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This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera
ordinary differential equation (ODE) model that incorporates human behavior via modeling disease preva-
lence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and
global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend
the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts
for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed
by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numeri-
cally evaluating the basic reproduction number of the PDE model. Our results show that human behavior
can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection
(characterized by the basic reproduction number).
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1. Introduction

Mathematical modeling, analysis and simulation for infectious
diseases have long provided useful insight into disease dynamics that
could guide public health administration for designing effective pre-
vention and control measures against epidemics. Over the past few
decades, compartmental models such as SIR (susceptible-infected-
recovered) and SEIR (susceptible-exposed-infected-recovered) and
their threshold dynamics have been established as the standard
framework in mathematical epidemiology (see review [33] and
references therein). Meanwhile, numerous extensions of these basic
mathematical models have been proposed that incorporate more
detailed biological, ecological, demographic, and geographical in-
formation, such as spatial heterogeneities, age-structures, seasonal
variations, and others, with significant advances in almost all of these
directions.

The mechanisms of disease transmission and spread are usually
complex and possibly involve social, economic and psychological fac-
tors in addition to the intrinsic disease biology and ecology. In par-
ticular, human behavior could have significant influence on disease
transmission and vice versa. For example, individuals avoid close con-
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tact with obviously sick persons to protect themselves and therefore
the frequency and strength of contacts between uninfected and in-
fected people generally are reduced. In case of severe disease out-
breaks, people will attempt to change their routine schedules (includ-
ing, but not limited to, work, recreation, and travel), wash hands often
with soap and clean water, receive vaccines or preventive treatment
if available, so as to minimize their risk of infection. Nowadays, the
fast growth of information technology allows prompt and up-to-date
reports on the details of disease outbreaks from internet (especially
those popular social networking sites), newspaper, television and ra-
dio stations, and government announcements. Consequently, these
media coverage and health education will, to a large extent, affect
human behavior which can lead to a significant reduction in outbreak
morbidity and mortality.

It is clear that human behavior could play an important role in
shaping the complex epidemic and endemic pattern of a disease
[3,26]. There are an increasing number of studies on the mathemati-
cal epidemiological modeling of human behavior [13]. Funk et al. [14]
classified epidemic models under the impact of behavioral changes
into belief-based and prevalence-based. Cui et al. [11]| proposed a
simple SIS model that incorporated the effects of media coverage.
Gao and Ruan [16] extended the work in [11] to a patch model with
non-constant transmission coefficients. Liu et al. [25] investigated the
psychological impact on disease dynamics that involve multiple out-
breaks and sustained infections. Collinson and Heffernan [10] found
that the outcome of an epidemic model with the effects of mass
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media is strongly affected by the choice of media function. Recently,
Chowell et al. [9] fitted logistic growth models to the cumulative
reported number of Ebola cases to reflect changes in population
behavior and interventions. In addition, Mummert and Weiss [27]
modeled and analyzed the social distancing strategies in limiting dis-
ease transmission and spread, particularly for short-term outbreaks.
A goal of this paper is to improve our quantitative understanding
of the impact of human behavior on disease dynamics. Particularly,
we will incorporate human behavior into mathematical modeling of
cholera, a severe water-borne disease caused by the bacterium Vibrio
cholerae. There have been many studies published in recent years on
cholera modeling and analysis (see, e.g., [5-7,17,28,29,34,36-38,41-
441]), yet, to our knowledge, few of these have specifically taken hu-
man behavior into consideration (see Capasso [5,6], Al-Arydah et al.
[1], and Carpenter [7]). In the present paper, we will modify the
cholera model proposed by Mukandavire et al. [28] to explicitly in-
clude disease prevalence dependent contact rates (for both the di-
rect and indirect transmissions) and host shedding rate, and analyze
the resulting dynamics. Particularly, we will show that the reduc-
tion of contact rates due to human behavior leads to reduced epi-
demic and endemic sizes. We will then extend the ODE system to a
reaction-convection-diffusion PDE system to investigate the interac-
tion among human behavior, host and pathogen movement, and the
disease intrinsic transmission dynamics. We will pay special atten-
tion to the traveling wave solutions and threshold dynamics of the
PDE model. Our study regarding cholera spatial dynamics is different
from the work of Bertuzzo et al. [4,31]. Our PDE model formulation
is more general in terms of inclusion of multiple transmission path-
ways. Specifically, our model incorporates both direct (or, human-to-
human) and indirect (or, environment-to-human) transmission path-
ways whereas their model has considered only indirect transmission
route. The scope of our work is also different from that in [4,31] as our
focus is on the impact of human behavior on cholera transmission.
We organize the remainder of the paper as follows. In Section 2
we introduce the ODE cholera model that incorporates human be-
havior, with relevant notations and assumptions. We then conduct a
thorough epidemic and endemic analysis of the model in Section 3,
for both local and global dynamics. In Section 4 we present the PDE
model and investigate its traveling wave solutions under the impact
of human behavior, followed by a threshold dynamics analysis in
Section 5. We conclude the paper in Section 6 with discussion.

2. Model formulation

The cholera model proposed in [28] incorporates both the
environment-to-human (or, indirect) and human-to-human (or,
direct) infection routes, and all the model parameters take constant
values. The model has standard SIR (susceptible-infected-recovered)
compartments, with an additional compartment B that denotes the
concentration of the bacteria V. cholerae in the contaminated water.
We now extend this model by assuming that the direct and indirect
transmission rates and the bacterial shedding rate are all dependent
on the number of infectives, representing the influence of human
behavior change due to health education, hygiene and sanitation
practices. In addition, we assume that recovered individuals become
susceptible to cholera again after a certain period of time, taking into
account the immunity loss in the real life. The new model takes the
form

ds SB

ar = uN — B1(DSI - ,Bz(l)m — uS+oR,
dl SB

it - Bi (1)51+,32(1)m - (Y + i,

dR

a =yl-(nu+0)R,

%? = Bs(DI - SB. (2.1)

The total population, N =S + 1+ R, is fixed. The definition and base
values of the model parameters are provided in Appendix A, Table A.1.

