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This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera

ordinary differential equation (ODE) model that incorporates human behavior via modeling disease preva-

lence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and

global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend

the ODE model to a reaction–convection–diffusion partial differential equation (PDE) model that accounts

for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed

by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numeri-

cally evaluating the basic reproduction number of the PDE model. Our results show that human behavior

can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection

(characterized by the basic reproduction number).

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

Mathematical modeling, analysis and simulation for infectious

iseases have long provided useful insight into disease dynamics that

ould guide public health administration for designing effective pre-

ention and control measures against epidemics. Over the past few

ecades, compartmental models such as SIR (susceptible-infected-

ecovered) and SEIR (susceptible-exposed-infected-recovered) and

heir threshold dynamics have been established as the standard

ramework in mathematical epidemiology (see review [33] and

eferences therein). Meanwhile, numerous extensions of these basic

athematical models have been proposed that incorporate more

etailed biological, ecological, demographic, and geographical in-

ormation, such as spatial heterogeneities, age-structures, seasonal

ariations, and others, with significant advances in almost all of these

irections.

The mechanisms of disease transmission and spread are usually

omplex and possibly involve social, economic and psychological fac-

ors in addition to the intrinsic disease biology and ecology. In par-

icular, human behavior could have significant influence on disease

ransmission and vice versa. For example, individuals avoid close con-
∗ Corresponding author. Tel.: +1 415 502 0275; fax: +1 415 476 0527.

E-mail addresses: xueying@math.wsu.edu (X. Wang), daozhou.gao@ucsf.edu
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act with obviously sick persons to protect themselves and therefore

he frequency and strength of contacts between uninfected and in-

ected people generally are reduced. In case of severe disease out-

reaks, people will attempt to change their routine schedules (includ-

ng, but not limited to, work, recreation, and travel), wash hands often

ith soap and clean water, receive vaccines or preventive treatment

f available, so as to minimize their risk of infection. Nowadays, the

ast growth of information technology allows prompt and up-to-date

eports on the details of disease outbreaks from internet (especially

hose popular social networking sites), newspaper, television and ra-

io stations, and government announcements. Consequently, these

edia coverage and health education will, to a large extent, affect

uman behavior which can lead to a significant reduction in outbreak

orbidity and mortality.

It is clear that human behavior could play an important role in

haping the complex epidemic and endemic pattern of a disease

3,26]. There are an increasing number of studies on the mathemati-

al epidemiological modeling of human behavior [13]. Funk et al. [14]

lassified epidemic models under the impact of behavioral changes

nto belief-based and prevalence-based. Cui et al. [11] proposed a

imple SIS model that incorporated the effects of media coverage.

ao and Ruan [16] extended the work in [11] to a patch model with

on-constant transmission coefficients. Liu et al. [25] investigated the

sychological impact on disease dynamics that involve multiple out-

reaks and sustained infections. Collinson and Heffernan [10] found

hat the outcome of an epidemic model with the effects of mass
r the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.mbs.2015.06.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.06.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xueying@math.wsu.edu
mailto:daozhou.gao@ucsf.edu
mailto:jin-wang02@utc.edu
http://dx.doi.org/10.1016/j.mbs.2015.06.009
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 X. Wang et al. / Mathematical Biosciences 267 (2015) 41–52

T

v

d

F

β

w

e

c

t

m

w

t

k

g

e

t

g

a

F

T

M

H

R

H

n

a

r

c

m

i

w

a

t

i

m

t

r

fi

T

p

ρ

(
t

media is strongly affected by the choice of media function. Recently,

Chowell et al. [9] fitted logistic growth models to the cumulative

reported number of Ebola cases to reflect changes in population

behavior and interventions. In addition, Mummert and Weiss [27]

modeled and analyzed the social distancing strategies in limiting dis-

ease transmission and spread, particularly for short-term outbreaks.

A goal of this paper is to improve our quantitative understanding

of the impact of human behavior on disease dynamics. Particularly,

we will incorporate human behavior into mathematical modeling of

cholera, a severe water-borne disease caused by the bacterium Vibrio

cholerae. There have been many studies published in recent years on

cholera modeling and analysis (see, e.g., [5–7,17,28,29,34,36–38,41–

44]), yet, to our knowledge, few of these have specifically taken hu-

man behavior into consideration (see Capasso [5,6], Al-Arydah et al.

[1], and Carpenter [7]). In the present paper, we will modify the

cholera model proposed by Mukandavire et al. [28] to explicitly in-

clude disease prevalence dependent contact rates (for both the di-

rect and indirect transmissions) and host shedding rate, and analyze

the resulting dynamics. Particularly, we will show that the reduc-

tion of contact rates due to human behavior leads to reduced epi-

demic and endemic sizes. We will then extend the ODE system to a

reaction–convection–diffusion PDE system to investigate the interac-

tion among human behavior, host and pathogen movement, and the

disease intrinsic transmission dynamics. We will pay special atten-

tion to the traveling wave solutions and threshold dynamics of the

PDE model. Our study regarding cholera spatial dynamics is different

from the work of Bertuzzo et al. [4,31]. Our PDE model formulation

is more general in terms of inclusion of multiple transmission path-

ways. Specifically, our model incorporates both direct (or, human-to-

human) and indirect (or, environment-to-human) transmission path-

ways whereas their model has considered only indirect transmission

route. The scope of our work is also different from that in [4,31] as our

focus is on the impact of human behavior on cholera transmission.

We organize the remainder of the paper as follows. In Section 2

we introduce the ODE cholera model that incorporates human be-

havior, with relevant notations and assumptions. We then conduct a

thorough epidemic and endemic analysis of the model in Section 3,

for both local and global dynamics. In Section 4 we present the PDE

model and investigate its traveling wave solutions under the impact

of human behavior, followed by a threshold dynamics analysis in

Section 5. We conclude the paper in Section 6 with discussion.

2. Model formulation

The cholera model proposed in [28] incorporates both the

environment-to-human (or, indirect) and human-to-human (or,

direct) infection routes, and all the model parameters take constant

values. The model has standard SIR (susceptible-infected-recovered)

compartments, with an additional compartment B that denotes the

concentration of the bacteria V. cholerae in the contaminated water.

We now extend this model by assuming that the direct and indirect

transmission rates and the bacterial shedding rate are all dependent

on the number of infectives, representing the influence of human

behavior change due to health education, hygiene and sanitation

practices. In addition, we assume that recovered individuals become

susceptible to cholera again after a certain period of time, taking into

account the immunity loss in the real life. The new model takes the

form

dS

dt
= μN − β1(I)SI − β2(I)

SB

B + K
− μS + σR,

dI

dt
= β1(I)SI + β2(I)

SB

B + K
− (γ + μ)I,

dR

dt
= γ I − (μ + σ)R,
dB

dt
= β3(I)I − δB. (2.1)

he total population, N = S + I + R, is fixed. The definition and base

alues of the model parameters are provided in Appendix A, Table A.1.

