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Abstract Mathematical models have the potential to be useful to forecast the course
of epidemics. In this chapter, a family of logistic patch models are preliminarily eval-
uated for use in disease modeling and forecasting. Here we also derive the logistic
equation in an infectious disease transmission context based on population behavior
and used it for forecasting the trajectories of the 2013–2015 Ebola epidemic in West
Africa. The logistic model is then extended to include spatial population hetero-
geneity by using multi-patch models that incorporate migration between patches and
logistic growth within each patch. Each model’s ability to forecast epidemic data
was assessed by comparing model forecasting error, parameter distributions and
parameter confidence intervals as functions of the number of data points used to cali-
brate the models. The patch models show an improvement over the logistic model in
short-term forecasting, but naturally require the estimation of more parameters from
limited data.

Keywords Logistic equation · Infectious disease forecasting ·Patchmodel ·Ebola ·
Behavior change · Bootstrap
1 Introduction

The 2013–2015 Ebola epidemic in West Africa has become the most severe Ebola
virus disease (EVD0) outbreak in history, with a case fatality rate of 70–71% and
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a hospitalized fatality rate of 57–59% [7, 23, 24]. This epidemic is significantly
different in both size and duration compared to previously reported EVD epidemics.
As of August 30, 2015, over 28,000 cases have been reported, of which over 11,000
patients have succumbed to the disease, making it the deadliest Ebola epidemic in
history [24]. This latest outbreak far surpasses the number of reported cases and
deaths from ten major previous ebola outbreaks combined with an estimated 1,531
cases and 1,002 deaths [6].

Although, EVD was first discovered in 1976, the virus had not triggered a major
regional epidemic until Dec. 2013. Standard practices to prevent the outbreak in
these countries were not as effective partly due to their poor health infrastructure,
including the lack of public health surveillance systems to rapidly detect emerging
outbreaks [11]. In addition, no licensed vaccine against EVDwas available during the
2013–2015 epidemic [1, 26]. Instead, quarantine, isolation and education programs
were used to mitigate the spread of the disease.

Measuring the effect that control interventions have on epidemics can be achieved
by measuring shifts in R0 and Re(t), the basic and effective reproduction numbers,
respectively. R0 is defined as the average number of secondary infections generated
by one infectious agent in a completely susceptible population. Nevertheless, R0

assumes the epidemic first occurs in a fully susceptible population and thus does not
account for time-dependent variations. Re(t) is defined as the actual average number
of new infections by one infectious agent in a population with both infected and
uninfected individuals at time t. Re(t) shows time-dependent variation due to the
implementation of control strategies and the decline in susceptible individuals.

Several studies have used mathematical models to quantify the effect that control
interventions and behavior changes have on managing the epidemic. In [3], Althaus,
employs an SEIR (susceptible-exposed-infectious-removed, [4]) model and the esti-
mated effective reproduction number to gain insights into the real-time intervention
effects for the 2013–2015 EVD epidemic. They suggest that the effective reproduc-
tion numbers in Guinea and Sierra Leone decreased to around unity by the end of
May and July 2014 due to sufficient control measures. However, that was not the case
in Liberia where efforts needed to be improved. In a similar spirit, Chowell et al. [8],
employed the logistic model to capture early signs of intervention and behavior
changes in the population. Furthermore, they showed that phenomenological mod-
els are useful for understanding early epidemic dynamics, specifically because of
the small number of parameters that need to be estimated. With more complexity,
Agusto et al. [2], used a mathematical model to explore the effects of traditional
belief systems and customs on the transmission process, concluding that the 2014
outbreaks may be controllable by using a moderately-effective basic public health
intervention plan.