The most important feature of our model is the incorporation of
disease prevalence dependent contact rates and host shedding rate.
Fori=1, 2,3, we formulate that

Bi(D) = a; — bym(I) ,

where g; is the usual contact rate (or shedding rate) without consid-
ering the influence of human behavior, b; is the maximum reduced
contact rate due to behavior change, and m;(I) is a saturation func-
tion. These functions satisfy

a; > b; > 0, m;(I) e C'([0, I,]) with m{(I) > 0,
m;(0) =0, 0 <m;(ly) <1,

where I, € (0, N] is an upper bound of the solution {I(t): t > 0}. Some
typical examples of m(I) with such properties are 1 — k/(k + I') with
k>0andn>0,1—eX withk> 0,and /I, [16].

One can easily verify that the disease-free equilibrium is
given by (N, 0, 0, 0). Let F denote the matrix characterizing the gen-
eration of secondary infection, and V denote the matrix depicting
transition rates between compartments. Based on the standard next-
generation matrix technique [12,40] and our assumptions, matrices F
and V can be written as:

aiN  a;N/K 0
F=|"! N and v=|MTY .
as 0 0 )
The next generation matrix is
aN N
M=pv-1=|HtYy K
as
nty

Hence, the basic reproduction number R of model (2.1) is given by

Ro = R = p(M)

1| anN <mN)2

2| n+y n+y
Here p denotes the spectral radius. Note that the basic reproduction
number R is independent of b; fori = 1, 2, 3. This is due to our model
assumption that behavior change only starts when the disease has al-
ready started and R is calculated at the disease-free state. An impli-
cation is that behavior change alone is usually not sufficient to ter-
minate an outbreak. Nevertheless, previous studies have shown that
it can significantly reduce the burden of an endemic disease [16]. We
will demonstrate this for our cholera model in the next section.

Meanwhile, if disease control is targeted at a particular host type,

a useful threshold is known as the type reproduction number, T. The
type reproduction number defines the expected number of secondary
infective cases of a particular population type caused by a typical pri-
mary case in a completely susceptible population [18,32]. It is an ex-
tension of the basic reproduction number R. Particularly, the type
reproduction number T; for control of infection among humans is de-
fined in the references [18,32] as

Ty =e]M(I— (I— P))M) ey,

(12(13N
S(u+y)K

provided the spectral radius of matrix (I — P;)M is less than one, i.e.,
p((I=Py)M) < 1. Here I is the 2 x 2 identity matrix, vectors e; =
(1,0)T, M is the next generation matrix, and P; is the 2 x 2 projec-
tion matrix with all zero entries except that the (1,1) entry is 1. Write
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M = (m;;). The type reproduction T; can be easily defined in terms of
the elements m;;:
M2y

i =m —_—
1 “+1—m22

(2.2)

T, exists provided my; < 1. In view of my; = 0, by (2.2), the type re-
production number associated with the infectious humans is given

by

_ oN aasN

Cuty  K(p+y)

Moreover, it has been shown in [32] that

Ro<1(=1,>1) &< T <1(=1,>1).

When B;(I) = g; (i =1, 2, 3), it has been shown that the disease
dynamics of (2.1) are completely determined by its basic reproduc-
tion number R [44].

In what follows, we will use both Rq and T; in our analysis, with
the understanding that the two are equivalent in characterizing dis-
ease threshold dynamics.

1

3. Equilibrium analysis

By direct calculation, we find that (2.1) always has a disease-free
equilibrium (DFE), and its endemic equilibrium (EE) satisfies

N=S+I+R, (31)
- Z 1. (32)
5 B0 (33)

+ )l
5= BT BT G4
Substituting (3.2) into (3.1) yields

S=¢():=N-al,
Likewise, by plugging (3.3) into (3.4), we find

S=y() = “g(*,)y ,

with e =1+ y/(u+0).

where
Ba2(D B3 (1)
g =B+ m -

Thus, the intersections of the curves S = ¢(I) and S = v (I) in [0, N]?
determine the nontrivial equilibria. Notice that

/ , B (D) SKB3 (1) — (B3 (D)?

It then follows directly from assumptions on g;(I) (fori = 1, 2, 3) that
g'(I) < 0. This implies that v (I) is a strictly increasing function. Mean-
while, it is clear that ¢(I) is a strictly decreasing function. Together
with ¢(0) =N, ¥ (0) = N/Ty, ¢(N) < 0, and ¥(N) > 0, we see that:
(1)if T; > 1, then ¢(0) > 1(0), which implies that there is a unique
intersection in R? between ¢(I) and ¥(I); (2) if T; < 1, then ¢(0)
< (0), which indicates that there is no intersection between these
curves in the interior of R2. Moreover, we have the following exis-
tence, uniqueness and local stability theorem on DFE and EE of (2.1).
The proof is postponed to Appendix B.

Theorem 3.1.

(1) If T; < 1, then system (2.1) has a unique equilibrium, and it is the
DFE. Furthermore, the DFE is locally asymptotically stable when
Ty < 1, and it is Lyapunov stable when Ty = 1.

(2) If T; > 1, then system (2.1) has two equilibria: the DFE and the EE.
Moreover, the DFE is unstable, whereas the EE is locally asymptot-
ically stable.

In view of the equivalent relationship between Ry and T; (2), we
obtain the following result for the local disease threshold dynamics
of model (2.1).

Corollary 3.2.

(1) If Rg < 1, the system (2.1) has a unique equilibrium, and it is the
DFE. Furthermore, the DFE is locally asymptotically stable when
Ro < 1, and it is Lyapunov stable when Ry = 1.

(2) If Rg > 1, the system (2.1) has two equilibria: the DFE and the EE.
Moreover, the DFE is unstable, whereas the EE is locally asymptot-
ically stable.

In the remainder of this section, we focus on the global stability
of the equilibrium solutions of (2.1). By a simple comparison theo-
rem, we find that 0 < B(t) < B, provided that 0 < B(0) < B, := a3N/é.
Consider the domain

Q={GSLRB) eRY:S+I+R<N, B<B,}.