The most important feature of our model is the incorporation of

isease prevalence dependent contact rates and host shedding rate.

or i = 1, 2, 3, we formulate that

i(I) = ai − bimi(I) ,

here ai is the usual contact rate (or shedding rate) without consid-

ring the influence of human behavior, bi is the maximum reduced

ontact rate due to behavior change, and mi(I) is a saturation func-

ion. These functions satisfy

ai > bi ≥ 0, mi(I) ∈ C1([0, Iu]) with m′
i(I) ≥ 0,

i(0) = 0, 0 < mi(Iu) ≤ 1,

here Iu ∈ (0, N] is an upper bound of the solution {I(t): t ≥ 0}. Some

ypical examples of m(I) with such properties are 1 − k/(k + In) with

> 0 and n > 0, 1 − e−kI with k > 0, and I/Iu [16].

One can easily verify that the disease-free equilibrium is

iven by (N, 0, 0, 0). Let F denote the matrix characterizing the gen-

ration of secondary infection, and V denote the matrix depicting

ransition rates between compartments. Based on the standard next-

eneration matrix technique [12,40] and our assumptions, matrices F

nd V can be written as:

=
[

a1N a2N/K

a3 0

]
and V =

[
μ + γ 0

0 δ

]
.

he next generation matrix is

= FV −1 =

⎡
⎢⎣

a1N

μ + γ

a2N

δK
a3

μ + γ
0

⎤
⎥⎦.

ence, the basic reproduction number R0 of model (2.1) is given by

0 = RODE
0 = ρ(M)

= 1

2

⎡
⎣ a1N

μ + γ
+

√(
a1N

μ + γ

)2

+ 4
a2a3N

δ(μ + γ )K

⎤
⎦.

ere ρ denotes the spectral radius. Note that the basic reproduction

umber R0 is independent of bi for i = 1, 2, 3. This is due to our model

ssumption that behavior change only starts when the disease has al-

eady started and R0 is calculated at the disease-free state. An impli-

ation is that behavior change alone is usually not sufficient to ter-

inate an outbreak. Nevertheless, previous studies have shown that

t can significantly reduce the burden of an endemic disease [16]. We

ill demonstrate this for our cholera model in the next section.

Meanwhile, if disease control is targeted at a particular host type,

useful threshold is known as the type reproduction number, T. The

ype reproduction number defines the expected number of secondary

nfective cases of a particular population type caused by a typical pri-

ary case in a completely susceptible population [18,32]. It is an ex-

ension of the basic reproduction number R0. Particularly, the type

eproduction number T1 for control of infection among humans is de-

ned in the references [18,32] as

1 = eT
1M(I − (I − P1)M)−1e1,

rovided the spectral radius of matrix (I − P1)M is less than one, i.e.,(
(I − P1)M

)
< 1. Here I is the 2 × 2 identity matrix, vectors e1 =

1, 0)T , M is the next generation matrix, and P1 is the 2 × 2 projec-

ion matrix with all zero entries except that the (1,1) entry is 1. Write
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= (mi j). The type reproduction T1 can be easily defined in terms of

he elements mij:

1 = m11 + m12m21

1 − m22

, (2.2)

1 exists provided m22 < 1. In view of m22 = 0, by (2.2), the type re-

roduction number associated with the infectious humans is given

y

1 = a1N

μ + γ
+ a2a3N

δK(μ + γ )
.

oreover, it has been shown in [32] that

0 < 1( = 1,> 1) ⇐⇒ T1 < 1( = 1,> 1).

When βi(I) = ai (i = 1, 2, 3), it has been shown that the disease

ynamics of (2.1) are completely determined by its basic reproduc-

ion number R0 [44].

In what follows, we will use both R0 and T1 in our analysis, with

he understanding that the two are equivalent in characterizing dis-

ase threshold dynamics.

. Equilibrium analysis

By direct calculation, we find that (2.1) always has a disease-free

quilibrium (DFE), and its endemic equilibrium (EE) satisfies

= S + I + R, (3.1)

= γ

μ + σ
I, (3.2)

= β3(I)I

δ
, (3.3)

= (μ + γ )I

β1(I)I + β2(I)B/(B + K)
. (3.4)

ubstituting (3.2) into (3.1) yields

= φ(I) := N − αI, with α = 1 + γ /(μ + σ).

ikewise, by plugging (3.3) into (3.4), we find

= ψ(I) := μ + γ

g(I)
,

here

(I) = β1(I) + β2(I)β3(I)

I β3(I) + δK
.

hus, the intersections of the curves S = φ(I) and S = ψ(I) in [0, N]2

etermine the nontrivial equilibria. Notice that

′(I) = β ′
1(I) + β ′

2(I)
β3(I)

I β3(I) + δK
+ β2(I)

δKβ ′
3(I) − (β3(I))2

(I β3(I) + δK)2
.

t then follows directly from assumptions on β i(I) (for i = 1, 2, 3) that
′(I) < 0. This implies that ψ(I) is a strictly increasing function. Mean-

hile, it is clear that φ(I) is a strictly decreasing function. Together

ith φ(0) = N, ψ(0) = N/T1, φ(N) < 0, and ψ(N) > 0, we see that:

1) if T1 > 1, then φ(0) > ψ(0), which implies that there is a unique

ntersection in R
2+ between φ(I) and ψ(I); (2) if T1 ≤ 1, then φ(0)

ψ(0), which indicates that there is no intersection between these

urves in the interior of R
2+. Moreover, we have the following exis-

ence, uniqueness and local stability theorem on DFE and EE of (2.1).

he proof is postponed to Appendix B.

heorem 3.1.

(1) If T1 ≤ 1, then system (2.1) has a unique equilibrium, and it is the

DFE. Furthermore, the DFE is locally asymptotically stable when

T1 < 1, and it is Lyapunov stable when T1 = 1.

(2) If T1 > 1, then system (2.1) has two equilibria: the DFE and the EE.

Moreover, the DFE is unstable, whereas the EE is locally asymptot-

ically stable.
 b
In view of the equivalent relationship between R0 and T1 (2), we

btain the following result for the local disease threshold dynamics

f model (2.1).

orollary 3.2.

(1) If R0 ≤ 1, the system (2.1) has a unique equilibrium, and it is the

DFE. Furthermore, the DFE is locally asymptotically stable when

R0 < 1, and it is Lyapunov stable when R0 = 1.

(2) If R0 > 1, the system (2.1) has two equilibria: the DFE and the EE.

Moreover, the DFE is unstable, whereas the EE is locally asymptot-

ically stable.