Other studies have used mathematical models to investigate the affects of spatial
structure on disease dynamics. For instance, Valdez et al. [22], embeds a compart-
mental model into a 15-patch spatial framework (representing 15 counties of Liberia)
and shows that reducing mobility only delays the overall control of the epidemic.
Their findings suggest that safe burials and hospitalizations are key to controlling
EVD. In particular, if safe burials and hospitalizations were established in mid-July
2014, their model predicts that the epidemic would have been three months shorter
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and infected individuals would have been 80% less than if the controls were imple-
mented in mid-August. Gomes et al., employs the Global Epidemic and Mobility
Model that incorporates mobility and demographic data at a worldwide scale cou-
pled to a stochastic epidemic model [13]. They concluded that the probability of
the disease spreading outside of Africa was highly unlikely. Merler et al., employs
a spatial agent-based model to examine the effectiveness of safe burials, household
protection kits and to estimate Ebola virus transmission parameters [18]. They sug-
gest that the majority of infections occur within hospitals and households. Their
findings indicate that the decline in disease incidence is due in part by the increased
number of Ebola treatment units, safe burials and household protection kits. Using
a discrete, stochastic SEIR model that is embedded within a three-scale community
network model, Kiskowski, shows that effects from community mixing along with
stochasticity can explain the different growth rates of reported cases observed in
Sierra Leone, Liberia and Guinea [15].

Multiple studies have used mathematical models for forecasting the potential
number of future cases and estimating transmission parameters for the 2013–2015
Ebola epidemic. Meltzer et al., constructs the EbolaResponse modeling tool that
tracks patients through multiple stages of infection and categorizes patient infec-
tiousness depending on whether they are in a hospital, a low-risk community setting
or at home with no isolation [17]. The EbolaResponse model was used to estimate
how control and prevention measures could stop the epidemic and to forecast future
cases. Meltzer et al., suggest that policy makers rapidly increase the number of Ebola
treatment units. In another study by Shaman et al., a stochastic compartmental model
is coupled with the Ensemble Adjusted Kalman Filter (EAKF) to forecast state vari-
ables and parameters sixweeks into the future [21]. The EAKF adjusts the parameters
and ensemble state variables as more data becomes available. Parameter estimations
provided some evidence that the epidemic growth was slowing down in Liberia.

We present a simple approach that phenomenologically connects the effects of
behavior changes to mitigate transmission rates and population spatial structure.
Our method derives the logistic equation from an assumption about the effect of
population behavior and introduces spatial heterogeneity via logistic patch models.
In particular, we contribute the following:

• The logistic model is derived from a susceptible-infected compartmental model
in Sect. 2.1, justifying its use in [8].

• Formulas for the basic and effective reproduction numbers are presented in
Sect. 2.2.

• We build upon the work done in [8], by incorporating spatial heterogeneity via
logistic patch models.

• Models are validated by comparing their fits to total reported case data in Sect. 4.1.
• As seen in Fig. 4, we show that these models improve upon the short term fore-
casting error in Sect. 4.2. Furthermore we perform Kruskal–Wallis tests to analyze
the variation across the different models.

• Further model validation and comparison is presented in Sect. 4.3, via parameter
estimations and confidence intervals. This section shows that patch models are not
well constrained due to limited data.
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• Weprovide estimates and 95% confidence intervals ofR0 for Liberia, Sierra Leone
and Guinea respectively in Sect. 4.4.

2 Modeling Methods

2.1 Logistic Equation as an Ebola Cumulative Infections
Case Model

From a basic SI compartmental model and an assumption about population behavior
we can derive the logistic equation. Assuming there are no births, natural deaths or
immigration of susceptible individuals and that infected individuals do not return
to the susceptible class, the classical Kermack and McKendrick infectious disease
model can be adapted to obtain the following:

S(t)′ = − βS(t)I(t)

S(t) + I(t)
,

I(t)′ = βS(t)I(t)

S(t) + I(t)
− μI(t),

(1)

where β is the infection rate andμ is the disease induced death rate. From system (1)
the cumulative number of infections at time t, denoted by x(t), has derivative x′(t) =
β SI

S+I ≈ βI , (assuming S
S+I ≈ 1). Below we assume that x′(t) = βI .

As an increasing number of cases are reported during an outbreak, the behavior of
the individuals in the affected region may change due to disease education programs,
an increase in care or quarantine facilities and help from health care workers.

