added is credited for
saving a huge number of lives and reducing the case fatality rate of cholera below
1% (Global Task Force on Cholera Control 2004). Oral cholera vaccines have been
successfully deployed in protecting populations at high risk of cholera, and there has
been recently renewed interest in mass vaccination under outbreak and emergency
settings (Longini et al. 2007; Lucas et al. 2005). In addition, severe cholera patients
are treated with antibiotics capable of reducing the duration and severity of illness,
though mass administration of antibiotics is not recommended due to the risk of
increasing antimicrobial resistance (Kitaoka et al. 2011).Many theoretical and clinical
studies have been conducted for cholera and its prevention, treatment, and control
strategies [see a recent review article Nelson et al. (2009) and references therein].
In particular, a number of mathematical models have been proposed and analyzed to
understand the disease mechanism, to assess the utility of various control measures,
and to predict the occurrence of cholera outbreaks and trends [see, e.g., Andrews and
Basu (2011), Capasso and Paveri-Fontana (1979), Hartley et al. (2006), Mukandavire
et al. (2011), Posny and Wang (2014), Shuai and van den Driessche (2013), Tian
and Wang (2011), Tien and Earn (2010), Wang and Liao (2012), Wang and Wang
(2015)].

Non-pharmaceutical interventions such as behavioral change and waste man-
agement, on the other hand, play an important role in reducing exposure to
infectious agents and hence the disease morbidity and mortality and in shaping
the epidemic and endemic patterns. For example, people who are conscious of
the infection risk will naturally avoid or reduce contacts with infected individu-
als and ingestion of contaminated water or food in order to protect themselves
and their family members (Einarsdóttir et al. 2001). In case of serious outbreaks,
people who have known basic facts about a disease (e.g., transmission modes
and symptoms) will attempt to adjust their routine schedules in work, travel,
and recreation-related activities, to pay more attention to sanitation and hygiene
practice (e.g., washing hands often with soap, properly treating disposals from
infected individuals), and to receive vaccination or antibiotic prophylaxis, so that
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their risk of infection could be reduced (Philipson 1996; Leung et al. 2003).
Thus, human behavior can contribute significantly toward the control and possible
eradication of an infectious disease, cholera in particular, and any efforts motivat-
ing such positive changes of human behavior should be promoted (Ahituv et al.
1996).

Creation of disease awareness programs, amongothers, can be an effective approach
to educate the general public on the infection risk and outbreak severity, and to con-
vince people to make necessary changes of their routine behavior so as to reduce
the exposure to the causative agent and the possibility of infection. Such programs
can be implemented either physically (with health professionals on site), or through
newsmedia including fliers, posters, newspapers, television, and radio advertisements,
with the common goals of communicating basic knowledge of the disease to the
public and directing people toward appropriate prevention and intervention during a
disease outbreak (World Health Organization 2009). The awareness programs for
cholera would be especially useful, since epidemic and endemic cholera occur pri-
marily in countries and regions where poverty prevails and where people have very
limited access to internet and social media that have been increasingly common in
developed countries as the main resource for information update (Einarsdóttir et al.
2001).

The spread of infectious diseases is traditionally modeled with static parameters
and contact network (Anderson and May 1991; Funk et al. 2015). Following the
pioneering work of Yorke and London (1973) and Capasso and Serio (1978), there
have been quite a few studies on the mathematical modeling of human behavioral
changes during disease outbreaks (Liu et al. 2007; Cui et al. 2008; Collinson and
Heffernan 2014; Gao and Ruan 2011; Kaur et al. 2014; Kiss et al. 2010; Misra et al.
2011; Samanta et al. 2013; Tracht et al. 2010; Wang et al. 2015; Yorke and London
1973; Zuo and Liu 2014). Among these, we would like to mention those with an
explicit assessment of the effect of awareness programs while the readers may refer
to a nice survey article by Funk et al. (2010) and a recent research paper by Wang
et al. (2015) and the references cited therein for models of behavior with dynamic
parameters. Misra et al. (2011) presented a nonlinear mathematical model that incor-
porated awareness programs, driven by the disease prevalence, and their analysis
showed that the spread of infectious diseases can be decreased through media cam-
paigns but the disease remains endemic. Samanta et al. (2013) extended the study
of Misra et al. (2011) by considering that aware susceptible are also vulnerable to
disease infection with lower transmission rate than that of unaware susceptible. Kaur
et al. (2014) modeled and analyzed the effects of awareness programs in reducing
disease transmission and spread, using an SIRS (susceptible-infected-recovered-
susceptible) compartment system. Zuo and Liu (2014) proposed an epidemic model
with time delay to study awareness programs, and they found that increasing the pro-
gram implementation rate and awareness dissemination rate can reduce the disease
prevalence.

Our main objective in the present paper is to use mathematical modeling, analysis,
and simulation to assess the effect of awareness programs in the course of a cholera
outbreak, which has not been investigated in prior studies. To that end, we incorporate
the number of awareness programs as an additional compartment into the cholera
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modeling framework that consists of the human hosts and the environmental pathogen
(i.e., the vibrios). Thus, the awareness programs are explicitly accounted for in our
study. Then the central question becomes: how to represent the impact of awareness
programs in our cholera model?

We propose two different, but closely related, approaches to model the impact of
awareness programs on cholera dynamics. With the presence of awareness programs,
people will gainmore information regarding the disease outbreak andwill likely adjust
their routine behavior to avoid or reduce contacts with infected individuals and/or con-
taminated environments, leading to lower disease transmission and spread. Thus, in
our first modeling approach, the effects of the awareness programs are reflected by
the change of the transmission rates and host shedding rate in the model. We treat
each transmission coefficient as a decreasing function of the number of the aware-
ness programs and investigate how the varied transmission rates change the epidemics
and endemics of cholera. It is somewhat similar to a previous study where trans-
mission rates of the model directly depend on the number of infectives (Wang et al.
2015).