In the remainder of this section, we focus on the global stability

f the equilibrium solutions of (2.1). By a simple comparison theo-

em, we find that 0 ≤ B(t) ≤ Bu provided that 0 ≤ B(0) ≤ Bu := a3N/δ.

onsider the domain

= {(S, I, R, B) ∈ R
4
+ : S + I + R ≤ N, B ≤ Bu}.

t is clear that if any solution of system (2.1) starting in 
 will re-

ain in 
; that is, the domain 
 is positively invariant for (2.1). The

ollowing results (i.e., Theorems 3.3–3.4) establish the global disease

hreshold dynamics of model (2.1).

heorem 3.3. If R0 ≤ 1, the system (2.1) has a unique disease-free

quilibrium that is globally asymptotically stable in the region 
.

roof. Let

1 =
[

a1N a2N/K

0 0

]
and V1 =

[
μ + γ 0

−a3 δ

]
.

rite Y = (I, B)T . By assumptions β i(I) ≤ ai for i = 1, 2, 3, the system

2.1) satisfies

dY
dt

≤ (F1 − V1)Y.

et w = (a1N, a2N/K). In view of T1 = ρ(F1V1
−1) = ρ(V1

−1F1), one can

erify that wV −1
1

F1 = T1w. Motivated by [35], we define a Lyapunov

unction as follows:

= wV −1
1 Y.

ifferentiating L along solutions of (2.1), we have

′ = wV −1
1

dY
dt

≤ wV −1
1 (F1 − V1)Y = (T1 − 1)wY.

If T1 < 1, L′ ≤ 0. Then L′ = 0 implies that wY = 0 and hence I =
= 0. It follows from the first and third equations of (2.1) that S = N

nd R = 0. Hence, the only invariant set where L′ = 0 is the singleton

(N, 0, 0, 0)}.

In the case T1 = 1, L′ = 0 implies that β1(I)SI = a1NI and

2(I)SB/(B + K) = a2NB/K. By the assumption on β i (i = 1, 2), this

an only happen when S = N or I = B = 0. Then, by a similar argu-

ent as that in the case where T1 < 1, we find that the largest invari-

nt set where L′ = 0 is the singleton {(N, 0, 0, 0)}.

Since R0 < 1 iff T1 < 1, by LaSalle’s Invariant Principle [22], the

FE is globally asymptotically stable in 
 if R0 ≤ 1. �

heorem 3.4. If R0 > 1, the EE is globally asymptotically stable in
0, the interior of 
, provided that sup{S(β1(I)I)′ : S ≥ 0, I ≥ 0, S + I ≤
} ≤ (γ − σ)/2.

The detailed proof for Theorems 3.4 is provided in Appendix C.

A mathematically simple but biologically important conclusion

an be made from the above analysis on the endemic equilibrium.

amely, when β i (1 ≤ i ≤ 3) is decreased as a result of incorporating

uman behavior, the endemic level is reduced as well.

roposition 3.5. If R0 > 1, then the I-coordinate of the unique endemic

quilibrium of model (2.1), Ie, is strictly decreasing in the maximum re-

uced transmission coefficient (or shedding rate) due to behavior change,

, for i = 1, 2, 3.
i
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Fig. 1. Infection curves of the ODE model without behavior change, with small behavior change, and with large behavior change. The values of parameters and initial condition

are: K = 2 × 106, γ = 1/5, δ = 1/30,μ = 1/(43.5 × 365), a1 = 3 × 10−5, a2 = 0.02, a3 = 15, σ = 1/(3 × 365), and (S(0), I(0), R(0), B(0)) = (12346, 1, 0, 0).
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Proof. Since R0 > 1 iff T1 > 1, there exists a unique endemic equi-

librium (Se, Ie, Re, Be) of the system (2.1), when R0 > 1. By equations

(3.5) and (3.6), we have

φ(Ie) = ψ(Ie) ⇔ N − αIe = μ + γ

g(Ie)
, (3.5)

where g(Ie) = β1(Ie) + β2(Ie)β3(Ie)
Ieβ3(Ie)+δK

and β1(Ie) = a1 − b1m1(Ie). Differ-

entiating both sides of equation (3.5) with respect to b1 yields

−α
∂ Ie

∂b1

= − μ + γ

(g(Ie))2

·
(

− m1(Ie) − b1m′
1(Ie)

∂ Ie

∂b1

+ p(Ie)

(Ieβ3(Ie) + δK)2

∂ Ie

∂b1

)

⇔ − μ + γ

(g(Ie))2
m1(Ie)

= ∂ Ie

∂b1

(
α + μ + γ

(g(Ie))2
b1m′

1(Ie) − μ + γ

(g(Ie))2
· p(Ie)

(Ieβ3(Ie) + δK)2

)
,

where

p(Ie) = (β ′
2(Ie)β3(Ie) + β2(Ie)β

′
3(Ie))(Ieβ3(Ie) + δK)

− β2(Ie)β3(Ie)(β3(Ie) + Ieβ
′
3(Ie))

= β ′
2(Ie)β3(Ie)(Ieβ3(Ie) + δK)

+ β2(Ie)β
′
3(Ie)δK − β2(Ie)(β3(Ie))

2 < 0.

Thus ∂ Ie
∂b1

< 0. We can similarly show that ∂ Ie
∂b2

< 0 and ∂ Ie
∂b3

< 0. �

We numerically verify Proposition 3.5 as follows. The values

of parameters and initial condition are: K = 2 × 106, γ = 1/5, δ =
1/30,μ = 1/(43.5 × 365), a1 = 3 × 10−5, a2 = 0.02, a3 = 15, σ =
1/(3 × 365), and (S(0), I(0), R(0), B(0)) = (12346, 1, 0, 0). The cor-

responding basic reproduction number is R0 = 1.99. Consider the

saturation functions mi(Ii) = I
I+Ki

for i = 1, 2, 3. The blue dotted line,

black dashed line, and red solid line in Fig. 1 show the number of

infectious individuals for the model (2.1) with no behavior change

(bi = 0 for i = 1, 2, 3), small behavior change (bi = 0.8ai and Ki = 500

for i = 1, 2, 3), and large behavior change (bi = 0.8ai and Ki = 100 for

i = 1, 2, 3), respectively. Clearly, behavior change alone cannot elimi-

nate the disease, but can significantly reduce the epidemic/endemic

level and larger behavior change leads to less infections. In addition,

the infection curve of the cholera model with large behavior change

does not experience damped oscillations over time.
. Cholera traveling waves

In order to further understand the effects of human behavior on

holera transmission dynamics, we extend the ODE model (2.1) to a

DE system taking into account the diffusion of human hosts and bac-

eria and the convection of vibrios. Consequently, we will investigate

he propagation of epidemic waves and related threshold dynamics,

nder the impact of human behavior.

Consider cholera dynamics along a one-dimensional theoretical

iver. Incorporating into (2.1) the bacterial and human diffusion, and

acterial convection due to river flow, we obtain the following cholera

pidemic PDE model

∂S

∂t
= μ N − Sβ1(I)I − Sβ2(I)B/(B + K) − μS + σR + D1

∂2S

∂x2
,

∂ I

∂t
= Sβ1(I)I + Sβ2(I)B/(B + K) − (μ + γ )I + D2

∂2I

∂x2
,

∂R

∂t
= γ I − (μ + σ)R + D3

∂2R

∂x2
,

∂B

∂t
= β3(I)I − δB − v

∂B

∂x
+ D4

∂2B

∂x2
, (4.1)

here x ∈ [0, 1] and t ≥ 0 are the location and time variable, respec-

ively. S(x, t), I(x, t), and R(x, t) measure the number of susceptible,

nfectious, and recovered human hosts at location x and time t, re-

spectively. B = B(x, t) denotes the cholera concentration in the water

nvironment. Di > 0 (1 ≤ i ≤ 4) is the diffusion coefficient of S, I, R

nd B, respectively, and v ≥ 0 represents the convection coefficient

hat describes the effect of the river flow on the bacterial movement.

he definition of model parameters can be found in Table A.1.