As an example, dead bodies infected with Ebola virus remain infectious, caus-
ing participants to unknowingly contract the infection during funeral burials. In the
beginning stage of the outbreak, unsuspecting mourners would carry the infection
back to other parts of the community and would infect more individuals. By having
specific handling guidelines of human remains, communities were able to decrease
exposure to the Ebola virus [27]. In general, this is the notion of a positive behavioral
change in the community. Based on these observations we make what we call the
behavior assumption:

• (Behavior assumption): During an epidemic, a change in behavior in the commu-
nity that mitigates the transmission rates is expected as an epidemic unfolds. This
response is modeled by a function of the total reported cases and has a decreasing
effect on per-capita infection rate. That is,

I ′(t)
I(t)

= f (x(t)) (2)

is a decreasing function of the total number of reported cases x(t).
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In the following, we assume that f (x(t)) = r(1 − ax(t)) for some positive con-
stants r := β − μ and a. Hence

I ′(t) = rI(t)(1 − ax(t)) = r

β
x′(t)(1 − ax(t)).

Therefore,

I(t) − I(0) = r

β

(
x(t) − a

2
[x(t)]2

)
− r

β

(
x(0) − a

2
[x(0)]2

)
.

Since I(0) = x(0) ≈ 0, we see that I(t) can be approximated by r
β

(
x(t) − a

2 [x(t)]2
)
.

Therefore

x′(t) = βI(t) = r
(
x(t) − a

2
[x(t)]2

)
= rx(t)

(
1 − x(t)

K

)
, (3)

Fig. 1 Predictions of the cumulative number of Ebola cases in Sierra Leone by the logistic growth
Eq. (3). Data points start on June 2, 2014 and end December 23, 2015. 95% prediction bands are
superimposed. Gray disks are data points for model calibration, while black dots are forecasting
data points
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where K = 2/a. Here we interpret r as the intrinsic infection rate, a is a proportion-
ality constant that corresponds to strength and effectiveness of disease interventions
and preventive strategies and K is the final epidemic size.

In [8], the saturation effect of the logistic equation was used to implicitly account
for the behavior change in the population. The above derivation provides a rigorous
framework of this modeling effort and emphasizes the role behavior plays in the
saturation effect. Figure1 shows the change in the 95% prediction band using the
delta method as more data points are incorporated when fitting the logistic model to
epidemic data [5].

2.2 Derivation of R0 and Re

During an outbreak, there may not be enough data to calibrate mechanistic models of
the exact transmission processes, thus the logistic model can provide useful insights
into the early outbreak dynamics. To derive R0 and Re first observe that,

I(t + T) = Re (t) I (t) , (4)

whereT is themean generation interval and is defined as the time between infection in
an index case patient and infection in a patient infected by that index case patient [23].
FromEq. (2), we have that I ′ (t) = f (x (t)) I(t), integrating both sides from t to t + T
yields

ln (I (t + T)) − ln (I(t)) =
∫ t+T

t
f (x (s)) ds.

Solving for I(t + T) and dividing by I(t) yields I(t+T)

I(t) = e
∫ t+T
t f (x(s))ds, which from

Eq. (4) yields

Re(t) = e
∫ t+T
t f (x(s))ds. (5)

Lastly, define R0 := erT which is approximately equal to the usual definition of the
basic reproduction number, β

μ
, of model 1 when β

μ
is close to 1.

2.3 Incorporating Population Heterogeneity: Multi-patch
Models

District geography, topology, health care centers and quarantined regions can influ-
ence population movement. This motivates the need for incorporating spatial struc-
ture in transmission models. We do this by partitioning a district into a network of
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two or more sub-districts (patches). In each sub-district, cumulative infections obey
logistic growth individually.

Let xi be the cumulative infections in patch i and letmij be the rate of cumulative
infections that travel from patch i to patch j, where i, j = 1, 2, i �= j.

The equations for the two-patch model are:

x′
1 = r1x1

(
1 − x1

K1

)
− m12x1 + m21x2,

x′
2 = r2x2

(
1 − x2

K2

)
− m21x2 + m12x1.

Similarly, the three-patch model is given by:

x′
1 = r1x1

(
1 − x1

K1

)
− (m12 + m13) x1 + m21x2 + m31x3,

x′
2 = r2x2

(
1 − x2

K2

)
− (m21 + m23) x2 + m12x1 + m32x3,

x′
3 = r3x3

(
1 − x3

K3

)
− (m31 + m32) x3 + m13x1 + m23x2.

