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A B S T R A C T

Trypanosoma rangeli (T. rangeli), a parasite, is not pathogenic to human but pathogenic to some vector species to
induce the behavior changes of infected vectors and subsequently impact the transmission dynamics of other
diseases such as Chagas disease which shares the same vector species. Here we develop a mathematical model
and conduct qualitative analysis for the transmission dynamics of T. rangeli. We incorporate both systemic and
co-feeding transmission routes, and account for the pathogenic effect using infection-induced fecundity and
fertility change of the triatomine bugs. We derive two thresholds v (the triatomine bug basic reproduction
number) and 0 (the T. rangeli basic reproduction number) to delineate the dynamical behaviors of the ecolo-
gical and epidemiological systems. We show that when > 1v and > 10 , a unique parasite positive equilibrium
E* appears. We find that E* can be unstable and periodic oscillations can be observed where the pathogenic
effect plays a significant role. Implications of the qualitative analysis and numerical simulations suggest the need
of an integrative vector-borne disease prevention and control strategy when multiple vector-borne diseases are
transmitted by the same set of vector species.

1. Introduction

Chagas disease or American trypanosomiasis is a vector-borne dis-
ease caused by the causative agent of the protozoan parasite
Trypanosoma cruzi (T. cruzi). Chagas disease, recognized as one of the
most neglected diseases, can cause severe life-threatening cardiac and
gastrointestinal illness if a patient does not get treatment timely [1]. An
estimate of approximately 5 to 10 million people is infected with T.
cruzi around the world and more than 25 million people are at risk of
acquiring the disease, mainly in Latin America [2,3]. Chagas disease
has already a wide geographical distribution and is spreading into other
continents. It has been recently detected in the United States, Canada
and many European and some Western Pacific countries because of
enhanced travel means and global population movement [4–6].

T. cruzi is primarily transmitted by a broad range of blood-sucking
triatomine species. Infected bugs feed on blood and then deposit their
faeces with parasites inside on the hosts’ skin. These parasites enter the
body through the bite wound site induced by hosts’ scratching or rub-
bing, or other means like urine, and eventually penetrate the hosts’
booldstream [1,7,8]. Triatomine bugs (Hemiptera: Reduviidae), playing a

major role in spreading Chagas disease, have a relatively short and
variable lifespan varying from 4 to 14 months which largely rely upon
the species and the surrounding environmental conditions. These bugs
are not only hematophagous in that bloodmeals are necessary food for
their survival and inter-stage development, but also are fast feeders
which could release the faeces within the first minutes in a blood
meal [9,10]. Moreover, once these homometabolic insects ingest with
the parasites of Chagas disease, these parasites develop and multiply
quickly inside and make the insects reaching infectious stage quickly
within life-span of these insect vectors [9,11].

T. cruzi has a rich range of host species including wildlife (e.g.,
raccoon and opossum) and domestic animals (e.g., human, dog and cat)
and so on, and it is reported that over 100 mammalian species are the
natural hosts and susceptible to the infection [12,13]. However, the
ability to transmit the Chagas disease parasites varies with host species
because of their functional differences. Generally, mammalian animals
such as humans, dogs and cats are recognized as the competent hosts,
while avian animals such as birds and chickens are recognized as dead-
end hosts which just serve as triatomine food sources [13,14].
Many mathematical models have been developed to understand the
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transmission dynamics and evaluate control interventions of Chagas
disease. Many of these modelling studies have focused on the interac-
tion between humans and vectors by taking into account different
transmission routes (blood transfusion, congenital and vector biting)
and different stages of infection in human population (acute and
chronic) [3,15,16]. Some of these studies have explored the temporal
and/or spatial variations in abundance or persistence-extinction of
triatomine population [17–23]. Several studies have also considered the
dynamics of disease transmission in the host community composition
and hosts’ movement behaviors [8,12,24–26]. A few studies have ad-
dressed the issues of design and optimization of control strategies and
the relevant cost-benefits of managing these interventions [27–31].
Nevertheless, these studies have been limited to the transmission of
Chagas disease related to the parasites T. cruzi.
Highly relevant to the Chagas disease transmission dynamics is the

population dynamics of triatomine species Rhodnius prolixus (R. pro-
lixus) and the transmission of Trypanosoma rangeli (T. rangeli) for several
reasons described below. Although little attention has been paid on
modelling its transmission dynamics, T. rangeli as a Trypanosomatidae
also infects mammals including humans through the same triatomines
[10,32] in various Chagas disease endemic areas [33,34] and spreads in
a wide geographical range worldwide through the interaction between
hosts and triatomine vectors including in particular R. prolixus. Al-
though T. rangeli is not pathogenic to human, understanding the
transmission dynamics of T. rangeli is important for a number of reasons
relevant to the interventions of Chagas disease. First of all, T. rangeli
shares at least 60% antigens with T. cruzi, leading to crossed serological
reactions and false positive diagnosis of Chagas disease [10,32]. Sec-
ondly, T. rangeli and T. cruzi have large overlaps of geographic dis-
tribution, and share many of the vertebrate hosts and triatomine bugs.
Behaviors of these vertebrate hosts and triatomine bugs influenced by
their infection of T. rangeli can impact the effectiveness of the trans-
mission of T. cruzi. In addition, T. rangeli is currently being experi-
mented with as a potential vaccine against T. cruzi in domestic animals
[35]. Subsequently, it is important to study the transmission dynamics
of T. rangeli, and thus the subsequent linkage with Chagas disease.
Vertebrate hosts do not necessarily experience a significant reduc-

tion in fitness due to either the T. rangeli parasite infection or from
feeding by triatomine bugs. It is reported that T. rangeli is pathogenic to
triatomine bugs, as opposed to T. cruzi [25]. Specifically, infection of T.
rangeli alters the behavior of R. prolixus, which gives rise to the re-
duction of the volume of successful sucked blood meals. Induced by the
loss of nutritional status, the vectors possess lower fitness that leads to
decrease of the fecundity and increase of the death of the infected
counterparts, and it also has a significant effect on parasite develop-
ment in the body of vectors which ultimately results in the decrease of
infection rate with T. cruzi [10,25]. Understanding the behavior
changes of R. prolixus due to T. rangeli infection is of importance since
the triatomine infected with T. rangeli has lower fitness that could re-
duce the risk of T. cruzi transmission in a given triatomine population.
Like T. cruzi, the common host infection with T. rangeli takes place

in vector feces or urine after feeding of infected bugs, and the healthy
vectors could become infected if they are biting with the infected hosts
and ingesting the parasites into the bloodstream at this moment [32]. In
addition to the typical insect-host-insect systemic transmission, the
transmission of T. rangeli has an additional route of insect-to-insect co-
feeding transmission in the sense that susceptible bugs can become
infected when they are feeding with infected bugs on the same verte-
brate hosts [36]. There are increasing evidences to show that co-feeding
bugs could spread the parasites in the skin vasculature from infected
bugs where co-feeding could reach, since their feeding mechanism in-
cludes frequent reversal of the ingestion pump [37–39]. It has also been
documented that both competent and quasi-competent hosts are able to
serve as intermediate carriers to deliver the parasites between co-
feeding insects [36].
The co-feeding transmission route has been noted for many vector-