In reality, awareness programs, like any other educational efforts, are limited by
available resources and many other socioeconomic factors, and it is usually impos-
sible for these programs to reach the entire host population. As a result, people who
are involved in the awareness programs will be more informed about the spread and
severity of the disease and will be more likely to make efforts to keep from catching
the disease. In contrast, those individuals who are not reached by the awareness pro-
grams will likely lack knowledge of the disease and will possibly make no change of
their daily life, so that they will be at higher risk for contracting the disease. Thus,
our second modeling approach aims to represent such a limitation of the awareness
programs. We divide the susceptible populations into two classes: one for those with
disease awareness and the other for those without awareness. Individuals in these two
classes will have different transmission rates and may switch to each other: unaware
individuals may become conscious of the disease through the interaction with the
awareness programs, and aware individuals may lose disease awareness after a certain
period of time.

We will first present and analyze Model One, where disease transmission rates
and bacterial shedding rate decrease with the number of awareness programs. We
will study the disease-free equilibrium of the system and its global asymptotic sta-
bility when the basic reproduction number is lower than or equal to unity. We will
also establish the existence and uniqueness of the endemic equilibrium, and its global
stability, when the basic reproduction number is higher than one. With two sepa-
rate susceptible classes and their different interaction with infected human hosts,
environmental pathogen, and awareness programs, Model Two is more challeng-
ing to analyze. We will combine mathematical analysis and numerical simulation
to gain insight into the dynamics of Model Two. In particular, we will establish that
under certain conditions, Model Two exhibits a backward bifurcation, a significant
difference from the dynamics of Model One. For the organization of this paper,
Sects. 2 and 3 are devoted to Models One and Two, respectively. Section 4 con-
cludes the paper with discussion on the findings, implications, and limitations of this
work.
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2 Model One

2.1 Model Formulation

We start by presenting our first cholera model with the consideration of the impact of
awareness programs. Let S, I , and R represent the number of susceptible, infectious,
and recovered human individuals, respectively, and N = S+ I+R the total population
size. Also let B denote the concentration of V. cholerae in the aquatic environment and
M the number or density of valid awareness programs (e.g., door-to-door visit, health
professional on site, news report) driven by disease prevalence and media coverage.
Susceptible individuals are infected through either human-to-human or environment-
to-human route. Infected individuals will recover after a certain period of time, and
during the course of infection, they contribute (e.g., through shedding) to the growth
of vibrios in the environment. Further, we assume that the environment-to-human
transmission is subject to a saturation effect of the bacterial concentration. Thus, we
use the following differential equations to describe the change of these variables with
respect to time:

dS

dt
= μN − β1(M)SI − β2(M)S

B

B + K
− μS + σ R,

dI

dt
= β1(M)SI + β2(M)S

B

B + K
− (γ + μ)I,

dR

dt
= γ I − (μ + σ)R,

dB

dt
= ξ(M)I − δB,

dM

dt
= Λ + ηI − νM.

(1)

Here, μ is the natural birth and death rate for the human hosts, K is the half satu-
ration concentration of the vibrios, σ is the immunity waning rate, γ is the rate of
recovery from cholera infection, and δ is the removal rate of vibrios from the envi-
ronment. The number of awareness programs grows with an influx Λ . Meanwhile,
it is stimulated by the disease prevalence at a rate η and decays with time at a rate
ν. The parameters β1 and β2 are the direct (or, human-to-human) and indirect (or,
environment-to-human) transmission rates, respectively, and ξ is the rate of human
contribution to the environmental vibrios. We assume that β1 , β2, and ξ all explicitly
depend on M and decrease with the growth of M , reflecting the impact of the aware-
ness programs on disease transmission and waste management. Specifically, we make
the following assumptions on these three media-dependent parameters:

(H1) β1(M), β2(M) and ξ(M) are positive functions on [0, Mmax];
(H2) β1(M), β2(M), ξ(M) ∈ C1([0, Mmax]), and β ′

1(M) ≤ 0, β ′
2(M) ≤ 0,

ξ ′(M) ≤ 0,

where Mmax = (Λ + ηN )/ν is an upper bound of M .
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2.2 Basic Reproduction Number

Wewillmake use of the basic reproduction number (Anderson andMay1991), denoted
asR0, in the analysis of our model (1). Let us first determineR0 by the standard next
generation matrix technique (van den Driessche andWatmough 2002; Diekmann et al.
1990).

Clearly, the system (1) always has a unique disease-free equilibrium (DFE) at

E0 = (S0, I 0, R0, B0, M0) = (N , 0, 0, 0,Λ/ν).

Since the infection components in thismodel are I and B, wefind that the new infection
matrix F and the transition matrix V are given by

F =
[
b1N b2N/K
0 0

]
and V =

[
γ + μ 0
−b3 δ

]
(2)

with b1 = β1(M0), b2 = β2(M0) and b3 = ξ(M0).
The basic reproduction number of model (1) is then defined as the spectral radius

of the next generation matrix FV−1, i.e.,

R0 = ρ(FV−1) = b1N

γ + μ
+ b2 b3 N

δK (γ + μ)
,

which provides a measure of the disease risk during a cholera outbreak. The first
term in R0 comes from the direct transmission route, and the second term represents
the contribution from the indirect transmission route. It is worthwhile to compare
this result with the basic reproduction number when the awareness programs are not
present and the transmission rates β1, β2 and shedding rate ξ remain constant; i.e.,
β1(M) = β1(0), β2(M) = β2(0), and ξ(M) = ξ(0). In that case, we have the basic
reproduction number [see, e.g., Mukandavire et al. (2011)]

R̃0 = β1(0)N

γ + μ
+ β2(0)β3(0)N

δK (γ + μ)
. (3)

Based on assumption (H2), it is straightforward to observe that R0 ≤ R̃0 , indicating
that the presence of the awareness programs leads to a lower disease risk.