In addition, we will consider two special cases of each model: symmetric migration
(S)withmij = mji andhomogeneousmigration (H)with,mij = m for all i, j and i �= j.

Assume that ri and Ki are positive in the above models. It is easy to see that these
patch models are cooperative in nature which generate a strictly monotone semiflow.
It is shown that the positive solutions of the above models tend to a unique positive
steady state (see Lemma 3.1 in [12]).

Let x = ∑N
i=1 xi. As with the derivation of Re and R0 for the logistic model above,

define the basic reproduction number for an N-patch model as

Re(t) = exp

(
r̂
∫ t+T

t
1 − 2

K̂
x(s) ds

)
,

where r̂ =
∑N

i=1 riKi

K̂
, K̂ = ∑N

i=1 Ki are weighted averages and for simplicity we
assume T = 2 weeks, instead of 2.18 [1]. Similarly to above, we define R0 :=
Re(0) ≈ erT .

3 Comparison Methods

We use district data from the World Health Organization (WHO) patient database,
which contains weekly reported confirmed, suspected and probable infections from
Liberia, Sierra Leone and Guinea [24]. Data ranges from Mar. 1, 2014 to Aug. 5,
2015.
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Table 1 Number of parameters for each model

Logistic Two-patch
(H)

Two-patch Three-patch
(H)

Three-patch
(S)

Three-patch

Number of
parameters

2 5 6 7 9 12

Table1 lists the number of parameters of eachmodel. By studying the special cases
of the patch models we reduce the number of parameters that need to be estimated,
which constrains model fits and reduces the likelihood of over-fitting the data.

We use Matlab’s built-in function, fminsearch, to help locate optimized parame-
ter values for data fitting. fminsearch is a derivative-free method that is based on
the Nelder-Mead Simplex [16] and searches for minimums, but does not guarantee
global minimums. We are searching for a biologically reasonable parameter set that
minimizes the error between the simulations and the observed data. To this end, we
define the weighted error function:

Ew = 1

N − P

N∑
i=1

∣∣yi − ŷi
∣∣ e−0.1(tf −ti), (6)

where tf is the final date thatwe have an observation for,P is the number of parameters
and N is the number of observations. ŷi denotes the observation at time ti and yi the
value of our model at the ith observation. We make the assumption that recent data
has higher significance for forecasting future cases, as reflected by the exponential
factor. The value of 0.1 in the exponential term is used because it gave a reasonable
temporal-weight to the data points.

3.1 Ranking Models by Fitting and Forecasting Errors

To compare the models, we use absolute and relative errors that penalize models that
have more parameters. The absolute error is calculated using the following equation,

Eabs = 1√
N − P

√√√√ N∑
i=1

(
yi − ŷi

)2
(7)

and the relative error is given by,

Erel = 1√
N − P

√√√√ N∑
i=1

(
yi − ŷi
ŷi

)2

. (8)
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Since we are interested in assessing and ranking the forecasting performance of
all models, we define the forecasting error as follows:

Efcst = 1√
N − N̂ − P

√√√√ N∑
i=i∗

[
y (ti) − ŷ (ti)

]2
, (9)

where i∗ corresponds to the temporal index at which we start forecasting our models,
N is the total number of observations and N̂ is the total number of observations used
for model calibration and P is the number of parameters. If i∗ was not an integer
value, we took its floor value.

3.2 Parameters and Confidence Interval Assessment

To further compare and assess the models we compute 95% confidence intervals
for the logistic, two-patch (H) and three-patch (H) models. Only these models were
considered, because they have the least number of parameters which reduces the
likelihood of overfitting the models to data. Bootstrapping can be used as a way to
estimate standard errors of parameter estimates in statistical models. The basic idea
is to fit the model to data, find the residuals and add them to the data. Next, randomly
sample with replacement B times, where B is large and fit the model to each of these
newly created data sets to obtain B different parameter sets from the fitted model.
This allows one to obtain a distribution of the parameters without assuming anything
prior about them. For further details see [9, 10, 20].