borne diseases in general and tick-borne diseases in particular [40,41].
Some mathematical models have been recently developed by in-
corporating both systemic and co-feeding transmission routes to study
the dynamics of tick-borne disease transmission [42,43], however
mathematical modelling study for the co-feeding transmission of
parasite T. rangeli in the content of Chagas disease spread has not been
conducted to the best of our knowledge. Despite intensive efforts in
understanding the transmission process of Chagas disease, it remains
unclear how the insect-to-insect co-feeding transmission and the pa-
thogenicity of T. rangeli induced behavior changes of triatomine vectors
impact the risk of Chagas disease transmission.
Our focus in this study is to derive a novel mathematical model to

explore the interaction among triatomine bugs, e.g., R. prolixus, com-
petent and quasi-competent vertebrate hosts and parasites of T. rangeli.
The transmission routes incorporated in the model include not only the
normal systemic transmission, but also the insect-to-insect co-feeding
transmission with additional attention on the pathogenicity to the
vectors. We also conduct a qualitative analysis for the long-term dy-
namical behavior of the proposed model with an emphasis on the in-
fluence on long-term behaviors of the co-feeding transmission and pa-
thogenicity to vectors. This qualitative analysis should provide useful
insights to inform more integrated insect-borne disease intervention
strategies.

2. Model development and formulation

2.1. Model development

To model the T. rangeli parasite transmission dynamics among
triatomine bugs, competent and quasi-competent hosts, we make cer-
tain assumptions. The first is that all triatomine bugs and their hosts are
assumed homogeneous mixing, and their total population sizes are as-
sumed to change with time for triatomine bugs, while constants for
both competent and quasi-competent hosts. Competent hosts (e.g.,
humans and dogs) have the ability to deliver parasites via both systemic
and co-feeding transmission mechanisms, whereas quasi-competent
hosts (e.g., chickens) only possess the ability of co-feeding transmission
route. Triatomine bugs infecting with T. rangeli have a lower fitness that
leads to the reduction of fecundity and parasite-induced death, while
the T. rangeli infection on hosts does not alter their demography as their
birth and death, and their contact behavior are also independent of the
infection status. Moreover, once hosts and vectors are infected with the
parasites, they remain infectious for the rest of their lives.
In our model, both competent hosts and triatomine bugs are

therefore divided into susceptible and infected sub-populations denoted
by Sj and =I j h v( , )j , where subscripts h and v represent competent
hosts and vectors, respectively. We assume a constant recruitment rate
Λh per unit time is added into the susceptible competent host popula-
tion growth, and both competent hosts and triatomine bugs decay due
to their natural death with constant rates μh and μv, respectively.
In general, the change of each sub-population is determined by their

respective birth/recruitment, death and mutual infection which is de-
scribed as

=
=
=
= +

S t µ S
I t µ I
S b t t t µ S
I t t d I µ I

( ) ,
( ) ,
( ) ( ) ( ) ,
( ) ( ) ,

h h h h h

h h h h

v v v c v v

v v c v v v v (1)

where λh(t) and λv(t) are the infection rates of susceptible competent
hosts and susceptible vectors through the systemic transmission after
bugs’ biting, respectively; λc(t) is the infection rate of susceptible bugs
through the co-feeding transmission, wherein both susceptible and in-
fected bugs are co-feeding on the same competent or quasi-competent
hosts; bv(t) is the birth rate of susceptible triatomine bugs which is in-
fluenced by the pathogenic effect on the behavior of triatomine bugs,
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and dv is the parasite-induced death rate of infected vectors due to the
pathogenic effect. The specific expressions of λh(t), λv(t), λc(t) and bv(t)
are described below.
Since we are concerned mainly about the long-term behavior of

model (1), adding the first and second equations leads to the change of
total competent host population = +N t S t I t( ) ( ) ( )h h h as

= + =N t S t I t µ N t( ) ( ( ) ( )) ( ).h h h h h h

We can obtain

= =N t
µ

Nlim ( ) : .
t

h
h

h
h

implying the asymptotic total number of competent hosts is constant
that we treat it as Nh in the following. Accordingly, the dynamics of
competent host population is reduced to one equation as

=I t t µ I t( ) ( ) ( ),h h h h

and time evolution of susceptible competent host population is de-
termined by

=S t N I t( ) ( ).h h h

Pathogenicity to the demography of triatomine bugs Following the
work in [16,44], Ricker’s type function =b x rxe( ) x is used to model
the reproduction rate of T. prolixus, where r is the maximal number of
offsprings that a triatomine bug can produce per unit time, σ measures
the strength of density dependence. That is, population size increases at
the low level density, reaches the carrying capacity because of limited
environmental source and then the rate becomes small after that.
Moreover, as mentioned in the introduction, the infection with T. ran-
geli can alter the behavior of R. prolixus resulting in the reduction of the
fecundity and fertility and the increase of the infected pairs’ death [10],
we therefore have

= + +b t r S I e( ) ( )v v v
S I( )v v

to model the birth of susceptible bugs, here θ ∈ [0, 1] is the reduction of
fecundity and fertility due to T. rangeli infection.

Infection rates through systemic transmission To describe λh(t) and
λv(t), we denote by Nq the total number of quasi-competent hosts which
are blood providers for triatomine bugs, while are not involved in the
systemic transmission. Due to the behavior and environmental condi-
tions of triatomine species, their host-feeding patterns show wide
variability, we thus denote by α the biting preference of quasi-compe-
tent hosts in relative to competent hosts [14,26,45]. Denote a by the
total number of bites per bug per unit time, then the average number of
infected bites per competent host per unit time is

+
aI t

N N
( )v

h q
. Since the bites

given by vectors are equal to those received by their hosts, the total
number of infected bites received by all competent susceptible hosts per
unit time is + S t( )aI t

N N h
( )v

h q
. Let b be the transmission proportion of sus-

ceptible bugs getting infected per bite, then the infection rate of sus-
ceptible hosts is

=
+

=t b aI t
N N

S t I t S t( ) ( ) ( ): ( ) ( ),h
v

h q
h h v h

where

=
+

b a
N Nh

h q (2)

is the transmission rate from infected bugs to susceptible competent
hosts.
Let c be the transmission proportion of susceptible bugs getting

infected per bite, the infection rate λv(t) can be similarly determined as

=
+

=t c aS t
N N

I t S t I t( ) ( ) ( ): ( ) ( ),v
v

h q
h v v h

where

=
+

c a
N N

.v
h q (3)

Infection rate through co-feeding transmission It is crucial to
characterize the infection rate λc(t) through insect-to-insect co-feeding
transmission. Since both competent and quasi-competent hosts are able
to act as vehicles or carriers to transport the T. rangeli parasites during
co-feeding transmission mechanism, λc(t) consists of two components,
i.e.,