2.3 Equilibrium Analysis

We now analyze the equilibria of the system (1) which will provide essential infor-
mation regarding the long-term dynamics of the disease. Let (S, I, R, B, M) be an
equilibrium of model (1), which satisfies the following equations

μN − β1(M)SI − β2(M)S
B

B + K
− μS + σ R = 0,
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β1(M)SI + β2(M)S
B

B + K
− (γ + μ)I = 0,

γ I − (μ + σ)R = 0, (4)

ξ(M)I − δB = 0,

Λ + ηI − νM = 0.

Solving (4) yields

S = (γ + μ)I

β1(M)I + β2(M)B/(B + K )
,

M = Λ + ηI

ν
,

R = γ

μ + σ
I,

B = ξ(M)

δ
I.

(5)

It follows from S + I + R = N that the third equation of (5) implies

S = N − aI =: φ(I ) with a = 1 + γ /(μ + σ).

Meanwhile, in view of the first equation of (5), we obtain

S = γ + μ

h(I )
=: ψ(I ),

where

h(I ) = β1(χ(I )) + β2(χ(I )) ξ(χ(I ))

ξ(χ(I )) I + δK
with χ(I ) = Λ + ηI

ν
.

Let us now consider curves S = φ(I ) and S = ψ(I ). In particular, the intersections
of these two curves in R

2+ determine the non-DFE equilibria. Note that

h′(I ) = β ′
1(χ(I ))χ ′(I ) + β ′

2(χ(I )) χ ′(I ) ξ(χ(I ))

ξ(χ(I )) I + δK

+ β2(χ(I ))
δK ξ ′(χ(I ))χ ′(I ) − ξ2(χ(I ))

(ξ(χ(I )) I + δK )2
.

Using assumption (H2) and the fact χ ′(I ) = η/ν > 0, we see that h′(I ) ≤ 0. This
implies that ψ(I ) is an increasing function. In contrast, φ(I ) is strictly decreasing.
Additionally, one can easily verify that ψ(0) = N/R0, φ(0) = N , ψ(N/a) > 0 and
φ(N/a) = 0. Hence, we conclude:

(1) IfR0 > 1, these two curves have a unique intersection lying in the interior ofR2+,
due to ψ(0) < φ(0) and ψ(N/a) > φ(N/a); furthermore, at this intersection
point, Eq. (5) yields M, R, B > 0 (since I > 0).

(2) If R0 ≤ 1, the two curves have no intersection in the interior of R2+ as ψ(0) ≥
φ(0).
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Therefore, by Eq. (5), we find that the model (1) admits a unique equilibrium, the
DFE, if R0 ≤ 1; and it admits two equilibria, the DFE and an endemic equilibrium
(EE), ifR0 > 1.

In what follows, we perform a study on the global stability of the DFE. By a simple
comparison principle, we find that 0 ≤ B ≤ Bmax and M0 ≤ M ≤ Mmax, where
Bmax = ξ(0)N/δ, and Mmax is defined in (H2). Thus, it leads to a biological feasible
domain

� = {(S, I, R, B, M) ∈ R
5+ : S + I + R = N , 0 ≤ B ≤ Bmax, M0 ≤ M ≤ Mmax}.

Theorem 2.1 The following statements hold for the model (1).

(1) IfR0 ≤ 1, the DFE of system (1) is globally asymptotically stable in �.
(2) If R0 > 1, the DFE of system (1) is unstable and there exists a unique

endemic equilibrium. Moreover, the disease is uniformly persistent namely,
lim inf
t→∞ (I (t), B(t)) > (c, c) for some c > 0 with the initial condition in the

interior of �, denoted by �̊.

Proof Let x = (I, B)T . One can verify that

dx
dt

≤ (F − V )x,

where the matrices F and V are given in Eq. (2). Take u = (b1N , b2N/K ). It then
follows from the fact R0 = ρ(FV−1) = ρ(V−1F) and direct calculation that u
is a left eigenvector associated with the eigenvalue R0 of the matrix V−1F ; i.e.,
uV−1F = R0u. Let us consider a Lyapunov function

L = uV−1x.

Differentiating L along the solutions of (1), we have

L′ = uV−1x′ ≤ uV−1(F − V )x = u(R0 − 1)x.

Case 1 R0 < 1 The equality L′ = 0 implies that ux = 0. This leads to I = B = 0
by noting the positive components of u. Hence, whenR0 < 1, equations of (1) yield
S = S0, M = M0, and I = R = B = 0. Therefore, the invariant set on which L′ = 0
contains only one point which is the DFE.

Case 2R0 = 1 The equalityL′ = 0 implies thatβ1(M)SI = b1N I ,β2(M)SB/(B+
K ) = b2N B/K and ξ(M)I = b3 I . Thus, either I = B = 0, or B = 0, S = N and
β1(M) = b1 and ξ(M) = b3 holds. The former can proceed as Case 1. Suppose the
latter holds, then dB

dt = ξ(M)I ≡ 0 which implies I = 0. Once again this can proceed
as before.

Therefore, in either case, the largest invariant set on which L′ = 0 consists of the
singleton E0 = (N , 0, 0, 0, M0). By LaSalle’s invariant principle (LaSalle 1976), the
DFE is globally asymptotically stable in � ifR0 ≤ 1.
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In contrast, if R0 > 1, then it follows from the continuity of vector fields that
L′ > 0 in a neighborhood of the DFE in �̊. Thus the DFE is unstable by the Lyapunov
stability theory.

The last part can be proved by the persistent theory (Thieme 1993) which is similar
to the proof of Theorem 2.5 in Gao and Ruan (2011).