It is clear that if any solution of system (2.1) starting in €2 will re-
main in €2; that is, the domain 2 is positively invariant for (2.1). The
following results (i.e., Theorems 3.3-3.4) establish the global disease
threshold dynamics of model (2.1).

Theorem 3.3. If Rg < 1, the system (2.1) has a unique disease-free
equilibrium that is globally asymptotically stable in the region S2.

Proof. Let
aiN  a;N/K 0
K = ! 2N/ and Vi = m+y .
0 0 —das )

Write Y = (I, B)T. By assumptions B;(I) < a; fori = 1, 2, 3, the system
(2.1) satisfies

— < (R -W")Y.
Letw = (a;N, a;N/K). Inview of T; = p(FV;~1) = p(V; ~'F), one can

verify that WV{lF] = Tyw. Motivated by [35], we define a Lyapunov
function as follows:

L=wV Y.
Differentiating £ along solutions of (2.1), we have
£ =wv! 4 _ WV R - V)Y = (Ty — DHw.

de =1

IfT; <1, £ <0.Then £’ = 0 implies that w)y = 0 and hence I =
B = 0. It follows from the first and third equations of (2.1) that S = N
and R = 0. Hence, the only invariant set where £’ = 0 is the singleton
{(N,0,0,0)}.

In the case Ty =1, £' =0 implies that B;(I)SI =a;NI and
B2 (DSB/(B+K) = a,NB/K. By the assumption on §; (i = 1,2), this
can only happen when S = N or [ = B= 0. Then, by a similar argu-
ment as that in the case where T; < 1, we find that the largest invari-
ant set where £’ = 0 is the singleton {(N, 0, 0, 0)}.

Since Ry < 1 iff T; < 1, by LaSalle’s Invariant Principle [22], the
DFE is globally asymptotically stable in Qif Ry <1. O

Theorem 34. If Ry > 1, the EE is globally asymptotically stable in
Q0O the interior of , provided that sup{S(B;(I)])’ : S>0,1>0,S+1 <
N} <(y —0)/2.

The detailed proof for Theorems 3.4 is provided in Appendix C.

A mathematically simple but biologically important conclusion
can be made from the above analysis on the endemic equilibrium.
Namely, when §; (1 < i < 3) is decreased as a result of incorporating
human behavior, the endemic level is reduced as well.

Proposition 3.5. If R > 1, then the I-coordinate of the unique endemic
equilibrium of model (2.1), I, is strictly decreasing in the maximum re-
duced transmission coefficient (or shedding rate) due to behavior change,
b;, fori=1,2,3.
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Fig. 1. Infection curves of the ODE model without behavior change, with small behavior change, and with large behavior change. The values of parameters and initial condition
are: K =2 x 108,y =1/5,8 = 1/30, o = 1/(43.5 x 365),a; = 3 x 107>, a, = 0.02, a3 = 15,0 = 1/(3 x 365), and (5(0),1(0), R(0), B(0)) = (12346, 1,0, 0).

Proof. Since Rg > 1 iff T; > 1, there exists a unique endemic equi-
librium (Se, le, Re, Be) of the system (2.1), when Rq > 1. By equations
(3.5) and (3.6), we have

Kty
le) = ¥ (, N-oal, = , 35
o) =V (L) & Ule () (3.5)
where g(I,) = B1(le) + % and B (le) = a; — bymy(I,). Differ-
entiating both sides of equation (3.5) with respect to by yields
ole w+y

b, T (gh))?

’ ol p(le) ale
) <_ml(le) _b1m](IE)BTn + (19,33(153)-1—51()28b1>
J’_
~Gatoy™
Ol vy, o mty  p)
= 9b, (0‘ + (g(I))? bimi (Ie) ()2 1P 1) +8K)2)’
where

p(le) = (B3(Ie) B3(Ie) + B2(Ie) B3 (Ie)) (e 3 (Ie) + SK)
= B2le) B3 (Ie) (B3 (Ie) + e B3 (L))
= By(Ie) B3 (Ie) (e B3 (Ie) + SK)
+ B2(le) B5 1)K — B2 (L) (B3 (Ie))* < 0.

Thus gT’i < 0. We can similarly show that e?Tlez <0and %ea <0. O

We numerically verify Proposition 3.5 as follows. The values
of parameters and initial condition are: K =2 x 106,y =1/5,6 =
1/30, ;0 = 1/(43.5 x 365), a1 =3 x 107°,a, =0.02,a3 = 15,0 =
1/(3 x 365), and (5(0),1(0), R(0), B(0)) = (12346, 1,0, 0). The cor-
responding basic reproduction number is Rg = 1.99. Consider the
saturation functions m;(I;) = ﬁ fori= 1,2, 3. The blue dotted line,
black dashed line, and red solid line in Fig. 1 show the number of
infectious individuals for the model (2.1) with no behavior change
(bj =0fori=1,2,3), small behavior change (b; = 0.8a; and K; = 500
fori=1,2,3), and large behavior change (b; = 0.8q; and K; = 100 for
i=1,2,3), respectively. Clearly, behavior change alone cannot elimi-
nate the disease, but can significantly reduce the epidemic/endemic
level and larger behavior change leads to less infections. In addition,
the infection curve of the cholera model with large behavior change
does not experience damped oscillations over time.

4. Cholera traveling waves

In order to further understand the effects of human behavior on
cholera transmission dynamics, we extend the ODE model (2.1) to a
PDE system taking into account the diffusion of human hosts and bac-
teria and the convection of vibrios. Consequently, we will investigate
the propagation of epidemic waves and related threshold dynamics,
under the impact of human behavior.