= +t t t( ) ( ) ( ),c ch cq

where λch(t) and λcq(t) are the infection rates when both susceptible and
infected vectors feed on the same competent or quasi-competent host,
respectively.
On the average level, at each competent host, the numbers of bites

given by susceptible and infected bugs per unit time are

+ +
aS t

N N
aI t

N N
( ) and ( ) ,v

h q

v

h q

respectively. We count the numbers of susceptible and infected bugs
simultaneously feeding on a competent host at unit time, which are not
equivalent to the number of bites given by these two kinds of bugs. This
is because of un-equality of bugs’ feeding time and unit time. For ex-
ample, assume the feeding time per bite of bugs be 15 min on a host,
and the unit time is one day (24 h), thus we have unit time

= ×24 60 min, accordingly a bite should be equivalent to the average
number of bugs as 15/(24 × 60) at unit time.
Accordingly, let τ1 be the feeding time per bite of bugs on competent

hosts, thus a bite on a competent host is equivalent to τ1/(δω) number
of bugs at the unit time (ω), and δ is to denote the ratio of night to day.
Then, the average numbers of susceptible and infected bugs per unit
time during night on a competent host are

+ +
aS t

N N
aI t

N N
( ) and ( ) ,v

h q

v

h q

1 1

respectively. Let βch be the rate at which susceptible bugs become in-
fected by infected bugs on the same hosts through the co-feeding
transmission. Using bilinear incidence, the infection rate between sus-
ceptible and infected bugs on a host is

+ +
aS t

N N
aI t

N N
( ) · ( ) .ch

v

h q

v

h q

1 1

We now transform the infection rate from the night time to the unit
time on the average level. During the night time [0, δω], the cumulative
infection rate on an average competent host is

+ +
aS t

N N
aI t

N N
dt( ) · ( ) .ch

v

h q

v

h q0
1 1

Hence, averaging at the unit time length ω leads to the average infec-
tion rate on a competent host as

+ +
aS t

N N
aI t

N N
dt1 ( ) · ( ) .ch

v

h q

v

h q0
1 1

We further assume the number of bugs feeding on the hosts are the
same at the short unit time, the infection rate via insect-to-insect
transmission at unit time on an average competent host is given by

+ + + +
aS

N N
aI

N N
dt aS

N N
aI

N N
1 · 1 · .ch

v

h q

v

h q
ch

v

h q

v

h q0
1 1 1 1

Thus the total insect-to-insect infection rate at all competent hosts per
unit time is

=
+

=t N a
N N

S t I t S t I t( ) 1 ( ) ( ): ^ ( ) ( ),ch ch h
h q

v v ch v v
1

2

where we have defined
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=
+

N a
N N

^ 1 .ch ch h
h q

1
2

(4)

Similarly, denote by τ2 the feeding time per bite of bugs on quasi-
competent hosts, and βcq the rate at which susceptible bugs become
infected by infected bugs on the same quasi-competent hosts through
the co-feeding transmission. Accordingly, the infection rate of suscep-
tible bugs on all quasi-competent hosts through co-feeding transmission
per unit time is

=t S t I t( ) ^ ( ) ( ),cq cq v v

where

=
+

N a
N N

^ 1 .cq cq q
h q

2
2

(5)

Accordingly, we have

= + = + =t t t S t I t S t I t( ) ( ) ( ) ( ^ ^ ) ( ) ( ): ( ) ( ),c ch cq ch cq v v c v v

where

= +^ ^
c ch cq (6)

is the total infection rate through co-feeding transmission between
susceptible and infected bugs interplay transported by both competent
and quasi-competent hosts.
In summary, the complex dynamics for the interaction among tria-

tomine bugs, competent/quasi-competent hosts and T. rangeli parasites
are described by the following differential equations:

=

= +

= + +

+

I t N I t I t µ I t

S t r S t I t e S t I t S t I t µ

S t
I t S t I t S t I t d µ I t

( ) ( ( )) ( ) ( ),

( ) ( ( ) ( )) ( ) ( ) ( ) ( )

( ),
( ) ( ) ( ) ( ) ( ) ( ) ( ),

h h h h v h h

v v v
S t I t

v v h c v v v

v

v v v h c v v v v v

( ( ) ( ))v v

(7)

where all the parameters involved are non-negative, their biological
explanations and ranges are presented in Table 1. The schematic

diagram of model (7) is illustrated in Fig. 1.
The solution of system (7) is biologically meaningful as the next

result shows.

Proposition 1. System (7) with initial value lying in

= +I S I I N: {( , , ) : }h v v h h
3

has a unique, non-negative, bounded solution which exists for all t ≥ 0.

Proof. The above claim directly follows from Theorem 5.2.1 in [48]
that system (7) admits a unique nonnegative solution (Ih(t), Sv(t), Iv(t))
through an initial value (Ih(0), Sv(0), Iv(0)) ∈ Ω with the maximal
interval of existence [0, T) for some T > 0. It remains to prove the
boundedness which also implies the global existence of the solution.
It is clear that Ih ≤ Nh. Adding the second and third equations to-

gether in system (7) gives

Table 1
Parameter description and justification.

Parameter Description Range/value Reference/Justification

Nh total number of competent hosts varied human and dogs et al. are considered as in [3]
Nq total number of quasi-competent hosts varied birds and poultry such as chicken are considered as in [3]
α biting preference of quasi-competent hosts to competent

hosts
(0, ∞) wide variability depending upon the opportunistic behavior and variable

ecological, biological and social contexts of triatomine species [14,26]
a number of bites per bug per unit time [0.2, 33]/day bites of R. prolixus on hosts suggested from [45]
b transmission probability from infected bugs to susceptible

competent hosts per contact
[0.00271,0.06] human and dogs are suggested as those competent hosts as in [3,8]

c transmission probability from infected competent hosts to
susceptible bugs per contact

[0.00026,0.49] human and dogs are considered as those in [8,12]

μh per capita mortality rate of competent hosts [0.000038,0.0025]/day human, dogs are suggested in this study [8,12]
μv per capita mortality rate of vectors [0.0045,0.0083]/day corresponding to a life expectancy of 120–220 days [8,12]
r the maximal number of offsprings that a triatomine bug

can produce per unit time
[0.0274,0.7714]/day corresponding to those values from [3,12,46]

σ density-dependency strength measuring the reproduction
of bugs

(0, ∞) assumed in this study

θ reproduction reduction of bugs due to the infection [0,1] a scalar term that infected vectors had slightly lower fitness than uninfected
vectors

ω unit time 1 day simulation designed
τ1(τ2) feeding time per bite on a competent (quasi-competent)

host
10–15 min short and frequent feeding time comparing the tick population [9]