Remark 2.2 Let βi (M) = βi0 −βi1 fi (M) for i = 1, 2, and ξ(M) = β30 −β31 f3(M)

where βi0 > βi1 ≥ 0, 0 ≤ fi (M) ≤ 1 and f ′
i (M) ≥ 0 for i = 1, 2, 3. Similar to

Proposition 3.5 in our previous study (Wang et al. 2015), we can show that ∂ I ∗
∂η

< 0

and ∂ I ∗
∂βi1

< 0 for i = 1, 2, 3 wheneverR0 > 1. That is, awareness programs can help
to reduce the prevalence of cholera.

In addition, we have conducted an analysis on the global asymptotic stability of
the endemic equilibrium, and the details are given in Appendix. Essentially, these
stability results establish R0 = 1 as a forward transcritical bifurcation point, or, a
sharp threshold for disease dynamics, and indicate that reducing R0 to values at or
below unity will be sufficient to eradicate the disease. In other words, the cholera
model (1) exhibits regular threshold dynamics.

3 Model Two

3.1 Model Formulation

In this section, we may abuse some notations whose meaning should be clear from the
context. In our second cholera model, we divide the class of susceptible human indi-
viduals into two groups: one for those people who are aware of the disease, denoted by
Sa , and the other for those who are unaware of the disease, denoted by Su . Individuals
in the Sa compartment have lower chances of contracting the disease than those in Su .
Unaware individuals may switch to the aware group due to the involvement with the
awareness programs, and aware individuals may lose the awareness of cholera after a
period of time. The model then takes the form:

dSu
dt

= μN − β1Su I − β2Su
B

B + K
− �SuM − μSu + (1 − p)σ R + κSa,

dI

dt
= β1(Su + α1Sa)I + β2(Su + α2Sa)

B

B + K
− (γ + μ)I,

dR

dt
= γ I − (μ + σ)R,

dB

dt
= ξ I − δB,

dSa
dt

= �SuM − β1α1Sa I − β2α2Sa
B

B + K
− μSa + pσ R − κSa,

dM

dt
= Λ + ηI − νM,

(6)
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where the total human population size is N = Su + Sa + I + R. For the unaware
compartment Su , the direct and indirect transmission rates are represented by β1
and β2 , respectively, which are assumed to be constant at all times. For the aware
compartment Sa , the disease transmission rates are lower and are given by β1α1 and
β2α2 , respectively, where 0 ≤ α1, α2 ≤ 1. The human contribution rate ξ is also
assumed to be constant. Unaware individuals gain knowledge of the disease and enter
the Sa class through interacting with the awareness programs at a rate � . Meanwhile,
aware individuals become unaware of the disease over time and enter the Su class at
a rate κ . In addition, recovered individuals go back to the Sa and Su classes, at the
fractions p and 1 − p , respectively. Other variables and parameters have the same
meaning as those in the first model.

3.2 Basic Reproduction Number

It is easy to verify that system (6) has a unique DFE:

E0 = (S0u , I
0, R0, B0, S0a , M

0)

=
(

μ + κ

μ + κ + �Λ/ν
N , 0, 0, 0,

�Λ/ν

μ + κ + �Λ/ν
N ,

Λ

ν

)
.

The new infection matrix F and transition matrix V for this model are given by:

F =
[

β1(S0u + α1S0a ) β2(S0u + α2S0a )/K
0 0

]
and V =

[
γ + μ 0
−ξ δ

]
.

Hence, the basic reproduction number R0 = ρ(FV−1) is found as

R0 = N

(γ + μ)(μ + κ + �M0)

(
β1(μ + κ + α1�M

0)+ β2(μ + κ + α2�M
0)

ξ

δK

)
.

(7)

Again, we observe that the expression of R0 includes the contributions from both
direct and indirect transmission routes. When there are no awareness programs, the
formula (7) is reduced to, by simply setting Λ = 0 or M0 = 0,

R̃0 = N

γ + μ

(
β1 + β2

ξ

δK

)
,

which is identical to (3), by noting that β1, β2, and ξ correspond to β1(0), β2(0)
and ξ(0), respectively. Comparing R0 and R̃0, it is obvious that R0 ≤ R̃0 since
0 < α1, α2 ≤ 1, a result that can be naturally expected due to the impact of the
awareness programs. Importantly, the basic reproduction number of Model Two is
always less than or equal to that ofModel Onewith equality if and only if α1 = α2 = 1
provided that β1 = b1, β2 = b2 and ξ = b3.
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3.3 Endemic Equilibrium

We proceed to investigate the endemic equilibrium (EE) of model (6). For simplicity,
we denote

γμ = γ + μ, σμ = σ + μ, κμ = κ + μ .

An endemic equilibrium satisfies

N = Su + Sa + I + R, (8)

R = γ

σμ

I, (9)

B = ξ

δ
I, (10)

M = Λ + ηI

ν
, (11)(

β1 I + β2B

B + K

)
Su +

(
β1α1 I + β2α2B

B + K

)
Sa = γμ I, (12)

�MSu −
(

β1α1 I + β2α2B

B + K
+ κμ

)
Sa = −pσ R. (13)

Since I > 0, substituting Eqs. (9)–(11) into (12) and (13) yields

Su + Sa = A2 I 2 + A1 I + A0D0

B2 I 2 + B1 I + B0D0 + D1 I
I+D0

,

where

A0 = γμ

(
κμ + �

Λ

ν

)
,

A1 = pσγβ2(1 − α2)

σμ

+ β2α2γμ + A2D0 + γμ

(
κμ + �

Λ

ν

)
,

A2 = γμ

(
β1α1 + �

η

ν

)
+ pσγβ1(1 − α1)

σμ

,

B0 = β1

(
κμ + α1�

Λ

ν

)
+ β2

D0

(
κμ + α2�

Λ

ν

)
,

B1 = B2D0 + β1

(
κμ + α1�

Λ

ν

)
+ β2α2

(
β1 + �

η

ν

)
+ β2β1α1,

B2 = β1α1

(
β1 + �

η

ν

)
,

D0 = δK

ξ
,

D1 = β2
2α2 .
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From (8), we have Su + Sa = N − I − R = N − bI , where b = 1 + γ
σμ
. We denote

f (I ) = A2 I
2 + A1 I + A0D0 (14)

and

g(I ) = (N − bI )

(
B2 I

2 + B1 I + B0D0 + D1 I

I + D0

)
. (15)

Then at the endemic equilibrium we have

f (I ) = g(I ), I ∈ (0, N/b). (16)

Since Ai > 0 (i = 0, 1, 2), it is straightforward to see f ′(I ) > 0 and f ′′(I ) > 0. We
further make the following assumption:

(C) N ≤ bB1/B2.