A useful approach to study the spatial spread of cholera is to in-

estigate the travel wave solution of model (4.1) and to determine the

ritical speeds of the traveling fronts. Introduce a variable u = x − ct

here c is the speed of the disease traveling front. Assume that

= S + I + R is a constant. Then (4.1) can be rewritten as

I′ = X,

R′ = Y,

B′ = Z,

′ = 1

D2

[( − cX) − (N − I − R)(β1(I)I + β2(I)B/(B + K))

+ (μ + γ )I],
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l

′ = 1

D3

[( − cY) − γ I + (μ + σ)R],

Z′ = 1

D4

[(v − c)Z − β3(I)I + δB]. (4.2)

here ′ = d

du
.

We will now focus on the case where RODE
0

> 1 since our interest

s the spatial spread of the disease. Notice that model (4.2) has two

patially homogeneous stationary solutions, V0 = (0, 0, 0, 0, 0, 0) and

1 = (Ie, Re, Be, 0, 0, 0); these equilibria correspond to the disease-

ree and endemic equilibrium points of the ODE model, respectively.

hus, any traveling wave solution of (4.2) can be regarded as a hete-

oclinic orbit connecting V0 and V1. More specifically, (1) in the case

f a progressive wave front, V0 is a saddle and the heteroclinic or-

it goes from V1 to V0. This depicts downstream propagation of the

isease, for instance, from inland areas to coasts; (2) in the case of

regressive wave front, V0 is an unstable node and the heteroclinic

rbit connects V0 to V1. It captures the upstream propagation of the

isease, for example, from coasts to inland regions. Meanwhile, we

otice that an orbit with oscillatory dynamics around V0 will destroy

he non-negative property of the state variables I, R and B. Therefore,

n either case, all the eigenvalues of the Jacobian matrix J associated

ith the linearized system of (4.2) evaluated at V0 must be real for a

ave font to exist. Direct computation yields

=
[

03 I3

J21 J22

]
,

here 03 is the 3 × 3 zero matrix, I3 denotes the 3 × 3 identity ma-

rix,

21 =

⎡
⎢⎢⎢⎢⎣

1

D2

( − a1N + (μ + γ )) 0 − a2N

D2K

− γ

D3

μ + σ

D3

0

− a3

D4

0
δ

D4

⎤
⎥⎥⎥⎥⎦,

nd

22 = diag[−c/D2, −c/D3, (v − c)/D4].

The characteristic equation of matrix J is

λ2+c/D3λ−(μ + σ)/D3)(λ
4 + b1λ

3 + b2λ
2 + b3λ + b4) = 0,

(4.3)

here

1 = c/D2 + (c − v)/D4,

2 = −(μ + γ − a1N)/D2 − δ/D4 + c(c − v)/(D2D4),

3 = [−cδ + (μ + γ − a1N)(v − c)]/(D2D4),

4 = [(μ + γ − a1N)δ − a2a3N/K]/(D2D4).

he critical value of c occurs only if the characteristic equation

4.3) has repeated real roots. We only need to focus on its second

erm p(λ) = λ4 + b1λ
3 + b2λ

2 + b3λ + b4, since the first term of this

quation has two distinct real roots, and none of these roots satisfies

p(λ) = 0. It follows from RODE
0

> 1 that b4 < 0 and hence p(λ) has

t least one positive and one negative zeros. We now proceed to find

he condition for the existence of repeated roots. The work of Jury and

ansour [21] shows that double zeros of this quartic polynomial p(λ)

ccurs if

= 4M3 − W 2 = 0, (4.4)

here M = b2
2 + 12b4 − 3b1b3 and W = 72b2b4 + 9b1b2b3 − 2b3

2
−

7b2
3

− 27b4b2
1
. If v = 0, equation (4.4) becomes

1(c2)4 + e2(c2)3 + e3(c2)2 + e4(c2) + e5 = 0, (4.5)
hose coefficients depend on the model parameters. Particularly,

1 = (D2 − D4)
2
[
(μ + γ − a1N − δ)2 + 4a2a3N/K

]
≥ 0,

nd e1 > 0 when D2 
= D4. Meanwhile, if RODE
0

> 1, then

5 = 16D2D4[δ(μ + γ − a1N) − a2a3N/K]

×[(D4(μ + γ − a1N) − D2δ)
2 + 4D2D4a2a3N/K]2 < 0.

hus, equation (4.5) has at least one positive zero with respect to c2;

amely, this equation has at least a pair of real roots in terms of c

hich have the same magnitude but opposite signs.

There are typically two critical speeds, denoted c+ and c− , such

hat the wave front with speed c ∈ (c−, c+) cannot exist. Further-

ore, it has been established [2,24] that for large t, the progressive

isease spreading velocity is exactly c = c+ and the regressive spread-

ng velocity is exactly c = c− , among the infinitely many waves prop-

gating at c ≥ c+ (progressive waves) or c ≤ c− (regressive waves).

We have numerically calculated the critical wave speeds c+ and

− under a variety of settings. Our particular emphasis here is the

mpact of human behavior on the spatial spread of cholera. We note

hat the variation of β i(I) can, alternatively, be reflected by the change

f values of ai, i = 1, 2, 3. Thus, it is convenient to treat c+ and c− as

unctions of ai (1 ≤ i ≤ 3), and study the variation of wave speeds in

erms of ai.

In Fig. 2, we plot c± vs. ai with two choices of convection coeffi-

ients: v = 0 and v = 1, while the diffusion coefficients are fixed at

2 = D4 = 1. We pick the base values of ai (i = 1, 2, 3) from [28]. In

ig. 2a, we plot c± vs. a1, with fixed a2 and a3 at their base values; in

ig. 2b, we plot c± vs. a2 while fixing a1 and a3; and so on. For each

lot, we clearly observe that when v = 0, the progressive speed c+
nd regressive speed c− are symmetric with respect to the horizontal

xis, as predicted by equation (4.5). When v = 1, however, the curves

ose symmetry and show that incorporation of a downstream convec-

ion process for bacteria tends to strengthen the wave propagation in

he positive (or, downstream) direction, while weakening the wave

ropagation in the negative (or, upstream) direction.