δ ratio of night to unit time 0.5 assumed in this study
βch transmission rate from infected bugs to susceptible bugs on

an average competent host during night
0.005 similar scale suggested as βv due to limited knowledge of co-feeding

transmission from [36]
βcq transmission rate from infected bugs to susceptible bugs on

an average quasi-competent host during night
βch/5 assumed, based on the limited information on [36], where around one fifth

comparing the transmission on competent host
dv T. rangeli parasite-induced per capita mortality rate of

infected bugs
[0.0188,0.0347]/day estimated from [47], see subsection 2.2

Fig. 1. The flowchart of model (7) involving systemic and co-feeding
transmission routes and pathogenic effect on triatomine bugs. Both tria-
tomines and competent host populations are described by SI model. Susceptible
competent hosts can get infected through systemic transmission alone, while
susceptible vectors can get infected through both systemic and co-feeding
transmissions. For the triatomine population, there are the fecundity reduction
θ and parasite-induced death rate dv due to pathogenic effect.
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+ + +

+

+S I t r S t I t e µ S t I t r
e

µ S t I t

( ) ( ) ( ( ) ( )) ( ( ) ( ))

( ( ) ( ))

v v v v
S I

v v v

v v v

( )v v

because of xe e1/( )x if x > 0. This immediately yields

+S I r
µ e

lim sup( ) 1
t

v v
v

implying the boundedness of Sv and Iv subject to the initial con-
straints. □

2.2. Model parameter estimation

We here estimate the parasite-induced death rate per triatomine bug
dv. According to Table 2 in [47] for triatomine species R. prolixus, the
ratio of mortalities between T. rangeli-infected and uninfected bugs is
reported as 19.45:3.75. Adopting this ratio, we have

+ =d µ µ( )/ 19.45/3.75,v v v

which leads to

= ×d µ day4.1867 [0.0188, 0.0347]/ ,v v

where we use the values of μv in Table 1.
Moreover, due to the limited knowledge of T. rangeli transmission

probabilities between hosts and bugs and among bugs, the parameter
values of b, c, βch and βcq are based on those of both parasites T. cruzi
and T. rangeli in the literature. The justification of other parameter
estimations is provided in Table 1. Differences in parameter values may
result in quantitative differences in model solutions, while the quali-
tative analysis remains valid.

3. Results

3.1. Dynamics of vector-free equilibrium

It is obvious that system (7) has a vector-free equilibrium
=E (0, 0, 0)v . The Jacobian matrix at Ev is

=
+

J E
µ N

r µ r
d µ

( )
0

0
0 0 ( ),

,v

h h h

v

v v

and the corresponding eigenvalues are +d µ( )v v , µh and r µv.
Denote

= r
µ

,v
v

then it is a threshold which characterizes the persistence or extinction
of vector population in the long time dynamics. Utilizing the compar-
ison principle and theory of monotone dynamical systems [48], the
following result is obtained.

Theorem 2. For model (7), vector-free equilibrium Ev is globally
asymptotically stable if < 1v and unstable if > 1v .

Proof. In the case of > 1v , the eigenvalue of r µv is positive

indicating Ev unstable. In the case of < 1v , then all the three
eigenvalues for the linearized system at vector-free equilibrium are
real and negative implying Ev locally asymptotically stable.
Let = +N S Iv v v and adding the second and third equations of

system (7) yields

N rN e µ N r µ N( ) .v v
N

v v v vv

Solving above inequality with any feasible initial value
= +N S I(0) (0) (0)v v v , we have

=N t N elim sup ( ) lim (0) 0
t

v
t

v
µ t( 1)v v

when < 1v . That is, the solutions of Sv and Iv with any feasible initial
condition will tend to zero provided that < 1v . Moreover, for the sub-
system of Ih, it is cooperative with its positive invariance set [0, Nh].
Furthermore, it is clear that Ev is a unique single equilibrium of system
(7) for < 1v . Following the Theorem 3.2.2 in [48], any solution of Ih
(t) for t≥ 0 starting on the domain [0, Nh] is monotone and converges
to equilibrium. Thus, Ev is a global attractive equilibrium which in-
dicates it is globally asymptotically stable if < 1v . □

3.2. T. rangeli basic reproduction number

The condition of > 1v is always assumed in the following. The
system (7) has a parasite-free equilibrium

= = >E S S(0, , 0) and 1 ln 0.v v v0
0 0

Following the next generation matrix method [49], we define the new
infection matrix

=F
N

S S
0 h h

v v c v
0 0

and the transition matrix

= +V
µ

d µ
0

0 .h

v v

Subsequently, the basic reproduction number of the model (7), is de-
fined as the spectral radius of the next generation matrix FV 1, namely,

= = + +FV( ) 1
2

( ( ) 4 ),vv vv hv0
1 2 2

(8)

where

=
+

=
+

S
d µ

N
µ

S
d µ

and .vv
c v

v v
hv

h h

h

v v

v v

0 0

In fact, vv is the expected number of new infections induced by direct
insect-to-insect co-feeding transmission in vector’s average lifespan,
while hv is the expected number of new infections induced by indirect
vector-host-vector transmission, where an infected insect bites suscep-
tible hosts which leads to susceptible hosts get infected, and then pro-
pagate the infection to the next new bug generation. Moreover, it is
easy to check the following equivalence:

< + <1 1.vv hv0
2 (9)

Following Theorem 2 in [49], we obtain the dynamical behavior of
the parasite-free equilibrium E0.

Theorem 3. With > 1v , the parasite-free equilibrium E0 of model (7) is
locally asymptotically stable if < 10 and unstable when > 10 .

3.2.1. The effect of host community composition on 0
The host community composition is commonly considered as an

important factor on the risk of vector-borne infection. Fig. 2 shows the
influence of triatomine bugs’ biting preference α, numbers of competent

Table 2
Equilibria and their stability of the model (7).

< 1v =E (0, 0, 0)v stable

> 1v < 10 =E (0, 0, 0)v unstable

=E (0, ln , 0)v0
1 stable

> 10 =E (0, 0, 0)v unstable

=E (0, ln , 0)v0
1 unstable

=E I S I* ( *, *, *)h v v stable under some sufficient conditions
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hosts Nh and quasi-competent hosts Nq on the basic reproduction
number 0. We observe that 0 is sensitive to the vectors’ biting pre-
ference α, and a smaller α allows a wider range of quasi-competent host
Nq to maintain the same level of 0 as indicated by contours of = 20
in Fig. 2. Moreover, by varying Nh and Nq, the values of 0 can change
from below 1 to above as shown in Fig. 2(b and c), implying the change
from extinction to persistence of T. rangeli parasite infection.
Fig. 3 (a and b) particularly illustrate the respective dependence of

0 on Nh and Nq in the case of = 1. With the increase of Nh as shown
in Fig. 3(a), we notice that 0 increases initially, peaks then at a certain
value of Nh, and declines afterward until less than 1. This implies that
the increase of the number of competent hosts does not necessarily lead
to the increase of 0; indeed, either a small or large size of competent
host population could lead to < 10 which indicates the extinction of
T. rangeli parasite infection. By contrast, Fig. 3(b) shows that 0 is a
monotonically decreasing function of Nq and finally tends to below 1.
Biologically, this indicates that the increase of quasi-competent hosts

can eventually result in the extinction of T. rangeli parasite infection.
As 0 depends on βc, which is an important parameter and its ex-

pression is an integrated combination of Nh, Nq and α (Eqs. (4)–(6)), we
further examine the dependence of βc on host populations. As shown in
Fig. 3(c and d), similar profiles as those in Fig. 3(a and b) are observed.
This indicating that βc plays an important role in the non-monotonic
behavior of 0 on Nh.