It is worth noting that b 
 1, or equivalently, γ 
 μ+σ , in reality, since the recovery
from cholera infection typically occurs in several days (Hartley et al. 2006), whereas
the disease conferred immunity lasts several years and the average natural death occurs
in tens of years. Similarly, based on realistic data (Colwell 2006; Hartley et al. 2006;
Mukandavire et al. 2011), we have D0 
 1 and thus B1 
 B2 . Therefore, in practical
sense, the assumption (C) does not impose a strong restriction on the total population
size N . Here, we introduce this condition to facilitate our analysis that follows.

Based on assumption (C), we obtain

g′′(I ) = −6bB2 I + 2(B2N − bB1) − 2D1D0
N + bD0

(I + D0)3
< 0.

Now we denote ϕ(I ) = f ′(I ) − g′(I ). Then ϕ(I ) is increasing since

ϕ′(I ) = f ′′(I ) − g′′(I ) > 0.

In addition, notice that R0 = B0
A0

N = g(0)
f (0) . Hence, the following results can be

obtained:

(1) IfR0 > 1, then f (I ) and g(I ) have a unique intersection in R
2+.

(2) IfR0 = 1, then there are two possibilities:
(i) If ϕ(0) ≥ 0, these two curves have no intersection in R

2+;
(ii) If ϕ(0) < 0, there is a unique intersection in R2+.

(3) IfR0 < 1, then there are three possibilities:
(i) If f (I ) > g(I ) for all I > 0, then there is no intersection in R2+;
(ii) If there exists I ∗ > 0 such that f (I ∗) = g(I ∗) and f ′(I ∗) = g′(I ∗), then

there is a unique intersection in R2+;
(iii) Otherwise, there are two intersections in R2+.

In particular, from cases 3(ii) and 3(iii), we expect that there will be a backward
bifurcation under certain conditions, which will make a significant difference to the
dynamics of Model One. Below we will provide details of the bifurcation analysis.
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3.4 Bifurcation Analysis

At a positive equilibrium, we have f (I ) = g(I ) based on Eqs. (14)–(16). Define
g1(I ) = B2 I 2 + B1 I + B0D0 + D1 I

I+D0
. Then we have

N = bI + f (I )

g1(I )
. (17)

Note that R0 is a positive scalar multiple of N . Thus, we pick N as a bifurcation
parameter, as the variation of I with respect to R0 can be equivalently represented
by the variation of I with respect to N when all other model parameters are fixed.
Differentiating (17) with respect to N yields

dI

dN
= g21(I )

bg21(I ) + f ′(I )g1(I ) − f (I )g′
1(I )

:= g21(I )

Φ(I )
. (18)

It is clear that dI
dN > 0 if and only if Φ(I ) > 0. We can verify that

Φ ′(I ) = g1(I )

(
f ′′(I ) + 2bg′

1(I ) − f (I )

g1(I )
g′′
1 (I )

)
= g1(I )ϕ

′(I ) > 0. (19)

Accordingly, ifΦ(0) < 0, there must be a unique Ĩ such thatΦ(I ) < 0 for 0 < I < Ĩ
and Φ(I ) > 0 for I > Ĩ . Consequently, dI

dR0
< 0 for 0 < I < Ĩ and dI

dR0
> 0 for

I > Ĩ . Thus, we find that at (R0, I ) = (1, 0), a backward bifurcation occurs when
Φ(0) < 0; i.e.,

A1 + bB0D0 <
A0

B0

(
B1 + D1

D0

)
.

In contrast, ifΦ(0) ≥ 0, (18) and (19) imply that dI
dR0

> 0 for all I > 0. Thus, system
(6) has a forward bifurcation that occurs at R0 = 1 and I = 0. Therefore, Φ(0) < 0
is a necessary and sufficient condition under which a backward bifurcation occurs.

3.5 Numerical Simulations

Due to the complexity of the system (6), particularly its high dimension, stability anal-
ysis for the endemic equilibria are challenging. Instead, we have conducted extensive
numerical simulations to the model with various parameter settings. The results pre-
sented below illustrate a few distinct dynamical behaviors of the system.

Wenote again that amajor difference between the twomodels discussed in this paper
is that Model Two differentiates the aware and unaware individuals in the susceptible
host population. The parameters α1, α2, p, �, and κ , unique toModel Two, account for
such a differentiation as well as the interaction between the two classes of susceptible
individuals. To understand the impact of these parameters on the model dynamics, we
have conducted a sensitivity analysis, with the result provided in Table 1. We have
calculated the maximum relative sensitivity for each of these five parameters, using
the method described in Ellwein et al. (2008). Table 1 shows that except for κ , all
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Table 1 Sensitivity results for Model Two

Variable\parameter α1 p � α2 κ

Su 1.940 2.032 1.706 0.5883 0.037

I 8.914 7.868 6.889 2.704 0.147

R 5.6155 4.697 4.333 1.704 0.092

B 8.784 7.732 6.789 2.665 0.145

Sa 6.892 4.448 5.341 2.090 0.116

M 1.0696 0.857 0.827 0.325 0.018

Sensitivity 8.914 7.868 6.889 2.7044 0.147

In the case the disease is endemic, so the endemic level or disease prevalence (related to infectious population,
I) is of particular importance are given in bold.