The most important pattern in these figures, however, is that the

ave speeds in both directions are increasing when ai (i = 1, 2, 3) in-

reases. It indicates that a reduction for the value of ai (say, due to

uman behavior) would weaken the epidemic wave propagation and

educe the spread of the disease. For the case v = 1, a more careful

xamination of the regressive wave speeds reveals that c− becomes

ositive, and close to 0, when ai (i = 1, 2, 3) is much smaller than its

ase value, implying that there is no upstream wave propagation. An

xplanation is that the random diffusion process, particularly from

he coast to the inland regions, contributes to the upstream propaga-

ion of the disease (represented by the regressive waves with negative

peeds). When one of those contact rates is sufficiently low, the dif-

usion of infected human hosts and/or bacteria cannot compete with

he effects of the downstream convection of bacteria, resulting in no

pstream propagation of the disease. This result indicates that reduc-

ion of ai can not only reduce the wave speeds, but also impact the di-

ection of wave propagation. Further, as can be clearly seen from each

gure, if each ai can be made sufficiently close to 0, then no traveling

ave will be generated.

In Fig. 3, under similar settings for ai (i = 1, 2, 3), we plot c± vs. ai

ith two different choices of diffusion coefficients, while fixing the

onvection speed at v = 1. We again observe that, in each case, the in-

rease of ai leads to faster wave propagation in both directions. Mean-

hile, as the diffusion becomes stronger, the traveling wave speeds

lso increase for both upstream and downstream propagation.

. PDE model threshold dynamics

We now study the spatial threshold dynamics of cholera by ana-

yzing the basic reproduction number associated with the PDE model
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(a) (b) (c)

Fig. 2. Cholera traveling wave speeds vs. ai (i = 1, 2, 3) when D2 = D4 = 1. The base values of a1, a2 and a3 are set as a1 = 1.57 × 10−5 (day−1), a2 = 0.011 (person−1day−1), and

a3 = 10 (cells ml−1day−1). In each figure, one parameter is varied while the other two are fixed at their base values. For each plot, the upper solid curve refers to the progressive

velocity c+ and the lower dashed curve refers to the regressive velocity c− . The curves in black (resp. red) show the critical cholera spreading speeds when v = 0 (resp. v = 1).

(a) (b) (c)

Fig. 3. Influence of D2 and D4 on cholera traveling wave speeds when v = 1, which is illustrated by plotting cholera traveling wave speeds as a function of ai (i = 1, 2, 3). The base

values of a1, a2 and a3 are a1 = 1.57 × 10−5 (day−1), a2 = 0.011 (person−1day−1), and a3 = 10 (cells ml−1day−1). For each plot, the upper solid curve refers to the progressive velocity

c+ and the lower dashed curve refers to the regressive velocity c− . The curves in black (resp. red) show the critical cholera spreading speeds when D2 = D4 = 1 (resp. D2 = D4 = 10).
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(4.1). Though originally proposed for ODE epidemic models, the

concept of the basic reproduction number has been extended to

reaction–diffusion and reaction–convection–diffusion epidemic sys-

tems with homogeneous Neumann boundary conditions in recent

years (e.g., Thieme [39], Wang and Zhao [45], and Hsu et al. [20]).

Based on these studies, the basic reproduction number R0 for a PDE

epidemic system is defined as the spectral radius of the operator

L[φ(x)] =
∫ ∞

0

F(x)T(t)φ dt = F(x)

∫ ∞

0

T(t)φ dt ,

where F is the matrix characterizing the generation of new infec-

tion, in the corresponding ODE system (i.e., without diffusion terms);

T(t) denotes the solution semigroup associated with the linearized

reaction–convection–diffusion system for disease compartments; φ
describes the distribution of the initial infection. In [45], it is shown

that∫ ∞

0

T(t)φ dt = −B−1φ ,

and

L = −FB−1

for which B := ∇ · (dI∇) − vI∇ − V where the matrix V denotes the

transition between compartments. Here dI and vI are the diffusion

and convection coefficient vectors, respectively.

In the case of our cholera epidemic model (4.1), we have:

dI = diag[D2, D4], vI = diag[0, v],
F =
[

a1N a2N/K

a3 0

]
and V =

[
μ + γ 0

0 δ

]
,

nd

=

⎡
⎢⎣D2

∂2

∂x2
− (μ + γ ) 0

0 D4
∂2

∂x2
− v

∂

∂x
− δ

⎤
⎥⎦.

To analyze the basic reproduction number of the PDE system

4.1),

PDE
0 = ρ(L),

e consider the eigenvalue problem L[φ] = λφ ; that is,

FB−1φ = λφ , (5.1)

here φ = (φ1, φ2)
T ∈ C([0, 1], R

2). With some algebraic manipula-

ion (see details in Appendix E), the eigenvalue problem (5.1) can be

ut into the form

i1

∫ x

0

sinh

[√
μ + γ

D2

(x − τ)

]
φ1(τ ) dτ + ki2 cosh

(√
μ + γ

D2

x

)
∫ 1

0

cosh

[√
μ + γ

D2

(1 − τ)

]
φ1(τ ) dτ
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(d) (e) (f)

(a) (b) (c)

Fig. 4. Influence of human behavior on the cholera infection risk on a spatial domain, illustrated by displaying RPDE
0 as a function ai (i = 1, 2, 3). (a)–(c) The solid curve refers to

the case where D2, D4 = O(v), and the dashed line indicates where y = 1; (d)–(f) for each plot, the black curve refers to the case where D2, D4  v, and the red curve refers to the

case where D2, D4 � v.
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+ ki3

∫ x

0

e
v

2D4
(x−τ)

sinh

[√
v2

4D2
4

+ δ

D4

(x − τ)

]
φ2(τ ) dτ

+ ki4e
− v

2D4
(1−x)

{
cosh

[√
v2

4D2
4

+ δ

D4

x

]

− v√
v2 + 4 δ D4

sinh

[√
v2

4D2
4

+ δ

D4

x

]}
∫ 1

0

e
v

2D4
(1−τ)

{
v

2D4

sinh

[√
v2

4D2
4

+ δ

D4

(1 − τ)

]

+
√

v2

4D2
4

+ δ

D4

cosh

[√
v2

4D2
4

+ δ

D4

(1 − τ)

]}
× φ2(τ ) dτ = λφi(x), (i = 1, 2). (5.2)

here

k11 = −a1N√
D2(μ + γ )

, k12 = a1N√
D2(μ + γ ) sinh

(√
d+γ
D2

) ,

13 = −2a2N/K√
v2 + 4D4δ

, k14 = a2N/K

δ sinh
√

v2

4D2
4

+ δ
D4

,

21 = −a3√
D2(μ + γ )

, k22 = a3√
D2(μ + γ ) sinh

(√
μ+γ

D2

) ,

nd k23 = k24 = 0.