Consider cholera dynamics along a one-dimensional theoretical
river. Incorporating into (2.1) the bacterial and human diffusion, and
bacterial convection due to river flow, we obtain the following cholera
epidemic PDE model

as 92s
3¢ = WN=SPi(DI =SBy (DB/(B+K) — S+ O R+ D13,

at

Y 021
o = SBIDI+SBa(DB/(B+K) — (1 + )] + Dy
5 = y]_(u—f—o‘)R-i-DBWa

9B 0B 9B

where x € [0, 1] and ¢ > 0 are the location and time variable, respec-
tively. S(x, t), I(x, t), and R(x, t) measure the number of susceptible,
infectious, and recovered human hosts at location x and time ¢, re-
spectively. B = B(x, t) denotes the cholera concentration in the water
environment. D; > 0 (1 < i < 4) is the diffusion coefficient of S, I, R
and B, respectively, and v > O represents the convection coefficient
that describes the effect of the river flow on the bacterial movement.
The definition of model parameters can be found in Table A.1.

A useful approach to study the spatial spread of cholera is to in-
vestigate the travel wave solution of model (4.1) and to determine the
critical speeds of the traveling fronts. Introduce a variable u = x — ct
where c is the speed of the disease traveling front. Assume that
N =S+ 1+ Ris a constant. Then (4.1) can be rewritten as

I' =X,

R =Y,

B =27

X' = D%[( —eX)— (N— 1= R (B ()T + Bo(DB/(B + )
+ (u+ I,
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Y = S~ V)~ I+ (u+ 0)R],
3

7 - Di[(u_ OZ — Bs(D) + 8B]. (42)
4

where’ = i

We will now focus on the case where RIPE > 1 since our interest
is the spatial spread of the disease. Notice that model (4.2) has two
spatially homogeneous stationary solutions, Vy = (0, 0, 0, 0, 0, 0) and
Vi = (Ie, Re, Be, 0,0, 0); these equilibria correspond to the disease-
free and endemic equilibrium points of the ODE model, respectively.
Thus, any traveling wave solution of (4.2) can be regarded as a hete-
roclinic orbit connecting V, and V. More specifically, (1) in the case
of a progressive wave front, 1, is a saddle and the heteroclinic or-
bit goes from V; to V. This depicts downstream propagation of the
disease, for instance, from inland areas to coasts; (2) in the case of
a regressive wave front, Vj is an unstable node and the heteroclinic
orbit connects Vg to V. It captures the upstream propagation of the
disease, for example, from coasts to inland regions. Meanwhile, we
notice that an orbit with oscillatory dynamics around V will destroy
the non-negative property of the state variables I, R and B. Therefore,
in either case, all the eigenvalues of the Jacobian matrix 7 associated
with the linearized system of (4.2) evaluated at V; must be real for a
wave font to exist. Direct computation yields

0 I
g=\. :

T JIn
where 05 is the 3 x 3 zero matrix, I3 denotes the 3 x 3 identity ma-
trix,

1 apN
—Dz(—a1N+(M+V)) DK
_ v nto
o1 = D; D; 0 1,
as 1)
"D, 0 Dy
and

Jaz = diag[—c/D,, —c/Ds3, (V — ¢)/Ds4].

The characteristic equation of matrix 7 is

(A% 4¢/Dsh— (i +0)/D3) (A* + b1A% + byA? + bsh + by) = 0,

(4.3)
where
by = ¢/Dy + (¢ —v)/Da,
by = —(+y —a1N)/Dy — 8/Dg + c(c - v)/(D2D4),
by =[-cd + (L +y —aiN)(V - 0)]/(D2Ds),

by = [(u+y —aiN)§ — azasN/K]/(D3Ds).

The critical value of ¢ occurs only if the characteristic equation
(4.3) has repeated real roots. We only need to focus on its second
term p(A) = A% 4+ by A3 + byA2 + b3 + by, since the first term of this
equation has two distinct real roots, and none of these roots satisfies
p(2) = 0. It follows from R$PE > 1 that by < 0 and hence p(1) has
at least one positive and one negative zeros. We now proceed to find
the condition for the existence of repeated roots. The work of Jury and
Mansour [21] shows that double zeros of this quartic polynomial p(1)
occurs if

A =4M? —W? =0, (4.4)

where M = b% +12bs —3b1b3 and W = 72byb4 + 9b1byb3 — Zb% -
27b3 — 27b4b3. 1f v = 0, equation (4.4) becomes

e1(c2)* + e5(c?) + e3(c?)? + e4(c?) + es = 0, (4.5)

whose coefficients depend on the model parameters. Particularly,
er = (D = Dg)*[(t + ¥ — 1N — 8)* + 4a,a3N/K ]| = 0,
and e; > 0 when D, # D,. Meanwhile, if R§PE > 1, then

€5 = 16D2D4[5(/L +y - a1N) — (12(13N/K]
x[(Dg(it + ¥ — a;N) — D38)? + 4D, D4a,a3N/K]? < 0.

Thus, equation (4.5) has at least one positive zero with respect to c2;
namely, this equation has at least a pair of real roots in terms of ¢
which have the same magnitude but opposite signs.

There are typically two critical speeds, denoted c; and c_, such
that the wave front with speed c € (c_, c) cannot exist. Further-
more, it has been established [2,24] that for large t, the progressive
disease spreading velocity is exactly ¢ = c, and the regressive spread-
ing velocity is exactly ¢ = c_ , among the infinitely many waves prop-
agating at ¢ > ¢, (progressive waves) or ¢ < c_ (regressive waves).

We have numerically calculated the critical wave speeds c, and
c_ under a variety of settings. Our particular emphasis here is the
impact of human behavior on the spatial spread of cholera. We note
that the variation of §;(I) can, alternatively, be reflected by the change
of values of a;, i = 1, 2, 3. Thus, it is convenient to treat c; and c_ as
functions of g; (1 < i < 3), and study the variation of wave speeds in
terms of q;.