3.2.2. The role of hv and vv
In this subsection, we show the relative contributions of vv and hv

on the basic reproduction number 0. In Fig. 4, the first two columns
show the contribution of vv and hv to 0 in terms of competent hosts
Nh and quasi-competent hosts Nq, for = 0.1, 1, 10, respectively, and
the third column shows the dependence of 0 on the same chosen
parameters. We observe that the ratio /vv 0 is extremely small and

/hv 0 is close to unity. These imply that the systemic transmission
plays a more significant role than co-feeding transmission on 0, and

Fig. 2. Contour plots of the basic reproduction number 0 versus Nh, Nq and α. In these simulations, Nh ∈ [10, 500], Nq ∈ [0, 200] and = 0.5, 1, 2, and others
are =a 0.6, =b 0.06, =c 0.49, =r 0.0274, =µ 0.0025h , =µ 0.0083v , = 0.1, = 0.9, = 1, = = 15/60/241 2 , = 0.5, = 0.005ch , = 0.001cq , =d 0.0246v .

Fig. 3. The relationship of basic reproduction number 0 and co-feeding transmission rate βc with respect to competent hosts Nh and quasi-competent
hosts Nq. (a) 0 vs. Nh ∈ [10, 1500] and =N 200q ; (b) 0 vs. Nq ∈ [0, 500] and =N 200h ; (c) βc vs. Nh ∈ [10, 500] and =N 200q ; (d) βc vs. Nq, and =N 200h . Others
are = 1, =a 0.6, =b 0.06, =c 0.49, =r 0.0274, =µ 0.0025h , =µ 0.0083v , = 0.1, = 0.9, = 1, = = 15/60/241 2 , = 0.5, = 0.005ch , = 0.001cq , =d 0.0246v .

X. Wu, et al. Mathematical Biosciences 324 (2020) 108326

6



the value of 0 is mainly determined by hv. The α value varies widely,
and it influences the value of 0 in Eq. (8), where βh, βv and βc are
related. By increasing α as shown in Fig. 4(a1)–(c1), the contribution of

vv to 0 is slightly increased.

3.3. Parasite-positive equilibrium

To study the parasite persistence, seeking for the positive equili-
brium of system (7) is required which is summarized as follows. The
complete proof is provided in Appendix A.

Theorem 4. With > 1v , the model (7) admits a unique parasite-positive
equilibrium =E I S I* ( *, *, *)h v v if and only if > 10 , where I*v is determined
by

+
+

+ = +
+
+

+
+
+

+
r

g I
g I

I e d I µ
g I
g I

I
*
*

* *
*
*

* ,v

v
v

g I
g I

I
v v v

v

v
v

1 1

2 2

*
*

* 1 1

2 2

v
v

v
1 1

2 2

(10)

and

= + = = + = +g d µ g µ d µ µ N( ), , ( ), .h v v h c h v v h c h v h1 2 1 2

I*h and I*v are determined by

=
+

=
+
+

I
I

I µ
N S

g I
g I

*
*

* and *
*
* ,h

h v

h v h
h v

v

v

1 1

2 2 (11)

respectively.

3.4. Stability of parasite-positive equilibrium

We now present the stability analysis of E* to show the parasite
persistence. To do this, we linearize system (7) at E* and obtain the
characteristic equation

= + + + =f b b b( ) 0.3
2

2
1 0 (12)

The coefficients are

= + +
= + +
= +

b a a a
b a a a a a a a a a a
b a a a a a a a a a a a a

( ),
,

,

2 11 22 33

1 11 22 11 33 22 33 13 31 23 32

0 11 23 32 13 22 31 11 22 33 13 21 32 (13)

where

= + < = = >

= <

= <

= + +

= > = + > = <

+ +

a I µ a a µ

a S

a

a S ur I S ur

a S a I I a S

( * ) 0, 0, 0,

* 0,

0,

* ( * *) ,

* 0, * * 0, * 0,

h v h h
I
I

v v
ur S I S I

S

c v v v

v v v h c v v v
I
I

11 12 13
*
*

21

22
( * ( * *) *)

*

23

31 32 33
*
*

h
v

v v v v
v

h
v (14)

and

= +u e .S I( * *)v v

To show that all the characteristic roots of Eq. (12) have negative
real parts, our framework is quite general by using the Routh-Hurwitz
criteria in the sense that we need to show b0 > 0, b1 > 0, b2 > 0 and
b1b2 > b0.

Claim: b0 > 0, b1 > 0 and b2 > 0.
It is easy to see = + + >b a a a( ) 02 11 22 33 since all a11, a22 and a33

are negative. For the term b1, we firstly get

> = >a a a a a a I S0, * * 0,h v h v11 22 11 33 13 31 (15)

and

=
+ + +

+
+
+

>

a a a a
ur I S I S I I

I
S I d µ

I S

( * *)( * ( * *) * )
*

* * ( (1 ))
* * 0.

v v v h v v c v

v

c v v v v

v v

22 33 23 32

2

(16)

Fig. 4. An illustration of the role of vv and hv to 0 with respect to Nh ∈ [1, 100] and Nq ∈ [0, 50] and = 0.1, 1, 10. For the panels from top, middle to bottom,
α corresponds to 0.1, 1, 10, respectively. Others are =a 0.6, =b 0.06, =c 0.49, =r 0.0274, =µ 0.0025h , =µ 0.0083v , = 0.1, = 0.9, = 1, = = 15/60/241 2 ,

= 0.5, = 0.005ch , = 0.001cq , =d 0.0246v .
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So we have b1 > 0.
For b0, we get

= + +

= + +

= +

+ +
+

+

+ +
+

+
+

+ + +
+

b B

B

B

S I I µ d µ
I S

µ I I S S I ur I
I

S I I µ d µ
I S

µ I S d µ
I S

S d µ I I µ µ I
I S

0
* *( * )( (1 ))

* *
* ( * * * * *)

*

* *( * )( (1 ))
* *

* *( (1 ))
* *

*( (1 ))( * ( * ) *)
* *

c v v h v h v v
v v

v h h v h v c v v v

v

c v v h v h v v
v v

v h h v v v
v v

v v v c v h v h v h h
v v (17)

where

= + + + + + >B ur I S I S I µ I I µ( * *)( * ( ( * *) ) * ( * )) 0.v v v h h v v h c v h v h

(18)

Then we have b0 > 0.

3.4.1. Sufficient conditions for local stability
Though the conditions of b0 > 0, b1 > 0 and b2 > 0 from Eq. (13)

have been proved, the condition of b1b2 > b0 is not always satisfied.
Additionally, it is not easy to simplify the equivalent condition for
b1b2 > b0 because of lack of analytical expression of I*v . However, we
find some sufficient conditions such that this condition holds. By the
Routh-Hurwitz criteria, we have the following results.