The disease threshold RPDE
0

can then be numerically evaluated

y reducing the operator eigenvalue problem (5.2) into a matrix

igenvalue problem, an approach originated from the work in [44].

e have investigated the impact of human behavior on the dis-

ase threshold in three scenarios: (1) human and bacterial diffu-

ions and bacterial convection equally important; i.e., D , D = O(v);
2 4
2) diffusions dominant; i.e., D2, D4  v; and (3) convection domi-

ant; i.e., D2, D4 � v. The results are displayed in Fig. 4. It shows that

n each scenario RPDE
0 is decreasing as ai (i = 1, 2, 3) decays , indi-

ating that as human surveillance tends to decrease direct and indi-

ect transmission rates and bacterial shedding rate, this will lead to

lower infection risk. One can see from Fig. 4(a)–(c) that, in scenario

1), if the surveillance (through human behavior) is strong enough,
PDE
0

can be reduced below the critical threshold value 1, which in-

icates that human behavior can significantly reduce the infection

isk and control the disease. Moreover, in our PDE cholera model,

e have numerically found that the difference between RPDE
0

and
ODE
0

is small when D2 = D4 = v, and almost invisible when D2, D4

v. For instance, if D2 = D4 = v = 1, the difference is about 10−4;

f D2 = D4 = 106 and v = 1, the difference is about 10−9. Moreover,

hen bacterial convection is dominant, RPDE
0

tends to be elevated;

hat is, the associated infection risk is prone to be higher as shown

n Fig. 4 (d)–(f). In such cases, although the human behavior can still

educe RPDE
0

, it may not bring down RPDE
0

back to 1. In other words,

hen bacterial convection is dominant, human surveillance focused

n reducing transmission rates and bacterial shedding rate may not

e sufficient in controlling cholera epidemics.

. Discussion

We have presented a modeling framework for the impact of hu-

an behavior on cholera dynamics. Fundamental in our assumption

s that people are well informed of the development and severity

f the disease outbreak, made possible by the media coverage and

eports from various resources, thus will take action to reduce con-

act with other individuals and/or the contaminated environment,

o eat well-cooked food, and to introduce safe disposal of excreta.

ur models involve transmission rates and host shedding rates

epresented as decreasing functions of the infection size, applicable
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to a variety of effects resulting from changes in human behavior. Our

analysis is centered on the impact of human behavior on cholera

dynamics, for both a homogeneous environment (represented by an

ODE model) and a more heterogeneous environment where spatial

movement of the hosts and bacteria becomes important (represented

by a reaction–convection–diffusion PDE model). For the ODE model,

we have rigorously proved that the basic reproduction number

R0 (or, equivalently, the type reproduction number T1) remains

a sharp threshold for disease dynamics despite the incorporation

of human behavior. In particular, when R0 > 1 the disease will

persist and the endemic equilibrium will be globally asymptotically

stable. For the PDE model, a sharp threshold reproduction number

is also defined and analyzed, and we have numerically computed

the value of the PDE R0 with various contact rates and compared

the results with the ODE R0 . Their values reflect the (possibly dif-

ferent) predictions of disease risks based on the homogeneous and

heterogeneous settings. These results could provide useful insight

to help public heath administrations for disease prevention and

intervention.

Cholera transmission occurs through direct (i.e., human-to-

human) or indirect (i.e., environment-to-human) routes. The multiple

transmission pathways and related bacterial dynamics in the aquatic

environments, together with human behavior, and spatial hetero-

geneity characterized by movements (diffusion and/or convection) of

hosts and pathogen, complicate the pattern of disease dynamics. Our

models aim to investigate the interplay of these different biological,

ecological, environmental, and sociological factors. Our results quan-

tify the natural expectation of human behavior in reducing the sever-

ity of an epidemic, particularly for a cholera outbreak. Specifically,

the results in this paper provide mathematical justification of sev-

eral consequences of human behavior: (1) reducing the epidemic and

endemic levels; (2) reducing the spread speeds (i.e., traveling wave

speeds) of the disease; (3) reducing the infection risks (characterized

by the basic reproduction numbers) in both homogeneous and het-

erogeneous environments.

We have assumed that human behavior is “rational” in respond-

ing to an epidemic. Practically, however, media coverage and news

broadcasting could contain false information on the outbreak details

which may lead to inappropriate behavioral response. In such cases,

the contact rates β i(I) in our models will not be monotonic functions

of the infection size. During the outbreak of a fatal or novel pathogen,

human behavior is more likely to be affected by the cumulative total

numbers of cases and deaths than by the real-time number of infec-

tious individuals [9,19]. In practice, the movement of humans is not

random but strongly affected by socioeconomic factors. The current

paper did not include such factors, though these might be as well

worthwhile to model and analyze mathematically. Meanwhile, there
Table A.1

Definition of cholera model parameters.

Parameter Definition

N Total population size of humans

μ Natural death rate of humans

a1 Direct transmission rate

a2 Indirect transmission rate

K Half saturation rate

γ Recovery rate

σ Rate of host immunity loss

δ Bacterial net death rate

a3 Shedding rate

D1 Diffusion coefficient of susceptible

D2 Diffusion coefficient of infectious ho

D3 Diffusion coefficient of recovered ho

D4 Diffusion coefficient of bacteria in t

water environment

v Convection coefficient of bacteria
re several other limitations in our work. For instance, the contact

ates and the dynamics of V. cholerae in the environment may change

ubject to seasonality [8]. It would be more practical to study a non-

utonomous system to better reflect seasonality [30]. The work is true

nder the assumption: bacteria population is decreasing in the ab-

ence of human contribution (e.g. shedding from infected individu-

ls). Furthermore, rather than using a simplistic 1D space dimension,

onstructing the system on a 2D spatial domain would be more real-

stic for cholera modeling. The diffusion and convection coefficients

s well as several parameters of disease transmission rates can be

aken as space dependent, instead of constants, to adequately cap-

ure the details of spatial heterogeneity. Collection of data on disease

pidemiology, behavior change in response to an epidemic, hosts,

athogen, and their diffusion is challenging, but vital to test the va-

idity and reliability of our models [15].
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ppendix A. Model parameters and functions

The definition and base values of parameters in our ODE and PDE

holera models are provided in Table A.1. Here p (resp. y and d) rep-

esents a person (resp. year and day).

ppendix B. Proof of Theorem 3.1

roof. 1. Since S = N − I − R, we consider an equivalent system of

2.1)

dI

dt
= (N − I − R)

(
β1(I)I + β2(I)

B

B + K

)
− (μ + γ )I,

dR

dt
= γ I − (μ + σ)R,

dB

dt
= β3(I)I − δB. (B.1)
Value References

12, 347 p [28]

(43.5 y)−1 [46]

1.57 × 10−5 d−1 [28]

0.011 p−1d−1 [28]

106 cells · ml
−1

[17]

(5 d)−1 [17]

(3 y)−1 [29]

(30 d)−1 [17]

10 [cells · ml
−1

d−1] [17]

hosts Varied [km
2

d−1]

sts Varied [km
2

d−1]

sts Varied [km
2

d−1]

he Varied [km
2

d−1]

Varied [km · d−1]

http://dx.doi.org/10.13039/100000001
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The Jacobian matrix of the vector field described by (B.1) is

= [Ji j]

=

⎡
⎢⎣ J11 −β1(I)I − β2(I)