Φ

(a)

R0

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

I

0

10

20

30

40

50

60

70

80

(R̂0, Î)

Backward Bifurcation (Φ(0)<0)

(b)

Fig. 1 The I -component of the equilibrium solutions of system (6) in terms ofR0 (a multiple of N ) with
a a forward bifurcation and b a backward bifurcation. In both situations, parameter values are mainly taken
fromMukandavire et al. (2011) and given byμ = (43.5y)−1, γ = (5d)−1, σ = (3y)−1, δ = (30d)−1, ξ =
10p−1, η = 0.0001p−1, K = 106cells · ml−1, β1 = 1.57 × 10−5d−1, β2 = 0.011p−1d−1, α1 =
0.2, α2 = 0.3,Λ = 0.1, ν = 1/30, � = 0.0002, κ = 10−5 except that a p = 0.5 and b p = 0.1,
which yield a Φ(0) = 0.001 and b Φ(0) = −0.0026, respectively. Solid and dashed curves represent the
I -component of the stable and unstable equilibrium solutions of system (6), respectively

the other four parameters (α1, α2, p, and �) exhibit high sensitivity in terms of the
model outputs (especially for the disease prevalence, I ), indicating the important roles
these parameters play in the overall disease dynamics. In what follows, we perform a
numerical bifurcation study forModel Two, using different ranges of these parameters.

Figure 1 shows the plot of I versus R0 with two different values of p, which lead
to distinct bifurcation behaviors. Figure 1a shows a typical scenario where Φ(0) =
0.001 > 0, as an illustration of the forward bifurcation for the system (6). In particular,
it is highlighted that when R0 > 1, there exists a unique endemic equilibrium, and
when R0 < 1, there is no positive equilibrium. Figure 1b illustrates the backward
bifurcation for (6) with Φ(0) = −0.0026 < 0. It is clear to see that there exist two
positive equilibrium solutions when R̂0 < R0 < 1. Here, we use (R̂0, Î ) to denote
the turning point, where the two positive equilibrium solutions come together and
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Fig. 2 Forward and backward bifurcations of system (6) with different values of �. a � = 0.001, which
leads to Φ(0) = 0.001 > 0; b � = 0.0002, which leads to Φ(0) = −0.00017 < 0. Other parameter values
are the same as those in Fig. 1 except that p = 0.2
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(b)

Fig. 3 Forward and backward bifurcations of system (6) with different values of α1. a α1 = 0.5, which
leads to Φ(0) = 0.00055 > 0; b α1 = 0.1, which leads to Φ(0) = −0.0015 < 0. Other parameter values
are the same as those in Fig. 1 except that p = 0.2

annihilate each other. The value of Î can be determined from Φ(I ) = 0, and R̂0 can
be calculated subsequently.

The occurrence of such different types of bifurcations is not just associated with a
particular parameter (p in Fig. 1). Instead, Figs. 2, 3, 4, and 5 demonstrate that forward
and backward bifurcations take place with different values of each of the parameters
�, α1, α2, and κ . Furthermore, in all these cases, the conditionΦ(0) > 0 (< 0) leads to
a forward (backward) bifurcation, which is consistent with our analytical prediction.

Figure 6 shows the plot of I versus time for a typical infection curve (time series),
where the value of N is chosen such thatR0 = 0.86 < R̂0. All other parameters take
the same values as those in Fig. 1b. We observe that, after the initial outbreak and a
few subsequent oscillations, the infection curve converges to I = 0, an indication of
the stability of the disease-free equilibrium.

Next, we increase the value of N to obtain R0 = 0.976, while keeping all other
parameters unchanged such that R̂0 < R0 < 1. In this case, a backward bifurcation
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(b)

Fig. 4 Forward and backward bifurcations of system (6) with different values of α2. a α2 = 0.9, which
leads to Φ(0) = 0.00017 > 0; b α2 = 0.2, which leads to Φ(0) = −0.0003 < 0. Other parameter values
are the same as those in Fig. 1 except that p = 0.3
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Fig. 5 Forward and backward bifurcations of system (6) with different values of κ . a κ = 5×10−5, which
leads to Φ(0) = 0.0008 > 0; b κ = 10−6, which leads to Φ(0) = −0.0012 < 0. Other parameter values
are the same as those in Fig. 1 except that p = 0.3
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Fig. 6 The number of infectious humans as a function of time for R0 = 0.86
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Fig. 7 A phase portrait in the M–I plane for the stable positive equilibrium with R0 = 0.976, while
backward bifurcation occurs (Color figure online)

M
0 1 2 3 4 5 6 7 8

I

0
100
200
300
400
500
600
700
800
900

R0 =1.4

Fig. 8 Aphase portrait in theM–I plane for the stability of the unique endemic equilibriumwithR0 = 1.4
(Color figure online)

occurs, and it is expected that the top branch of the positive equilibrium solution in
Fig. 1b is locally stable. Figure 7 shows a phase portrait for I versus M with a number
of different initial conditions, and we clearly observe that all these orbits (including
some close to the lower branch of the positive equilibrium solution) converge to the
positive equilibriumwith (M, I ) ≈ (3.1, 38) located on the top branch. This provides
an evidence of the stability of the equilibrium on the upper branch, and the instability
of the positive equilibrium on the lower branch (see Fig. 1b).

With N further increased,weobtainR0 = 1.4 > 1, andFig. 8 shows aphase portrait
in theM–I plane for this case. All other parameters take the same values as those under
the setting of Fig. 1a.As shown in Fig. 8, awide range of initial conditions are used, and
all the solution orbits converge to the endemic equilibriumwith (M, I ) ≈ (3.6, 86.6),
demonstrating the stability of the unique endemic equilibrium.