Recall a statistical model, with y = (y1, . . . , yn) being explained by k explanatory
variables x = (x1, . . . , xk) using p parameters θ = (θ1, . . . , θp):

yi = g(xi|θ) + εi

for i = 1, . . . , n. Where g is a mathematical model such as an ordinary differential
equation model, partial differential equation model, algebraic model, etc. ε is the
error and is a random variable and y is another random variable. Let G be the partial
derivative matrix with respect to θ and the leverages, h1, . . . , hn be the diagonal
elements of the G(G†G)−1G† matrix, where † denotes matrix transpose.

The bootstrapping method is described below.

1. Fit the model to the original data with an initial parameter set, θ̂ , and for each xi,
compute the corresponding residual ε̂i = yi − ŷi for i = 1, 2, . . . n, where n is the
total number of data points and ŷi = g(xi, θ̂).

2. Correct for the potential heteroscedasticity in the residual variances by computing
themodified residuals: r̂i = ε̂i√

1−hi
and compute the centered residuals r∗

i = ε̂i −
r̂i, where hi are the leverages.

3. Sample with replacement from the n modified and centered residuals.
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Fig. 2 Illustration of the model fitting and forecasting for Conakry, the capital and largest city of
Guinea. Left column models trained on the first one-third data. Right column models trained on the
first two-thirds of data. Gray shaded region represents 95% prediction bands
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4. Generate bootstrap sample, ȳi := ŷi + r∗
j , for all i and where j is random.

5. Fit the model to these new ȳi values and obtain a new set of parameter values, θ̄ .
6. Repeat steps 3, 4 and 5 a large number of times1 of times (say 2,000). This gen-

erates 2,000 bootstrap samples and corresponding sets of parameter estimations.
7. Use the 2,000 parameter estimates to generate distributions to find confidence

intervals.

3.3 Challenges

Whenever fitting a mathematical model to time series data that ranges from small
values to very large values, deciding at what time to initiate the model can seriously
influence its forecasting ability. For example, training a model on a large set of data
that is relatively near zero except for the last couple of points will force the fitting to
be heavily biased by the large amount of initial points near zero, thus not providing
a good forecast. We remedied this by starting the models after there were no three
consecutive weeks that had no infections and by using the weighted error (Eq.6) for
fitting. This was done due to the fact that smaller outbreak waves happened before
the main wave of infections appeared.

Forecasting anongoingdisease outbreak in real-timebringsmanychallenges.New
data being available means that computer programs must be designed to process and
incorporate new data sets with ease and in a timely fashion. In our case, fitting six
models (including special cases) to forty-one data sets requires a significant amount
of computing resources.

4 Results

4.1 Data Based Model Validation

To validate the patch models for epidemic modeling, we fit all models to all data sets
and comparemodel fits and errors. To illustrate this fittingprocess, Fig. 2 showsmodel
fits of the logistic, two-patch and three-patch models with homogenous migration to
cumulative reported case data from Conakry, Guinea.

We report the means for the weighted, relative and absolute error (respectively
Eqs. 6, 7 and 8) for all 39 data sets in Table 2. Observe that the patch models show an
improvement over the logistic model when fitting the data. Additionally, we see that
the homogeneousmigrationmodels perform better than their freemigration versions.

1Results from Efron and Tibshirani [10] suggest that accurate results for confidence intervals can
be obtained from 1000 bootstrap samples. For standard errors this number is reduced to 200.



158 B. Pell et al.

Table 2 Mean error statistics

Model Weighted error Relative error Absolute

Logistic 82.2822 1.3387 102.198

2-Patch (H) 53.6764 1.1271 63.1193

2-Patch 58.6311 1.2124 72.7197

3-Patch (H) 48.709 1.1256 59.3391

3-Patch (S) 55.0951 1.1515 65.1694

3-Patch 54.215 1.1727 66.0885

In what follows, we summarize the different fitting and forecasting cases. Let
FTG be the fitting error from Eq.6 and FCST be the forecasting error from
Eq.9. We use the following convention to denote the different errors: FTG-Δ and
FCST-Δ-Ω , where Δ is the fraction of data used for fitting and Ω is the number of
weeks forecasted ahead (Table5).

Fitting errors were calculated using Eq.6 and the first one-third and the first two-
thirds of each data set. All fitting errors are provided in Table5 given in the appendix.
From Fig. 3, most of the patch models had smaller mean fitting error than the logistic
model.