Theorem 5. With > 1v and > 10 , the parasite-positive equilibrium
=E I S I* ( *, *, *)h v v is locally asymptotically stable if one of the following

conditions is satisfied:

(a) > +2 1 d
µ

v
v
;

(b) < +
c h

d µ N
µ

( )v v v h

h
and βc < βh;

(c) + >+
+
+ 1µ

µ d
d µ
N µ

2 ( )v
v v

h v v
h v h c h

and βc < βh.

Proof. To prove the locally asymptotic stability, we need to show that
condition of b1b2 > b0. We can write it as

= + +b b b C C C ,1 2 0 2
2

1 0 (19)

where

= >

= + + + + +

+ + + +

+ + +
+ + + + +

+ + + >

+ + + + +C

C I I I S I S ur S I µ S

I I I I S S ur d

S ur I I S µ S
µ I I S S ur µ S I S

I S S I I S

0,

[ * * ( * *)( * ( * (2 ) ( * *)) 2 * )

* ( * ( * ( * *)( * 2 ) (

* * ( * *) (1 ) * ))
2 * ( * *)( * ) * ( * *))

* * ( * *)( * *)] 0,

u r I S I I µ I S I
I

ur
S I v h v v v v v h c v v h v

v v h v v v h v c v

v v v v v v

h v v v h v h v v v

v h v v v v v

2
( * *) ( *( *( ) ) * ( * *))

*

1 * *
2 2

2

2 2

2

2 2 2

v v v v h c h v h v v

v

v v

2 2 2

2

(20)

and

= + + + + +

+

+

+ +

+ + + + +
+

+
+

C I S ur S I I S µ I µ u

r I I µ

µ I S

( * * * ( ( * 2 * *) 2 * )

* ( * ))

* * .

I
S h v h v v h h v v h v h h v h

v h v h
I S d µ µ I d µ ur I d µ

I S

I S
I h v h h v

µ I S d µ µ
I S

0
*
*

2 3 2 2 2

2 2

*( * ( (1 )) * ( )) * ( (1 ))
* *

* *
*

* * ( 2 )
* *

v
v

v h c v v v h v v v c v v v
v v

h v h v

v
v h h v v v v

v v

2

2 2

2 2 2

(21)

Thus the last term in (21) is the only possible negative term. A
sufficient condition is given by

+ < > +d µ µ d
µ

2 0 2 1 .v v v
v

v (22)

Next we will derive the condition (b). We first have

+
+

< + = +
µ I S d µ

I S
µ I d µ I S µ

I S µ
I

* * ( )
* *

* ( ) * * * *
* ,v h h v v v

v v
v h h v v c v h v h

v h v h

v

2 2

(23)

where the last equality is based on the Eq. (A.3). If βc < βh, the second
last term in (23) can be controlled by the second last term in (21),
namely,

<I S µ I S µ* * * * .c v h v h h v h v h (24)

Combining the last term in (23) and the third last term in (21) gives

=
I S
I

I S µ
I

I S
I

S µ
* *
*

* *
*

* *
* ( * ).h v h v

v

v h v h

v

v h v

v
h v h

2 2 2 2 2 2 2

(25)

Since

=
+
+

=
+

+
>

+
+

+

S
d µ I
I I

d µ d µ
N µ

µ* ( ) *
* *

( ) ( )
,h v

h v v v

v h c v

h v v

v
N

I µ c

h v v

v h h c h
h

*
h h

h v h (26)

we get

+
+

> >
d µ
N µ

I S
I

I S µ
I

( )
1

* *
*

* *
* .h v v

v h h c h

h v h v

v

v h v h

v

2 2 2 2 2

(27)

If we estimate all the last three terms in (21) together, we can get a
more relaxed sufficient condition by assuming βc< βh. First we rewrite
the last term as

+
+

=
+

+

=
+

µ I S d µ µ
I S

µ I S d µ
I S

M

M
µ

µ d

* * ( 2 )
* *

* * ( )
* * ,

1
2

1.

v h h v v v v

v v

v h h v v v

v v

v

v v (28)

Then the above derivation applies with only modification of this factor
M and provides the following sufficient condition under βc < βh

+
+

>
d µ
N µ

M
( )

.h v v

v h h c h (29)

□

The above results show that, with an emphasis on the pathogenic
effect of triatomine bugs, namely the condition of > + d µ2 1 /v v is
satisfied, the solution of model (7) converges to the parasite-positive
equilibrium E* when the initial values are close to this equilibrium, and
hence the parasite persists. With an emphasis on the co-feeding trans-
mission, the parasite still persists if the following sufficient condition

<
+d µ N

µ
·min

( )
, 1c h

v v v h

h

is satisfied. By combining the two factors, parasite persistence is guar-
anteed if the sufficient conditions as shown in case (c) of Theorem 5 are
satisfied.
Fig. 5 shows the dynamics of host and bug populations Ih, Sv, Iv and
= +N S Iv v v of model (7), for different values of Nh. It is shown that all

solutions converge to the positive steady states under the conditions
> 10 and > + d µ2 1 /v v, as expected. With the increase of Nh, Fig. 5

also shows the change in number of host and bug populations at
equilibrium. That is, infected competent host population I*h largely in-
creases, susceptible bug population S*v largely decreases, infected bug
population I*v slightly increases and total bug population N*v decreases.
This is because, with a larger Nh, more susceptible competent hosts Sh
contact with Iv which leads to the increase of I*h . As such, more sus-
ceptible bugs become infected due to the infection between Sv and Ih,
giving rise to the decrease of S*v and the increase of I*v . Nevertheless, I*v
has a slight increase due to mutual interaction of the infection and
additional pathogenic effect. This fact of the large decrease of S*v and
slight increase of I*v leads to the decrease of the birth rate for susceptible
bugs and the increase of death rate for infected bugs due to the pa-
thogenic effect, which finally results in the decrease of N*v as shown in
Fig. 5(d). This scenario could potentially indicate the reduction for the
risk of Chagas disease.
Fig. 6 also shows the dynamics of host and bug populations Ih, Sv, Iv
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and = +N S Iv v v, for different values of Nq. We observe at equilibrium,
with the increase of Nq, both I*h and I*v decrease and both S*v and N*v
increase on the contrary. The main reason is that Nq affects the trans-
mission rates βh, βv and βc, all of which are decreasing functions of Nq.
Consequently, with the increase of Nq, less susceptible competent hosts
Sh becomes Ih because of smaller βh which leads to the decrease of I*h in
Fig. 6(a); less susceptible bugs Sv becomes Iv due to smaller βv and βc,
leading to the decrease of I*v as well in Fig. 6(c). As a consequence of
smaller Iv, the pathogenic effect on bugs is less significant, hence larger
Sv causes the increase of birth rate of susceptible bugs, therefore the
increase of both S*v and N*v in Fig. 6(b and d). This scenario could po-
tentially indicate the increase for the risk of Chagas disease.