B

B+K
β2(I)S

K

(B+K)2

γ −(μ+σ) 0

β ′
3(I)I + β3(I) 0 −δ

⎤
⎥⎦,

(B.2)

here

11 =β ′
1(I)SI − β1(I)I + β1(I)S + β ′

2(I)S
B

B + K

− β2(I)
B

B + K
− (μ + γ )

nd S = N − I − R. Evaluating the Jacobian matrix (B.2) at the DFE, (N,

, 0, 0), gives

|DFE =

⎡
⎣a1N − (μ + γ ) 0 a2N/K

γ −(μ + σ) 0

a3 0 −δ

⎤
⎦

et λ1, λ2 and λ3 denote the eigenvalues of J|DFE. Without loss of gen-

rality, we write λ3 = −(μ + σ), which is clearly negative. It is easy

o verify that τ2 := λ1 + λ2 = a1N − (μ + γ ) − δ and D2 := λ1λ2 =
a1N − (μ + γ ))( − δ) − a2a3N/K. Hence the local stability of the DFE

s determined by the sign of τ2 and D2. Notice that one can rewrite

2 and D2 in terms of the type reproduction number T1 as follows:

2 = − 1
δ(μ+γ )

(T1 − 1) and τ2 = (μ + γ )(T1 − 1 − a2a3N

(μ+γ )Kδ
). It then

ollows from T1 ≤ 1 that we have D2 ≥ 0 and τ2 < 0; meanwhile

2 = 0 holds only if T1 = 1. This implies that both λ1 and λ2 are non-

ositive and at least one of them is strictly negative. Therefore, we

how that the DFE is locally asymptotically stable (resp. Lyapunov sta-

le) when T1 < 1 (resp. T1 = 1).

2. By a similar approach as that in the first case, we can show that

he DFE is unstable when T1 > 1. Our focus now is the local stability

f the EE. We want to prove that the EE is locally asymptotically sta-

le. Evaluating the Jacobian matrix (B.2) at the EE, we find that the

haracteristic equation of J|EE is given by

3 + c1λ
2 + c2λ + c3 = 0,

here

1 = −( J11 + J22 + J33)|EE ,

2 = ( − J12J21 + J11J22 + J22J33 + ( J11J33 − J13J31))|EE ,

3 = ( − J22( J11J33 − J13J31) + J12J21J33)|EE .

ccording to the Routh–Hurwitz criterion, it remains to show that

1 > 0, c2 > 0, c3 > 0, c1c2 − c3 > 0, (B.3)

n the following, we assume that (S, I, R, B) ∈ R
+
4

is the EE of (2.1) and

he rest of arguments is all restricted to the EE. By the equilibrium

quation (3.4), we can rewrite J11 as follows:

11 = −
(

β1(I)I + β2(I)
B

B + K

)
+ S

(
β ′

1(I)I + β ′
2(I)

B

B + K

)

− β2(I)
SB

I(B + K)
.

t follows from β i(I) > 0 and β ′
i
(I) ≤ 0 for i = 1, 2 that J11 < 0. More-

ver, it is clear that J12 < 0, J13 > 0, J21 > 0, J22 < 0, and J33 < 0. Mean-

hile, we notice that

1c2 − c3 = −J11c2 − xJ22[−J12J21 + J22( J11 + J33)]

− J33[J22( J11 + J33) + ( J11J33 − J13J31)].
hus, (B.3) is valid by the fact that

11J33 − J13J31 ≥ −(β1(I)S − (μ + γ ))δ − β3(I)β2(I)SK/(B + K)2

= β2(I)
SB

B + K

δ

I
− β2(I)β3(I)

SK

(B + K)2

= β2(I)
S

B + K

(
Bδ

I
− β3(I)

K

B + K

)

= β2(I)
S

B + K

(
β3(I) − β3(I)

K

B + K

)

= β2(I)β3(I)
SB

(B + K)2
> 0.

he proof is complete. �

ppendix C. Proof of Theorem 3.4

roof. Suppose that R0 > 1. Hence, by Theorem 3.1, the system (2.1)

as two equilibria: the DFE and the EE. We now proceed to prove the

lobal stability of the endemic equilibrium of (2.1) by using the geo-

etric approach based on the second additive compound matrix [23].

he details on the geometric approach can be found in Appendix D.

y Theorem 3.1, the DFE is unstable, and it is on the boundary of the

omain 
. This implies that the disease is uniformly persistent in 
0,

amely,

im inf
t→∞

(I(t), B(t)) > (c, c)

or some c > 0. It then follows from the compactness of 
 and the uni-

orm persistence of system (2.1) that there exists a compact absorb-

ng set in 
. Meanwhile, the EE is the unique equilibrium in 
0. By

he geometric method [23], it remains to prove that the generalized

endixson criterion q̄2 < 0 (see an outline of the geometric method

nd definition of q̄2 in the Appendix D). The idea of the proof is to

hoose a norm in R
3 and to construct a matrix-valued function P(S, I,

) such that q̄2 < 0.

First, dropping the equation for R in system (2.1) and using the

onstant host population, i.e., R = N − S − I, we obtain

dS

dt
= μN − S

(
β1(I)I + β2(I)

B

B + K

)
− μS + σ(N − S − I),

dI

dt
= S

(
β1(I)I + β2(I)

B

B + K

)
− (μ + γ )I,

dB

dt
= β3(I)I − δB. (C.1)

or simplicity,

1 = β1(I)I + β2(I)
B

B + K
, θ2 = S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
,

3 = Sβ2(I)
K

(B + K)2
, θ4 = β ′

3(I)I + β3(I).

The Jacobian matrix associated with the linearized system of (C.1)

s

˜=

⎡
⎣−θ1 − (μ + σ) −θ2 − σ −θ3

θ1 θ2 − (μ + γ ) θ3

0 θ4 −δ

⎤
⎦

nd its second additive compound matrix is

[2] =⎡
⎢⎢⎣

−θ1 + θ2 θ3 θ3

−(2μ + σ + γ )

θ4 −θ1 − (μ + σ + δ) −θ2 − σ

0 θ1 θ2 − (μ + γ + δ)

⎤
⎥⎥⎦.
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We now take

P = diag

[
1,

I

B
,

I

B

]
.

Then P is nonsingular and C1 in 
0. Let f denote the vector field of

(2.1). Thus,

Pf P−1 = diag

[
0,

I′
I

− B′
B

,
I′
I

− B′
B

]
and

J̃ [2]P−1 =⎡
⎢⎢⎢⎢⎢⎣

−θ1 + θ2 θ3
B

I
θ3

B

I
−(2μ + σ + γ )

θ4
I

B
−θ1 − (μ + σ + δ) −θ2 − σ

0 θ1 θ2 − (μ + γ + δ)

⎤
⎥⎥⎥⎥⎥⎦.

Thus, the matrix Q = Pf P−1 + P J̃ [2]P−1 can be written in the follow-

ing block form:

Q =
[

Q11 Q12

Q21 Q22

]
,

where

Q11 = −
(
β1(I)I + β2(I)

B

B + K

)
+ S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
− (2μ + σ + γ ),

Q12 = Sβ2(I)
K

(B + K)2

B

I
[1 1],

Q21 =
[
(β ′

3(I)I + β3(I))
I

B
0

]
,

Q22 =
[

q11 q12

q21 q22

]

with

q11 = −
(
β1(I)I + β2(I)

B

B + K

)
− (μ + σ + δ) + I′/I − B′/B,

q12 = −S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
− σ,

q21 = β1(I)I + β2(I)
B

B + K
,

q22 = S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
− (μ + γ + δ) + I′/I − B′/B.