Four and eight week forecasts were made after training all models to the first one-
third and first two-thirds of the data set. Figure3 shows that in all cases, the patch
models had smaller mean forecasting errors. This supports the hypothesis that mod-
eling spatial structure within the district improved forecasting error. Additionally,
all models perform better when forecasting the short-term rather than long-term epi-
demic trajectory. Forecasting error variancewas lowest with FCST-2/3-4. In contrast,
the variance was the largest with FCST-1/3-8.

Fig. 3 Mean forecasting and fitting errors. Models are along the x-axis and variance is along the
y-axis. We connect points for aesthetic purposes
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Table 3 p-values of the
Kruskal–Wallis test show
forecasting errors do not
significantly differ across
models

Case p-value

FCST-3-4 0.9806

FCST-3-8 0.9872

FCST-23-4 0.9933

FCST-23-8 0.9894

Results of Kruskal-Wallis tests were not significant for FCST-1/3-4, FCST-1/3-
8, FCST-2/3-4 and FCST-2/3-8; the mean ranks for all forecasting cases did not
significantly differ. We include the p-values (95%) in Table3 for this test.

4.2 Forecasting Error as a Function of Forecasting Points

Forecasting error for Port Loko, Guinea, Liberia and Sierra Leone was calculated
for varying amounts of forecasting points.

Number of forecasting points
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Fig. 4 Relative error of forecasting points for the logistic, two and three patch models with homo-
geneous migration rate: Port Loko, Guinea, Liberia and Sierra Leone
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The forecasting error for Port Loko in Fig. 4, suggests that the patch models have
smaller forecasting errors than the logistic equation for short-term forecasts (4–70
days). Additionally, it shows erratic long-term forecasting of the patch models for
Port Loko, because they are not well constrained due to the limited data. Figure4
further shows lower short-term error for Sierra Leone and Liberia by the two-patch
model.Wenote that the three-patchmodel yielded the smallest errorwhen forecasting
ten prediction points or less (4–10 days).

4.3 Confidence Interval Assessment

Parameter confidence intervals for the logistic equation decrease in length as we
decrease the number of prediction points (Fig. 5) for Port Loko. Similar assessments
were done using data from Sierra Leone, Liberia and Guinea at the country level.
Results were similar as the Port Loko case except for Liberia, where confidence
interval lengths begin to increase when we forecast less data points. In summary, the
logistic model shows well behaved parameter values when we fit to an increasing
number of data points for three out of four data sets used.

The patch models tell a different story. The confidence intervals are larger and
show erratic behavior when forecasting a large number of points. Indeed for the
two-patch model (Fig. 6), the confidence intervals for r1 actually increase when we
are predicting a small number of data points from Port Loko. This variability is seen
to be worse in the confidence intervals for the final epidemic sizes (Ki’s) for both
two and three patch models, but they are so erratic that they cannot be shown in a
reasonable way and therefore are not included. The fact that the patch models have
more parameters allows for different parameter sets that produce a well fit curve, but
allow for large variability in the parameter sets. The same is seen in the confidence
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Fig. 5 95% CI for r and K from (3). (Bottom) Plot of the length of the CI for r and K as a function
of the number of forecasting points. District: Port Loko
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Fig. 6 95% CI for ri and m for i = 1, 2, 3 from (6) for Port Loko. (Left) two-patch confidence
interval lengths for intrinsic infection rate and migration parameter. (Right) Three-patch 95% con-
fidence interval lengths for intrinsic infection rate and migration rate. Note the variability for high
numbers of prediction points for both models and the high variability in r1 for the two-patch model
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interval assessment using data from Sierra Leone, Guinea and Liberia, (not shown
here).

4.4 Implications for Liberia, Sierra Leone and Guinea: R0

From the bootstrapping method, we calculated 95% confidence intervals for R0 in
Guinea, Liberia and Sierra Leone (see Table 4).

5 Discussion

In this chapter, a family of logistic patch models were preliminarily evaluated for use
in disease modeling and forecasting. An explicit formula for the cumulative number
of infectious individuals was derived from a SI compartmental model which takes
the form of the well known logistic model. This derivation follows from the behavior
change assumption, Eq. (2). We then extended the logistic model to include spatial
population heterogeneity by using multi-patch models that incorporate migration
between patches and logistic growth within each patch. Each model’s ability to
forecast epidemic datawas assessed by comparingmodel forecasting error, parameter
distributions and parameter confidence intervals as functions of the number of data
points used to calibrate the models. The patch models show an improvement over
the logistic model in short-term forecasting, but naturally require the estimation of
more parameters from limited data.