3.4.2. Special case: without pathogenic effect
The model (7) analyzed so far shows the locally asymptotic stability

of the parasite-positive equilibrium E*. In general, T. rangeli is patho-
genic to its insect vectors, however it may not be pathogenic to every
triatomine species [35]. Therefore, it is worthwhile to study the dy-
namics of system (7) in the absence of pathogenic effect on triatomine
bugs, i.e., = 1 and =d 0v , which allows us to compare both mathe-
matical and biological implications for cases with and without patho-
genic effect.

Theorem 6. With > 1v and > 10 , in the absence of pathogenic effect
on triatomine bugs, namely, = 1 and =d 0v , system (7) admits a unique
parasite-positive equilibrium =E I S I* ( *, *, *)h v v which is globally
asymptotically stable.

Proof. In the case of = 1, =d 0v , system (7) reduces to

Fig. 5. Time evolution of model solutions when varying Nh from low, median to high, where both > 10 and > +2 1 dv
µv
are satisfied. (a) Ih(t); (b) Sv(t); (c) Iv

(t); (d) = +N t S t I t( ) ( ) ( )v v v Here in these simulations, =N 200q , = 1, =a 0.6, =b 0.06, =c 0.49, =µ 0.0025h , =µ 0.0083v , =r 0.0274, = 0.0001 and = 0.9, = 1,
= 15/60/24, = 0.5, = 0.005ch , = 0.001cq , =d 0.00246v .

Fig. 6. Time evolution of model solutions when varying Nq from low, median to high, where both > 10 and > +2 1 dv
µv
are satisfied. (a) Ih(t); (b) Sv(t); (c) Iv

(t); (d) = +N t S t I t( ) ( ) ( )v v v . Here in these simulations, =N 200h , = 10, =a 0.6, =b 0.06, =c 0.49, =µ 0.0025h , =µ 0.0083v , =r 0.0274, = 0.0001 and = 0.9,
= 1, = 15/60/24, = 0.5, = 0.005ch , = 0.001cq , =d 0.00246v .
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=

= +

= +

+

I t N I t I t µ I t

S t r S t I t e S t I t S t I t µ

S t
I t S t I t S t I t µ I t

( ) ( ( )) ( ) ( ),

( ) ( ( ) ( )) ( ) ( ) ( ) ( )

( ),
( ) ( ) ( ) ( ) ( ) ( ).

h h h h v h h

v v v
S t I t

v v h c v v v

v

v v v h c v v v v

( ( ) ( ))v v

(30)

First of all, it is easy to check that sub-system (30) admits a unique
parasite-positive equilibrium =E I S I* ( *, *, *)h v v if > 10 , since it is a
special case of system (7).
Adding the second and third equations of system (30), the triato-

mine bug population satisfies

=N t rN t e µ N t( ) ( ) ( ).v v
N t

v v
( )v (31)

It is obvious that Eq. (31) admits a unique zero equilibrium which is
globally asymptotically stable if 1v , and a unique global attractive
equilibrium =N S*v v

0 if > 1v .
In the case of > 1v , the limit system of (30) is reduced to:

=
= +

I t N I t I t µ I t
I t I t S I t S I t I t µ I t

( ) ( ( )) ( ) ( ),
( ) ( )( ( )) ( ( )) ( ) ( ).

h h h h v h h

v v h v v c v v v v v
0 0

(32)

This system (32) has an unstable parasite-free equilibrium (0,0) and a
unique parasite-positive equilibrium =E I I( *, *)h v1 if > 10 , where S*v is
replaced by S I*v v

0 for the susceptible vectors at equilibrium.
The Jacobian matrix at E1 is

=
+

++
J E

I µ N I

S I I
( )

( * ) ( *)

( *) * ,
h v h h h h

v v v
N S

I µ c v
1 0

*
h v h v
h v h

0

and it has a negative trace, and a positive determinant

= + + +J E S I I I µ I N Idet( ( )) * * ( * ) * ( *).h v v h c v h v h h v v h h1
0

Therefore, all eigenvalues of the matrix J(E1) have the negative real
parts which implies E1 is locally asymptotically stable.
We further denote

=
+

f I I
f I I

N I I µ I
I S I S I I µ I

( , )
( , )

( )
( ) ( )

.h v

h v

h h h v h h

v h v v c v v v v v

1

2
0 0

Both f1 and +f :2
2 are continuously differentiable maps, and

= N I( ) 0f
I h h hv
1 and = S I( ) 0f

I v v v
0

h
2 , then system (32) is co-

operative on a domain =D I I I N I S{( , ) : [0, ], [0, ]}h v h h v v
2 0 . It is

clear that, for > 10 , system (32) has a parasite-free equilibrium (0,0)
which is unstable and a unique parasite-positive equilibrium E1. Fol-
lowing Theorem 3.2.2 in [48], E1 is global attractive. Subsequently, the
parasite-positive equilibrium E* of sub-system (30) is globally asymp-
totically stable. □

Numerical simulations are conducted to examine the globally
asymptotic stability of the parasite-positive equilibrium. Fig. 7 shows
the dynamics of the populations Ih, Sv, Iv with two different sets of initial
conditions, and both sets of solutions converge to the same steady state,
as expected.

3.5. Occurrence of oscillation with pathogenic effect

In preceding subsection, We have presented the globally asymptotic
stability of the parasite-positive equilibrium for the special case without
pathogenic effect on the triatomine bugs. For the case with pathogenic
effect, only some sufficient conditions are found to ensure the local
stability. In this subsection, we numerically reveal the occurrence of
sustained oscillations for the full model (7). For the purpose of illus-
tration, all parameter values used are purely illustrative, though some
are elaborated from Table 1.
With a fixed θ, Fig. 8 shows the appearance of sustained oscillations

by increasing the parasite-induced death rate of vectors dv from
0.02025, to 0.05 and 0.2, where the blue solid curves and red dashed

ones correspond to the scenarios without and with co-feeding trans-
mission ( = 0c or 0.05), respectively. For the relatively small dv in
Fig. 8(a), the solutions of Ih(t) tends to the positive equilibrium, ex-
hibiting no oscillation. By increasing dv in Fig. 8(b and c), we observe
that sustained oscillations occur, and a larger amplitude is related to a
larger dv, moreover the presence of co-feeding transmission reduces the
amplitude of oscillations.
With a fixed dv, Fig. 9 shows the disappearance of sustained oscil-

lation by increasing θ from 0.0005 to 0.005 and 0.01825, where the
blue solid curves and red dashed ones correspond to the cases without
and with co-feeding transmission ( = 0c or 0.005), respectively.
Compared to Fig. 8, we observe disappearance rather than occurrence
of the sustained oscillations with the increased θ, and a larger ampli-
tude of oscillation is conversely related to a smaller θ. However, it is the
same that the role of co-feeding transmission is to reduce the amplitude
of oscillations as shown in Fig. 9(a and b).
In short, we find that a larger dv or a smaller θ can lead to the easier

occurrence of sustained oscillations for system (7), which indicates the
loss of structural stability. While, the co-feeding transmission has a
negative impact on the amplitude of oscillation, hence stabilizes the
system. Biologically, this implies that apart from seasonal variation, we
have shown another mechanism for the occurrence of sustained oscil-
lations or the periodic cycles of triatomine bug population for Chagas
disease transmission, where bugs’ pathogenicity plays an important
role.