The vector norm | · | in R
3 is chosen as

|(x1, x2, x3)| = max{|x1|, |x2| + |x3|}.
One can verify that the Lozinskiǐ measure M(Q) with respect to this

norm can be estimated as

M(Q) ≤ sup{g1, g2},
where

g1 = M1(Q11) + |Q12|,
g2 = |Q21| + M1(Q22).

Here |Q12| and |Q21| are matrix norms induced by the l1 vector norm,

M denotes the Lozinskiǐ measure with respect to the l norm. More
1 1
pecifically,

g1 =Q11 + |Q12|
= −

(
β1(I)I + β2(I)

B

B + K

)
+ S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
− (2μ + σ + γ ) + Sβ2(I)K

(B + K)2

B

I
,

g2 =|Q21| + max{q11 + |q21|, |q12| + q22}
=(β ′

3(I)I + β3(I))
I

B
− (μ + σ + δ) + I′

I
− B′

B

+ sup

{
0, 2

(
S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
+ σ

)
− γ

}
.

ince I′ = S

(
β1(I)I + β2(I)

B

B + K

)
− (μ + γ )I, we have

(μ + γ ) = I′
I

− Sβ1(I) − S

I
β2(I)

B

B + K
.

his leads to

1 = −
(
β1(I)I + β2(I)

B

B + K

)
+ S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
− (μ + σ)

+ Sβ2(I)K

(B + K)2

B

I
+ I′

I
− Sβ1(I) − S

I
β2(I)

B

B + K

= −
(
β1(I)I + β2(I)

B

B + K

)
+ S

[
β ′

1(I)I + β ′
2(I)

B

B + K

]
− Sβ2(I)B

(B + K)I

(
1 − K

B + K

)
+ I′

I
− (μ + σ)

≤ I′
I

− (μ + σ). (C.2)

he last inequality follows from the assumptions on β i(I), i.e., β i(I) ≥
and β ′

i
(I) ≤ 0 for i = 1, 2. Applying the similar argument together

ith assumption on β2(I), β3(I) and B′/B = β3(I)I/B − δ, we have

2 = (β ′
3(I)I)

I

B
+ β3(I)

I

B
− δ − (μ + σ) + I′/I − B′/B

+ sup

{
0, 2

(
S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
+ σ

)
− γ

}
≤ I′

I
− (μ + σ) + sup

{
0, 2

(
S

[
β ′

1(I)I + β1(I) + β ′
2(I)

B

B + K

]
+ σ

)
− γ

}
≤ I′

I
− μ + sup

{
0, 2S(β1(I)I)′ + σ − γ

}
≤ I′

I
− μ, if S(β1(I)I)′ ≤ (γ − σ)/2. (C.3)

hus, (C.2) and (C.3) yield

(Q) ≤ I′
I

− μ.

t follows from 0 ≤ I(t) ≤ N that

ln (I(t)) − ln (I(0))

t
≤ μ

2
,

or t sufficiently large. We then obtain

1

t

∫ t

0

M(Q)ds ≤ 1

t

∫ t

0

(
I′(s)

I(s)
− μ

)
ds = ln (I(t))) − ln (I(0))

t

− μ ≤ −μ

2
,

f t is large enough. This in turn implies that q̄2 ≤ −μ/2 < 0 and it

ompletes the proof. �
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ppendix D. The geometric approach

Here we present the main result of the geometric approach for

lobal stability, originally developed by Li and Muldowney [23].

We consider a dynamical system

dX

dt
= f (X) (D.1)

here f : D �→ R
n is a C1 function and D ⊂ R

n is a simply connected

pen set. Let P(X) be a (n
2) × (n

2) matrix-valued C1 function in D, and

et

= Pf P−1 + PJ [2]P−1 ,

here Pf is the derivative of P (entry-wise) along the direction of

, and J[2] is the second additive compound matrix of the Jacobian

(X) = D f (X) . Let m(Q) be the Lozinskiı̌ measure of Q with respect to

matrix norm; i.e.,

(Q) = lim
h→0+

|I + hQ| − 1

h
,

here I represent the identity matrix. Define a quantity q̄2 as

2̄ = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

M
(
Q(X(s, X0))

)
ds ,

here K is a compact absorbing subset of D. Then the condition q̄2 < 0

rovides a Bendixson criterion in D . As a result, the following theo-

em holds:

heorem D.1. Assume that there exists a compact absorbing set K⊂D

nd the system (D.1) has a unique equilibrium point X∗ in D . Then X∗ is

lobally asymptotically stable in D if q̄2 < 0 .

ppendix E. Derivation of eigenvalue problem (5.2)

To analyze the basic reproduction number of the PDE sys-

em (4.1),RPDE
0

= ρ(L), we proceed to calculate B−1 by solving(
φ1 , φ2

)T =
(
y1 , y2

)T
. First, let us consider the boundary value

roblem

1[φ1] := D2
∂2φ1

∂x2
− (μ + γ )φ1 = y1 , 0 < x < 1 ;

φ′
1(0) = 0, φ′

1(1) = 0 . (E.1)

he explicit representation of the solution to (E.1) can be found (e.g.,

sing Laplace transform) as

1(x) = B−1
1 [y1]

= 1√
D2(μ + γ )

∫ x

0

sinh

[√
μ + γ

D2

(x − τ)

]
y1(τ ) dτ

−
cosh

(√
μ+γ

D2
x
)

√
D2(μ + γ ) sinh

(√
μ+γ

D2

)
∫ 1

0

cosh

[√
μ + γ

D2

(1 − τ)

]
y1(τ ) dτ . (E.2)

imilarly, solving the equation

2[φ2] := D4
∂2φ2

∂x2
− v

∂φ2

∂x
− δφ2 = y2 , 0 < x < 1 ;

φ′
2(0) = 0, φ′

2(1) = 0,
e find that

2(x) = B−1
2 [y2] = 2√

v2 + 4D4δ

∫ x

0

e
v

2D4
(x−τ)

× sinh

[√ v2

4D2
4

+ δ

D4

(x − τ)
]

y2(τ ) dτ

− e
− v

2D4
(1−x)

δ sinh

[√
v2

4D2
4

+ δ
D4

](
cosh

[√ v2

4D2
4

+ δ

D4

x

]

− v√
v2 + 4 δ D4

sinh

[√ v2

4D2
4

+ δ

D4

x

])
∫ 1

0

e
v

2D4
(1−τ)

{ v
2D4

sinh

[√ v2

4D2
4

+ δ

D4

(1 − τ)
]

+
√

v2

4D2
4

+ δ

D4

cosh

[√ v2

4D2
4

+ δ

D4

(1 − τ)
]}

y2(τ ) dτ.

(E.3)

ince

[φ] = −FB−1φ = λφ , (E.4)

ubstituting (E.2) and (E.3) into (E.4) leads to the eigenvalue problem

5.2).
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