In Fig. 2, we plot ¢4 vs. a; with two choices of convection coeffi-
cients: v =0 and v = 1, while the diffusion coefficients are fixed at
D, = D4 = 1. We pick the base values of g; (i = 1, 2, 3) from [28]. In
Fig. 2a, we plot ¢4 vs. a;, with fixed a, and a3 at their base values; in
Fig. 2b, we plot c1 vs. a, while fixing a; and as; and so on. For each
plot, we clearly observe that when v = 0, the progressive speed c,
and regressive speed c_ are symmetric with respect to the horizontal
axis, as predicted by equation (4.5). When v = 1, however, the curves
lose symmetry and show that incorporation of a downstream convec-
tion process for bacteria tends to strengthen the wave propagation in
the positive (or, downstream) direction, while weakening the wave
propagation in the negative (or, upstream) direction.

The most important pattern in these figures, however, is that the
wave speeds in both directions are increasing when g; (i = 1, 2, 3) in-
creases. It indicates that a reduction for the value of g; (say, due to
human behavior) would weaken the epidemic wave propagation and
reduce the spread of the disease. For the case v = 1, a more careful
examination of the regressive wave speeds reveals that c_ becomes
positive, and close to 0, when g; (i = 1, 2, 3) is much smaller than its
base value, implying that there is no upstream wave propagation. An
explanation is that the random diffusion process, particularly from
the coast to the inland regions, contributes to the upstream propaga-
tion of the disease (represented by the regressive waves with negative
speeds). When one of those contact rates is sufficiently low, the dif-
fusion of infected human hosts and/or bacteria cannot compete with
the effects of the downstream convection of bacteria, resulting in no
upstream propagation of the disease. This result indicates that reduc-
tion of g; can not only reduce the wave speeds, but also impact the di-
rection of wave propagation. Further, as can be clearly seen from each
figure, if each a; can be made sufficiently close to 0, then no traveling
wave will be generated.

In Fig. 3, under similar settings for a; (i = 1, 2, 3), we plot ¢y vs. g;
with two different choices of diffusion coefficients, while fixing the
convection speed at v = 1. We again observe that, in each case, the in-
crease of a; leads to faster wave propagation in both directions. Mean-
while, as the diffusion becomes stronger, the traveling wave speeds
also increase for both upstream and downstream propagation.

5. PDE model threshold dynamics

We now study the spatial threshold dynamics of cholera by ana-
lyzing the basic reproduction number associated with the PDE model
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Fig. 3. Influence of D, and D, on cholera traveling wave speeds when v = 1, which is illustrated by plotting cholera traveling wave speeds as a function of g; (i = 1, 2, 3). The base
values of aj, a; and as are a; = 1.57 x 10~ (day~'), a, = 0.011 (person—'day~'),and a3 = 10 (cells ml~'day~"). For each plot, the upper solid curve refers to the progressive velocity
¢, and the lower dashed curve refers to the regressive velocity c_. The curves in black (resp. red) show the critical cholera spreading speeds when D, = D4 = 1 (resp. D, = D4 = 10).

(4.1). Though originally proposed for ODE epidemic models, the
concept of the basic reproduction number has been extended to
reaction-diffusion and reaction-convection-diffusion epidemic sys-
tems with homogeneous Neumann boundary conditions in recent
years (e.g., Thieme [39], Wang and Zhao [45], and Hsu et al. [20]).
Based on these studies, the basic reproduction number R for a PDE
epidemic system is defined as the spectral radius of the operator

L) = /0 TFROTO¢dt = F(v) /0 “1¢dt,

where F is the matrix characterizing the generation of new infec-
tion, in the corresponding ODE system (i.e., without diffusion terms);
T(t) denotes the solution semigroup associated with the linearized
reaction-convection-diffusion system for disease compartments; ¢
describes the distribution of the initial infection. In [45], it is shown
that

/ T(t)dt =B,
0

and

L=—-FB!

for which B:=V . (d;V) — v,V —V where the matrix V denotes the
transition between compartments. Here d; and v; are the diffusion
and convection coefficient vectors, respectively.

In the case of our cholera epidemic model (4.1), we have:

d; = diag[D,, D4], v, = diag[0, v],

N N/K 0
F = @ @/ and V = Hty ,
as 0 0 1)
and
52
. DZW—(M'FV) 0

02 0
Dagz ~Vax ~

To analyze the basic reproduction number of the PDE system
(4.1),

REPE = p(L),

0 8

we consider the eigenvalue problem L[¢] = A¢ ; that is,
—FB'¢p = Ao,

where ¢ = (¢1, )T € C([0, 1], R2). With some algebraic manipula-
tion (see details in Appendix E), the eigenvalue problem (5.1) can be

put into the form
n+y
D, x)

(5.1)

X
ki; | sinh |: MJ Y (x— r)i|q>1 (t)dt + ki cosh (
0 2

1
/ cosh [
0

H+y
D,

¢ —f)]¢1(f)d1
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Fig. 4. Influence of human behavior on the cholera infection risk on a spatial domain, illustrated by displaying R{PE as a function a; (i = 1, 2, 3). (a)-(c) The solid curve refers to
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case where Dy, Dy < V.

+k; / e? ) sinh v—2+£ (x—1) |¢o(T)dT
i3 0 41)‘21 D4 2

e 7 00 L

+ kige” a {cosh|: aD? + D, bY
# Sinh [ i + 8x:|
\/U2+48D4 4D421 D4

v
——sinh

/0 ettt T){2D4 [\/ 4D2+(1_t)]
+ /41g2+D84cosh|: /4D2+(1_I)i|}

x (1) dt = Api(x), (i=1,2). (5.2)
where
—a1N a N
ki = 71, ki = ! ,
VD2 +y) ,/Dz(u+y)sinh(,/d;—:’)

—2a;N/K a,N/K
kis = \/22—4;5’ Kis = %

V2 + i vy 8

4 § sinh /4D3, + o;

ko = i ko = % ,

VBt ) byt yysinh (/457
and ](23 = k24 =0

The disease threshold REPE can then be numerically evaluated
by reducing the operator eigenvalue problem (5.2) into a matrix
eigenvalue problem, an approach originated from the work in [44].
We have investigated the impact of human behavior on the dis-
ease threshold in three scenarios: (1) human and bacterial diffu-
sions and bacterial convection equally important; i.e., Dy, D4 = O(v);