4 Discussion

There are an increasing number of studies on modeling the role of human behavior
(affected by awareness programs/media coverage) on the control and prevention of

123



C. Yang et al.

infectious diseases. However, the topic is still far from complete and faces many
challenges [see Funk et al. (2015)]. In particular, few references regarding media
impact on cholera as mentioned in the introduction, since cholera is different—the
transmission of cholera involves the environmental dimension and multiple (direct
and indirect) routes. How the media coverage and awareness programs would impact
cholera dynamics, in the context of the multiple transmission pathways, is unclear at
present.

We have proposed two models to investigate the effect of awareness programs on
cholera dynamics. Model One is a five-dimensional system that describes the time
evolution of the susceptible, infectious, and recovered human hosts, the bacteria, and
the awareness programs. A critical assumption in the first model is that all suscep-
tible individuals have the same probability to access the awareness programs and
gain the same level of awareness. The model is then able to explicitly represent the
relationship between awareness programs and susceptible individuals in that disease
transmission rates and bacteria shedding rate decrease as the number of awareness
programs grows.

The dynamical system in Model Two is six-dimensional with two distinct groups
(aware and unaware) in the susceptible class. The second model highlights the
different levels of infection risk among susceptible individuals due to their aware-
ness/unawareness of the infection (which would result in distinct human behaviors), a
practical limitation of any awareness programs. Disease transmission rates within
each susceptible class are assumed to be constant, but they take different values
across the two susceptible compartments, leading to different degrees of inter-
action among the human hosts, the environmental pathogen, and the awareness
programs.

In the mathematical sense, Model One is much easier to analyze and the results
are standard, namely the disease dynamics are completely determined by the basic
reproduction number: ifR0 ≤ 1, then cholera dies out; otherwise, the disease persists.
That is, the first model exhibits regular threshold dynamics. In contrast, Model Two
is less trackable, due to the higher dimension of the system and the more complex
interaction among compartments. Although rigorous stability analysis has not been
resolved for the second model, the mathematical and numerical study has provided
a clear picture of its essential, somehow surprising, dynamics. In particular, we have
established that Model Two may exhibit both forward and backward bifurcations, a
significant difference from the threshold dynamics in Model One. The implication
of a backward bifurcation is that reducing R0 below unity is no longer sufficient
to eradicate the disease, which brings an additional challenge to the public health
administration on cholera control.

A possible reason for the occurrence of a backward bifurcation in Model Two
is due to the heterogeneity incorporated for the susceptible host population (Gumel
2012). This heterogeneity is represented by several aspects: the different disease trans-
mission rates (represented by the parameters α1 and α2), the interaction among the
different classes of susceptible individuals and the awareness programs (represented
by the parameters � and κ), and the re-distribution of recovered individuals into the
susceptible pool (represented by the parameter p). Our numerical simulation results
demonstrate that most of these five parameters (which are unique to Model Two) are
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highly sensitive, and changes of these parameter values lead to the switch between for-
ward and backward bifurcations. In particular, results in Figs. 1, 2, 3, 4, and 5 indicate
that when these parameters are changed in a way to increase the degree of heterogene-
ity between the two different susceptible classes, then a backward bifurcation would
occur.

The two cholera models are closely related, as they share the same goal of modeling
the impact of awareness programs, but from different angles. It is surprising, however,
that these two models undergo very different dynamics and would provide different
guidelines in cholera control. Should one, or both, be used in practical applications? It
is not our intention to argue which one is more reasonable, as each model emphasizes
its own perspective, and all mathematical models are approximations to the reality.
A meaningful criterion, in the practical sense, to compare these two models and to
possibly select a model is to testify which one can better fit the population characteris-
tics and the observed data, if available. For example, in a place with a sudden cholera
outbreak where such a disease was previously absent or rare (such as the case of Haiti
cholera outbreak during 2010–2012), then all (or most) people would be unaware of
the infection risk, and thus Model One should be used. On the other hand, for a place
where cholera has been endemic (such as many countries/regions in Africa and South
Asia), a significant portion of the host population would be aware of the disease, and
Model Two is probably a better choice.

We plan to further pursue the modeling task, incorporating realistic data, in
our future research. In addition, bifurcation analysis with respect to a controllable
awareness-related parameter could be more helpful in understanding the role of health
campaigns. We may extend the second model to account for aware and unaware
individuals in the susceptible, infectious, and recovered classes (Funk et al. 2010).
Regardless, our current study provides a modeling framework to investigate the com-
plex cholera dynamics under the impact of awareness programs, and the findings from
bothmodels confirm thepositive effect of awareness programs in lowering the infection
risk and reducing the disease prevalence. Our present work also underscores the impor-
tance of validating key modeling assumptions and connecting models with realistic
data, to guide us in the development and selection of bettermodels toward applications.
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Appendix: Global Stability of the Endemic Equilibrium of Model One

Let E∗ = (S∗, I ∗, R∗, B∗, M∗) denote an endemic equilibrium of model (1). To
establish the global stability of E∗, we make the following assumptions:

(
1 − β1(M)I

β1(M∗)I ∗

) (
1 − Mβ1(M∗)I ∗

M∗β1(M)I

)
≥ 0 (20)
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for 0 ≤ I ≤ N and M0 ≤ M ≤ Mmax, and

(
1 − β2(M)B/(B + K )

β2(M∗)B∗/(B∗ + K )

) (
1 − β2(M∗)/(B∗ + K )

β2(M)/(B + K )

)
≥ 0 (21)

for M0 ≤ M ≤ Mmax and 0 ≤ B ≤ Bmax.

Theorem 4.1 Suppose that (i) assumptions (20) and (21) are satisfied; (ii) ξ(M) ≡ ξ

is constant; (iii) σ = 0. IfR0 > 1, then system (1) has a unique endemic equilibrium
E∗ that is globally asymptotically stable in �̊.