The models were tested by fitting them to the total reported case data from 39
districts inWest Africa. In particular, themeans of theweighted, relative and absolute
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errors of the patch models are less than the logistic model’s, suggesting that spatial
structure improved the data fitting. Next, models were compared by their forecasting
capabilities in two ways: comparing forecasting error and comparing parameter con-
fidence intervals. These latter efforts were restricted to the logistic, two-patch and
three-patch models with homogeneous migration. The forecasting errors from Fig. 3
show that the patch models forecast better than the logistic model. However, Fig. 4
shows long-term forecasting variability from the patch models, because of the lim-
ited data. In contrast to these results, the Kruskal-Wallis test showed no significant
difference in the forecasting errors across the models.

The value of R0 during the outbreak in Liberia, Guinea and Sierra Leone were
estimated to be in the same range as previous studies that were based on compart-
mental models [3, 13, 14, 28]. In particular, from Table4 the estimates from the two
and three patch models for R0 are similar with Althaus et al., but our confidence
intervals are not as small [3]. This agreement further supports the reliability of the
logistic and patch models with homogeneous migration.

In reality, early in the Ebola 2013–2015 epidemic, the public’s behavior in Liberia,
Sierra Leone and Guinea did not swiftly change in a manner that mediated disease
transmission nor has there been any evidence supporting that the per-capita infection
rate decreased linearly. Actually, the public’smisunderstanding of the disease, lack of
resources and fear fostered high-risk behaviors and resulted in an increased disease
transmission in West Africa during the epidemic [19, 25]. However, health-care
workers supplied valuable public awareness programs and medical resources that
helped manage the spread. Our modeling assumptions approximate these notions
and provide immediate behavior change in the spirit of Eq. (2), but this is modeled
simultaneously everywhere in space and is one reasonwhy the logisticmodel does not
fit the datawell. The patch-models overcome this issue bymodeling behavior changes
at different times, rates and locations, but requiremore data to be constrained. Indeed,
an issue with the patch models is that the number of parameters increase quickly as
more patches are introduced.

Table 4 R0 and 95% confidence intervals for R0

Althaus [3] Team
et al. [23]

Logistic 2-Patch (H) 3-Patch (H)

Guinea 1.51
(1.50–1.52)

1.71
(1.44–2.01)

1.252 (1.249,
1.255)

1.52 (1.42,
1.92)

1.45 (1.39,
1.51)

Liberia 1.59
(1.57–1.60)

1.83
(1.72–1.94)

2.11 (2.07,
2.15)

1.45 (1.12,
1.94)

1.43 (1.06,
2.199)

Sierra Leone 2.53
(2.41–2.67)

2.02
(1.79–2.26)

2.28 (2.25,
2.32)

2.27 (2, 2.62) 2.12 (1.87,
2.26)
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Further work can be done with between-country and between-district scales. The
latter would allow for more parameter constraint, but would have to be restricted to
a small number of patches that represent a small number of neighboring districts.
The problem with incorporating all districts is that it ultimately requires a high-
dimensional patch model with many parameters on a complicated network. This
may be remedied with a partial differential equation model or by using mobility
data to constrain the migration parameters. In addition, exploring different behavior
functions would be another direction to expand this work.

Although the logistic model is phenomenological, it is capable of fitting the sig-
moid curves that usually result from plotting the cumulative reported cases of disease
outbreaks. The logistic and the patch models provide a general framework for dis-
ease modeling, because they do not model specific disease transmission processes.
Specifically, they are based on two fundamental mechanisms that influence disease
outbreaks: behavior change in the community and movement of individuals within
that community. We find that incorporating the latter mechanism decreased forecast-
ing errors with respect to the logistic model, but also require more data for model
calibration.

Acknowledgments This work is partially supported by NSF grant DMS-1518529.

Appendix

Forecast and Fitting Error Tables

See Table5.
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