(2) diffusions dominant; i.e., Dy, D4 > v; and (3) convection domi-
nant; i.e., Dy, D4 < v. The results are displayed in Fig. 4. It shows that
in each scenario REPE is decreasing as g; (i = 1,2, 3) decays , indi-
cating that as human surveillance tends to decrease direct and indi-
rect transmission rates and bacterial shedding rate, this will lead to
a lower infection risk. One can see from Fig. 4(a)-(c) that, in scenario
(1), if the surveillance (through human behavior) is strong enough,
RIPE can be reduced below the critical threshold value 1, which in-
dicates that human behavior can significantly reduce the infection
risk and control the disease. Moreover, in our PDE cholera model,
we have numerically found that the difference between RFPE and
RSPE is small when D, = D4 = v, and almost invisible when D,, D,
> v. For instance, if D, = D4 = v =1, the difference is about 10~4;
if D) = D, = 10 and v = 1, the difference is about 10~°. Moreover,
when bacterial convection is dominant, R}PE tends to be elevated;
that is, the associated infection risk is prone to be higher as shown
in Fig. 4 (d)-(f). In such cases, although the human behavior can still
reduce RFPE, it may not bring down RFPE back to 1. In other words,
when bacterial convection is dominant, human surveillance focused
on reducing transmission rates and bacterial shedding rate may not
be sufficient in controlling cholera epidemics.

6. Discussion

We have presented a modeling framework for the impact of hu-
man behavior on cholera dynamics. Fundamental in our assumption
is that people are well informed of the development and severity
of the disease outbreak, made possible by the media coverage and
reports from various resources, thus will take action to reduce con-
tact with other individuals and/or the contaminated environment,
to eat well-cooked food, and to introduce safe disposal of excreta.
Our models involve transmission rates and host shedding rates
represented as decreasing functions of the infection size, applicable



48 X. Wang et al. / Mathematical Biosciences 267 (2015) 41-52

to a variety of effects resulting from changes in human behavior. Our
analysis is centered on the impact of human behavior on cholera
dynamics, for both a homogeneous environment (represented by an
ODE model) and a more heterogeneous environment where spatial
movement of the hosts and bacteria becomes important (represented
by a reaction-convection-diffusion PDE model). For the ODE model,
we have rigorously proved that the basic reproduction number
Ro (or, equivalently, the type reproduction number T;) remains
a sharp threshold for disease dynamics despite the incorporation
of human behavior. In particular, when Ry > 1 the disease will
persist and the endemic equilibrium will be globally asymptotically
stable. For the PDE model, a sharp threshold reproduction number
is also defined and analyzed, and we have numerically computed
the value of the PDE R, with various contact rates and compared
the results with the ODE Ry . Their values reflect the (possibly dif-
ferent) predictions of disease risks based on the homogeneous and
heterogeneous settings. These results could provide useful insight
to help public heath administrations for disease prevention and
intervention.

Cholera transmission occurs through direct (i.e., human-to-
human) or indirect (i.e., environment-to-human) routes. The multiple
transmission pathways and related bacterial dynamics in the aquatic
environments, together with human behavior, and spatial hetero-
geneity characterized by movements (diffusion and/or convection) of
hosts and pathogen, complicate the pattern of disease dynamics. Our
models aim to investigate the interplay of these different biological,
ecological, environmental, and sociological factors. Our results quan-
tify the natural expectation of human behavior in reducing the sever-
ity of an epidemic, particularly for a cholera outbreak. Specifically,
the results in this paper provide mathematical justification of sev-
eral consequences of human behavior: (1) reducing the epidemic and
endemic levels; (2) reducing the spread speeds (i.e., traveling wave
speeds) of the disease; (3) reducing the infection risks (characterized
by the basic reproduction numbers) in both homogeneous and het-
erogeneous environments.

We have assumed that human behavior is “rational” in respond-
ing to an epidemic. Practically, however, media coverage and news
broadcasting could contain false information on the outbreak details
which may lead to inappropriate behavioral response. In such cases,
the contact rates 8;(I) in our models will not be monotonic functions
of the infection size. During the outbreak of a fatal or novel pathogen,
human behavior is more likely to be affected by the cumulative total
numbers of cases and deaths than by the real-time number of infec-
tious individuals [9,19]. In practice, the movement of humans is not
random but strongly affected by socioeconomic factors. The current
paper did not include such factors, though these might be as well
worthwhile to model and analyze mathematically. Meanwhile, there

are several other limitations in our work. For instance, the contact
rates and the dynamics of V. cholerae in the environment may change
subject to seasonality [8]. It would be more practical to study a non-
autonomous system to better reflect seasonality [30]. The work is true
under the assumption: bacteria population is decreasing in the ab-
sence of human contribution (e.g. shedding from infected individu-
als). Furthermore, rather than using a simplistic 1D space dimension,
constructing the system on a 2D spatial domain would be more real-
istic for cholera modeling. The diffusion and convection coefficients
as well as several parameters of disease transmission rates can be
taken as space dependent, instead of constants, to adequately cap-
ture the details of spatial heterogeneity. Collection of data on disease
epidemiology, behavior change in response to an epidemic, hosts,
pathogen, and their diffusion is challenging, but vital to test the va-
lidity and reliability of our models [15].
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Appendix A. Model parameters and functions

The definition and base values of parameters in our ODE and PDE
cholera models are provided in Table A.1. Here p (resp. y and d) rep-
resents a person (resp. year and day).