Proof For system (1), motivated by Tien and Earn (2010), we consider a Lyapunov
function

L = c1

(
S − S∗ − S∗ ln

( S

S∗
))

+ c1

(
I − I ∗ − I ∗ ln

( I

I ∗
))

+ c2

(
B − B∗ − B∗ ln

( B

B∗
))

+ c3

(
M − M∗ − M∗ ln

( M

M∗
))

,

where ci > 0 (i = 1, 2, 3) are constants to be determined. It is easy to verify that
L ≥ 0 for all S, I, B, M > 0, and L = 0 iff (S, I, B, M) = (S∗, I ∗, B∗, M∗).
Differentiating L along solutions of (1) and applying all equations of (4) except the
third one, we obtain

L′ = c1
(
1 − S∗

S

)
S′ + c1

(
1 − I ∗

I

)
I ′ + c2

(
1 − B∗

B

)
B ′ + c3

(
1 − M∗

M

)
M ′

= c1

[
−μ S

(
1 − S∗

S

)2

+β1(M
∗)S∗ I ∗

(
2 − S∗

S
− I

I ∗ − β1(M)SI I ∗

β1(M∗)S∗ I ∗ I
+ β1(M)I

β1(M∗)I ∗

)]

+ c1β2(M
∗)S∗ B∗

B∗ + K

×
(
2 − S∗

S
− I

I ∗ − β2(M)SB/(B + K )I ∗

β2(M∗)S∗B∗/(B∗ + K )I
+ β2(M)B/(B + K )

β2(M∗)B∗/(B∗ + K )

)

+ c2ξ I
∗
(

I

I ∗ − B

B∗ − B∗ I
B I ∗ + 1

)

+ c3

(
−Λ

M

M∗

(
1 − M∗

M

)2

+ ηI ∗
(

I

I ∗ − M

M∗ − M∗ I
M I ∗ + 1

))
.

(22)
Notice that x − 1 ≥ ln(x) for any x > 0, and the equality holds iff x = 1. Together
with (20), we find that
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2 − S∗

S
− I

I ∗ − β1(M)SI I ∗

β1(M∗)S∗ I ∗ I
+ β1(M)I

β1(M∗)I ∗

= −
(
1 − β1(M)I

β1(M∗)I ∗

) (
1 − Mβ1(M∗)I ∗

M∗β1(M)I

)
+ 3 − S∗

S

− β1(M)SI I ∗

β1(M∗)S∗ I ∗ I
− Mβ1(M∗)I ∗

M∗β1(M)I
− I

I ∗ + M

M∗

≤ −
(
S∗

S
− 1

)
−

(
β1(M)SI I ∗

β1(M∗)S∗ I ∗ I
− 1

)
−

(
Mβ1(M∗)I ∗

M∗β1(M)I
− 1

)
− I

I ∗ + M

M∗

= − ln
( S∗

S

β1(M)SI I ∗

β1(M∗)S∗ I ∗ I
Mβ1(M∗)I ∗

M∗β1(M)I

)
− I

I ∗ + M

M∗

= M

M∗ − ln
( M

M∗
)

− I

I ∗ + ln
( I

I ∗
)
. (23)

Likewise, using (21), we obtain

2 − S∗

S
− I

I ∗ − β2(M)SB/(B + K )I ∗

β2(M∗)S∗B∗/(B∗ + K )I
+ β2(M)B/(B + K )

β2(M∗)B∗/(B∗ + K )

≤ B

B∗ − ln
( B

B∗
)

− I

I ∗ + ln
( I

I ∗
)
.

(24)

Meanwhile, one can verify that

I

I ∗ − B

B∗ − B∗ I
B I ∗ + 1 = −

(
B∗ I
B I ∗ − 1

)
+ I

I ∗ − B

B∗

≤ − ln

(
B∗ I
B I ∗

)
+ I

I ∗ − B

B∗ = I

I ∗ − ln
( I

I ∗
)

− B

B∗ + ln
( B

B∗
)
. (25)

Similarly, we have

I

I ∗ − M

M∗ − M∗ I
M I ∗ + 1 ≤ I

I ∗ − ln
( I

I ∗
)

− M

M∗ + ln
( M

M∗
)
. (26)

It follows from (23)–(26) that the Eq. (22) yields

L′ ≤ c1β1(M
∗)S∗ I ∗

(
M

M∗ − ln
( M

M∗
)

− I

I ∗ + ln
( I

I ∗
))

+ c1β2(M
∗)S∗ B∗

B∗ + K

(
B

B∗ − ln
( B

B∗
)

− I

I ∗ + ln
( I

I ∗
))

+ c2ξ I
∗
(

I

I ∗ − ln
( I

I ∗
)

− B

B∗ + ln
( B

B∗
))

+ c3ηI
∗
(

I

I ∗ − ln
( I

I ∗
)

− M

M∗ + ln
( M

M∗
))

. (27)
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Take c1 = ξηI ∗, c2 = ηβ2(M∗)S∗B∗/(B∗ + K ) and c3 = ξβ1(M∗)S∗ I ∗. One can
verify by direct calculation that the right-hand side of the inequality (27) is zero. This
shows L′ ≤ 0 with the chosen positive constants c1, c2, and c3. Moreover, if L′ = 0,
then there exists a constant k̂ such that

S = S∗, I = k̂ I ∗, B = k̂ B∗, M = k̂M∗. (28)

However, by the last equation of (4), 0 = Λ+ηk̂ I ∗ − νk̂M∗. This implies that k̂ = 1.
Meanwhile, R = R∗ which follows from the third equation of (4). Thus, the largest
invariant set for which L′ = 0 contains only the EE. Therefore, by LaSalle’s invariant
principle (LaSalle 1976), the EE is globally asymptotically stable in �̊ whenR0 > 1.

�
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