4. Discussion and conclusion

In this work, we have developed a novel model which captures two
routes of T. rangeli parasite transmission, normal insect-host-insect
systemic transmission and insect-to-insect co-feeding transmission
when both infected and susceptible bugs are co-feeding on the same
hosts. In addition, pathogenic effect on triatomine bug population is
also taken into account. Though T. rangeli is not pathogenic to human
beings, it is pathogenic to triatomine bugs. This greatly affects the dy-
namics of T. rangeli parasite population and triatomine bug population,
which is closely related to the risk of Chagas disease and the potential
cost of vaccine development in domestic animals [50,51]. We have
found the conditions for the persistence and extinction of T. rangeli
parasite and its vector populations by analyzing the long-term dynamics
of the model, which could provide some critical insights for the pre-
vention and control of Chagas disease.
Theoretically, two thresholds v and 0 have been derived to

characterize the dynamical behavior of the model, which is summarized
in Table 2 for the convenience of readers. We have shown that triato-
mine bug population dies out if < 1v , implying no risk of Chagas
disease. If > 1v , triatomine bug population changes to persist, in-
dicating the potential risk to Chagas disease. We further found that
infected host and vector populations will go extinct if < 10 , indicating
no impact of T. rangeli parasite on host and triatomine bug populations
at long-term dynamics, thus no risk of Chagas disease. If the condition
of > 10 is satisfied, host population with positive T. rangeli parasite
will persist which could lead to the possible false positive diagnosis of
Chagas disease [10]. Moreover, we numerically found in Figs. 5 and 6
that the total population size of triatomine bugs is increased with the
decrease of competent hosts or the increase of quasi-competent hosts,
which could result in an increase in the risk of getting Chagas disease.
Oscillation phenomenon is very common for vector-borne diseases.

In general, delay differential equations, where delays naturally occur in
vector-borne diseases, are frequently used to model the observed and/
or unobserved oscillations [16,43]. For instance, by introducing a delay
τ into the recruitment rate of new susceptible triatomine bugs, where τ
is the time required for eggs to develop into sexually mature adults,
Velasco-Hernández has successfully simulated the fluctuating behaviors
of model solutions and compared to the field data [16]. By including a
delayed logistic growth term and with interrupted spraying schedules,
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Spagnuolo and co-authors have studied the fluctuating outcomes for
Chagas disease [52]. Other types of ordinary differential equations
(ODEs), that include seasonality and/or cyclic control strategies such as
insecticide spraying, have also been utilized to simulate the oscillations
of the model solutions [53,54]. In the present study, we have developed
a system of autonomous ODEs and observed the sustained oscillations
in solutions, where the pathogenic effect of triatomine bugs plays a
crucial role. More precisely, by adjusting the parameters dv and θ,
sustained oscillations are numerically observed; moreover, a larger dv
or a smaller θ leads to a larger amplitude of the oscillation. This finding
is not only mathematically but also biologically important, because few
ODE models with similar types of vector-borne disease transmissions
can lead to solutions with fluctuating behaviors. It suggests that further
biological investigation is necessary to identify the precise knowledge
of the pathogenic effect on bugs.
A major limitation in this study is that the infection rates λh(t), λv(t)

and λc(t), which are based on the average idea, may be oversimplified.
In particular, the contact rate a between hosts and vectors might be a
piecewise function rather than a constant, since triatomine bugs attack
sleeping or quiescent hosts during night. Moreover, the occurrence of
the sustained oscillations and the corresponding amplitudes are only
illustrated by numerical examples with the chosen typical parameters,
and a thorough theoretical investigation is desirable to identify the
critical conditions and understand the properties of sustained oscilla-
tions.
Despite the progress in understanding the complexity of host-para-

site-vector interaction, our knowledge of the interaction of T. rangeli
parasite and R. prolixus vectors remains far from complete. In future
research, this model could be adapted to include the T. cruzi parasite to
understand the impact of co-infection on the successful transmission of
Chagas disease, since T. cruzi is the causative agent and it shares a di-
versity of common mammal hosts and triatomine species with T. rangeli.

Fig. 7. Numerical solutions of model (7) without pathogenic effect on triatomine bugs. The parameter values are given = 1, =d 0v , =N 300h , =N 50q , = 1,
=a 0.6, =b 0.06, =c 0.49, =µ 0.0025h , =µ 0.0083v , =r 0.0274, = 0.01, = 1, = = 15/60/241 2 , = 0.5, = 0.005ch , = 0.001cq , where > 10 .

Fig. 8. Oscillation appearance of system (7) varying with dv and βc. (a) =d 0.02025v , (b) =d 0.05v , (c) =d 0.2v , moreover, each plot considers = 0c and 0.05.
Other parameter values are =r 0.5, = 0.0001, =µ 0.025h , =µ 0.005v , =N 400h , = 0.005h , = 0.01v , = 0.01, here from top to bottom > 10 .
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To the best of our knowledge, the T. cruzi transmission and its vector
behavior are different from those of T. rangeli, namely, the former has
no co-feeding transmission and no pathogenic effect on its vectors.
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Appendix A. Proof of Theorem 4.

Proof. For simplicity, we omit the subscript ‘*’ for each variable at equilibrium. Let the right sides in system (7) be zeros, namely

=N I I µ I( ) 0,h h h v h h (A.1)

+ =+r S I e I S S I µ S( ) 0,v v
S I

v h v c v v v v
( )v v (A.2)

+ + =I S S I d µ I( ) 0.v h v c v v v v v (A.3)

Solving Eq. (A.1) and Eq. (A.3), we have
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where
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Considering Iv ≠ 0. Adding Eqs. (A.2) and (A.3) together and using the expression of Sv in terms of Iv, we obtain
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which plays a critical role in determining the existence of positive solution of Iv. To do this, shifting the term ++
+( )r Ig I

g I v
v
v

1 1

2 2
to the right side yields
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Fig. 9. Oscillation appearance of system (7) varying with θ. (a) = 0.0005, (b) = 0.005, (c) = 0.01825, moreover, each plot considers = 0c and 0.005. Other
parameter values are =r 0.5, = 0.001, =µ 0.025h , =µ 0.05v , =N 400h , = 0.0005h , = 0.01v , =d 0.002v , here > 10 .
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and denote functions +F I: v and +G I: v as
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We can determine the monotonicity of functions F and G with respect to Iv. Since we have
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Moreover, we have
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then we obtain that F(Iv) is monotonically decreasing and G(Iv) is monotonically increasing with respect to Iv ≥ 0.
Moreover, we can find that
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Accordingly, Eq. (A.6) has a unique positive solution >I* 0v if and only if F(0) > G(0), that is,
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Taking Logarithm on both sides in inequality (A.9) leads to
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at both sides on the above inequality, we can have
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Taking square root and a simple algebraic calculation, we obtain
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namely,

> 1.0
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