Appendix B. Proof of Theorem 3.1

Proof. 1. Since S=N —1—R, we consider an equivalent system of
(2.1)

= 1R (B o) o) ~ (4L

drR
T = yI—(u+0)R,
dB

o = Ps(D1 - 3B. (B.1)

Table A.1

Definition of cholera model parameters.
Parameter  Definition Value References
N Total population size of humans 12,347 p [28]
nw Natural death rate of humans (43.5y)7! [46]
a Direct transmission rate 1.57 x 105 d-! [28]
a Indirect transmission rate 0.011 p~'d-! [28]
K Half saturation rate 106 cells - ml™"! [17]
y Recovery rate (5d)-! [17]
o Rate of host immunity loss By)! [29]
§ Bacterial net death rate (30d)! [17]
as Shedding rate 10 [cells - ml~'d-1]  [17]
D, Diffusion coefficient of susceptible hosts ~ Varied [km2 d-1]
D, Diffusion coefficient of infectious hosts Varied [km2 d-1]
D3 Diffusion coefficient of recovered hosts Varied [km? d-1]
Dy Diffusion coefficient of bacteria in the Varied [km2 d-1]

v

water environment
Convection coefficient of bacteria

Varied [km -d 1]
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The Jacobian matrix of the vector field described by (B.1) is

=1l

Jn =Bl = Bo(D) B+K /32(1)5(13”()2
- % —(ju+0) 0 ’
B5(DI+ Bs(D) 0 =
(B.2)
where
Ju =p1(DSI = B1(DI + B (DS + B, (I)Sﬁ
ﬂz()B+K (L+7)

and S = N — I — R. Evaluating the Jacobian matrix (B.2) at the DFE, (N,
0,0, 0), gives

—(u+y) 0 a;N/K
Jlpre = Y —(n+0) 0
as 0 )

Let A1, Ay and A3 denote the eigenvalues of J|pe. Without loss of gen-
erality, we write A3 = —(u + o), which is clearly negative. It is easy
to verify that 7y ;= A1 + Ay =N - (u +y) — 8 and Dy 1= AAy =
(a;N - (u +y))(—8) — aya3N/K. Hence the local stability of the DFE
is determined by the sign of 7, and D,. Notice that one can rewrite
7, and D, in terms of the type reproduction number T}v as follows:
Dy = 8(u+y)(Tl 1) and 7 = (u+y)(T; — (;i‘;f)m) It then
follows from T; < 1 that we have D, >0 and T < 0; meanwhile
D, = 0 holds only if Ty = 1. This implies that both A; and A, are non-
positive and at least one of them is strictly negative. Therefore, we
show that the DFE is locally asymptotically stable (resp. Lyapunov sta-
ble)when T; < 1 (resp.T; = 1).

2. By a similar approach as that in the first case, we can show that
the DFE is unstable when T; > 1. Our focus now is the local stability
of the EE. We want to prove that the EE is locally asymptotically sta-
ble. Evaluating the Jacobian matrix (B.2) at the EE, we find that the
characteristic equation of J|g is given by

A3 +C1)\,2 +CA+c3=0,
where
c1 = —(Ju +J22 +J33) ez

¢ = (=JoJa + ez + J22f33 + (Jizs — JizJs1) [ee.
ez = (= J2(Unsz —J1af31) +Ji2Ja1)33) e

According to the Routh-Hurwitz criterion, it remains to show that
(B.3)

In the following, we assume that (S, I, R, B) € Rj is the EE of (2.1) and
the rest of arguments is all restricted to the EE. By the equilibrium
equation (3.4), we can rewrite J;; as follows:

BK)+{mmu%mBﬂJ
ﬁ2(1)1(3+1<)

It follows from B;(I) > 0 and B{(I) < 0 fori = 1,2 that J;; < 0. More-
over, it is clear that J1 <0, J13 > 0,J51 > 0,J27 < 0, and J33 < 0. Mean-
while, we notice that

—Juca = xhal—Ji2Ja1 +J22(Ju1 +J33)]

= Ja3l2(Jnn +J33) + (nlss = Jafa1) |-

C]>0, C2>0, C3>O, C1C2—C3>0,

Ju= —(/31 DI+ B2(D)

€16 — (3 =

Thus, (B.3) is valid by the fact that
Jnhs —JizJst = =(Bi(DS— (L +y))d — ,33(1),32(1)5K/(B +K)?

) B 0 N L S

B+K 1 (B+I<)2

ﬂanfK( ﬂan+K)

—ﬂADB+K(ﬁﬂD ﬁan+K)

= BB s = O

The proof is complete. O

Appendix C. Proof of Theorem 3.4

Proof. Suppose that Ry > 1. Hence, by Theorem 3.1, the system (2.1)
has two equilibria: the DFE and the EE. We now proceed to prove the
global stability of the endemic equilibrium of (2.1) by using the geo-
metric approach based on the second additive compound matrix [23].
The details on the geometric approach can be found in Appendix D.
By Theorem 3.1, the DFE is unstable, and it is on the boundary of the
domain €. This implies that the disease is uniformly persistent in Q°,
namely,

“{Eg‘f (I(t),B(t)) > (c,c)

for some ¢ > 0. It then follows from the compactness of €2 and the uni-
form persistence of system (2.1) that there exists a compact absorb-
ing set in . Meanwhile, the EE is the unique equilibrium in Q0. By
the geometric method [23], it remains to prove that the generalized
Bendixson criterion ¢, < 0 (see an outline of the geometric method
and definition of g, in the Appendix D). The idea of the proof is to
choose a norm in R3 and to construct a matrix-valued function P(S, I,
B) such that ¢, < 0.

First, dropping the equation for R in system (2.1) and using the
constant host population, i.e., R = N — S — I, we obtain

g _ uN- S(,B1(l)l+/32(I)B+K) —uS+o(N=S—1),
&= S(B01+ B0 o) ~ s L

dB
o = Ba(DI -8B

For simplicity,

=mmumm4%,@={mmuﬁm+%mﬁ%}

= SPa) G g 0= BT+ B0,

The Jacobian matrix associated with the linearized system of (C.1)

(C1)

is

—th = (n+0) ~0, -0 —03
= 0 O —(u+y) 6
0 04 -8
and its second additive compound matrix is
j12l =
—01+6; 03 03
-Qu+o+y)
04 01— (L+0+9) -6, -0
0 6, O —(L+y+9)
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We now take

P= dlag[ éé]

Then P is nonsingular and C' in Q0. Let f denote the vector field of
(2.1). Thus,

PfP‘ dlag[O, % — %/ % — BE/]
and
Pj2lp~1 =
01 + 65 0 0,
-Qu+o+y)
9% 0 — (u+0 +95) 6 -0
0 6, b — (n+y +9)

Thus, the matrix Q = PP~ + PJ12IP~1 can be written in the follow-
ing block form:

Qo Qe
Q= [Q21 Q22:|7
where
Qi = (B + B o) +S[BDI+ B + By 5
-Qu+o + 7/)
Q=SB 11 1
o1 [(ﬂ;amﬂaa»B}
0
Qpy = |:Q11 Q12i|
a1 q22
with

= (m D1+ BolD 5
0 = —s[m W1+ B (D) + B3 (D)
g = Bi(DI+ l32(1)B e

0 = s[ﬁl W1+ Bi(D) + By (D)

) (w+o0+8)+I'/1-B/B,

B+K] o

’ /
B+K]—(u+y+8)+1/1—3/3.

The vector norm | - | in R3 is chosen as
[(x1. %2, X3)| = max{|x1], [x2| + [x3]}.

One can verify that the Lozinskii measure M(Q) with respect to this
norm can be estimated as

M(Q) < sup{gi. g},

where

g1 = Mi(Qu1) + |Quz2l,
22 = |Qu| + M1(Q2).

Here |Qq2| and |Qy;| are matrix norms induced by the [; vector norm,
M denotes the Lozinskii measure with respect to the /; norm. More

specifically,
g1 =Qu + Q2|
=~ (B + Bah ) +S[ B DI+ 510 + By 5
s
82 =1Qui| +max{qu + 1211, g1z + 22}
—BOI D) § -~ (o 15+

+ sup {0, 2(5[,3{ DI+ B (D) + B5(D)

ﬁ]“’)‘y}'

Since I’ = (,31 DI+ By (I) ) (e + p)I, we have

() =T =SB 3By
This leads to
= (i1 + By ) +S[ B+ i) + B -
—(n+o)
SB(DK B I
(B-2|—K)21 —Sh (D) - ’32()3+1<

(B0 05 7) +S[ B0+ B0 5 ]

SB(I)B K\ I
- (B+1<)1<1 - B+I<) +7 - to)

U

I
< 7—(u+a). (C.2)

The last inequality follows from the assumptions on g;(I), i.e., B;(I) >
0 and B/(I) < 0 for i = 1, 2. Applying the similar argument together
with assumption on S5 (I), B3(I) and B'/B = B3(I)I/B — 8, we have

2 = (B D5+ B
v sup{ ( [ﬂ1(1)1+,31(1)+,32(1)B+K]+0)—V}
< %—(M—Hf)—i-sup{0,2<S[ﬂ{(1)1+,31(1)+5§(D$]

o)

U

< ;- n+sup 025810 +o - v

I/
= T_Mv

-8 —-(u+o0)+I'/I-B'/B

if S(B1(DD)" <
Thus, (C.2) and (C.3) yield

(y —0)/2. (C3)

!

I
M@Q) < T M.
It follows from 0 < I(t) < N that

In(I(t)) =In(1(0)) _ p
t -2
for ¢ sufficiently large. We then obtain

[ wi@as = L[ (M9 g = InOD 2

e
m==5.

In (1(0))
t

if t is large enough. This in turn implies that g, < —4/2 < 0 and it
completes the proof. [J
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Appendix D. The geometric approach

Here we present the main result of the geometric approach for
global stability, originally developed by Li and Muldowney [23].
We consider a dynamical system

dXx
7 =X (D.1)

where f : D+ R"is a C! function and D ¢ R" is a simply connected
open set. Let P(X) be a (5) x (5) matrix-valued C! function in D, and
set

Q=P +pIp-T,

where Py is the derivative of P (entry-wise) along the direction of
f, and JI?! is the second additive compound matrix of the Jacobian
J(X) =Df(X).Let m(Q) be the Lozinskii measure of Q with respect to
a matrix norm; i.e.,

M©Q = Jim THIU=T,

where I represent the identity matrix. Define a quantity g, as

g = limsup sup
t—o0 XoeK

M(QX(. X)) ds,

where Kis a compact absorbing subset of D. Then the condition g, < 0
provides a Bendixson criterion in D. As a result, the following theo-
rem holds:

Theorem D.1. Assume that there exists a compact absorbing set KcD
and the system (D.1) has a unique equilibrium point X* in D. Then X* is
globally asymptotically stablein Dif ¢, < 0.

Appendix E. Derivation of eigenvalue problem (5.2)

To analyze the basic reproduction number of the PDE sys-
tem (4.1),REPE = p(L), we proceed to calculate B! by solving

B(¢r. ¢2)T = (1. yz)T. First, let us consider the boundary value
problem
52
Bildn] = D, 0! —yi. O<x<1,
#1(0) =0,  ¢1(1)=0. (E1)

The explicit representation of the solution to (E.1) can be found (e.g.,
using Laplace transform) as

¢1(%)

Byl

‘1 X
———— ["sinn
b
cosh( /%x)
VDa2(i+y) sinh (/431

“gy@—rqm@nn

1
/ cosh[ u(1 - r)}m (r)dr. (E.2)
0 D,
Similarly, solving the equation
92 0
Ba[ 2] ::D“quz_uaqiz S¢2=y>, 0<x<1;
$(0) =0,  @(1)=

we find that
h2(x) =

eﬁ(X—r)

By [y2] =

s b
V2 +4Dy6 Jo

X sinh[ v + i(xf r)] (t)dt
4D‘21 Dy Y2

e i (7 (cosh[ v + ) X
T . 4p? ' Dy ]
b) smh[ /4"73 + D—4] 4 4
—Lsinh[ v—z—i-ix])
V2 +48Dy 4D421 Dy
0, (1-7) L - i _ ]
/Oe {2D4smh[/4D2+D 1-1)
V2 8 [ 12 8
+ 4D2 cosh[ 4D2 (1 —7,')] }yz(r) drt.

(E.3)

Since

L[p] = —FB ¢ = b, (E4)

substituting (E.2) and (E.3) into (E.4) leads to the eigenvalue problem
(5.2).
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