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Lassa fever, also known as Lassa hemorrhagic fever, is a virus that has generated recurrent outbreaks
in West Africa. We use mechanistic modelling to study the Lassa fever epidemics in Nigeria from 2016-
19. Our model describes the interaction between human and rodent populations with the consideration
of quarantine, isolation and hospitalization processes. Our model supports the phenomenon of forward
bifurcation where the stability between disease-free equilibrium and endemic equilibrium exchanges.
Moreover, our model captures well the incidence curves from surveillance data. In particular, our model
is able to reconstruct the periodic rodent and human forces of infection. Furthermore, we suggest that
the three major epidemics from 2016-19 can be modelled by properly characterizing the rodent (or hu-
man) force of infection while the estimated human force of infection also present similar patterns across
outbreaks. Our results suggest that the initial susceptibility likely increased across the three outbreaks
from 2016-19. Our results highlight the similarity of the transmission dynamics driving three major Lassa

fever outbreaks in the endemic areas.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Lassa fever, also known as the Lassa hemorrhagic fever
(LHF), is an acute viral hemorrhagic illness that last 2-21 days
in humans and generated recurrent outbreaks in West Africa
Akhuemokhan et al. (2017); Fichet-Calvet and Rogers (2009);
Richmond and Baglole (2003); WHO (2018). The Lassa virus is
an arenavirus, from the family of arenaviradae, that is mainly
transmitted to humans through direct contact with food or
household items contaminated with urine or stools from in-
fected rodents Andersen et al. (2015); Hamblion et al. (2018);
WHO (2018); Xiao et al. (2001). The human-to-human and labora-
tory transmissions could also be possible Hamblion et al. (2018);
WHO (2018). Thus, LHF is largely a zoonotic disease, i.e., hu-
mans become infected when in contact with an infected animal
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Fichet-Calvet and Rogers (2009); Onuorah et al. (2016). The dis-
ease is endemic in West Africa where the LHF risk areas approx-
imately cover 80% of Sierra Leon and Liberia, 50% of Guinea, 40%
of Nigeria, 30% of Benin, Cote d’Ivoire and Togo and 10% of Ghana
Akhmetzhanov et al. (2019); Fichet-Calvet and Rogers (2009). Re-
garding its severity, it is life-threatening with an estimated 2-3
million cases and 5000-10,000 deaths annually Fichet-Calvet and
Rogers (2009); Okokhere et al. (2018); Onuorah et al. (2016). Since
its discovery in 1969 in the village known as Lassa in Borno state
of northern Nigeria Hamblion et al. (2018); Khan et al. (2008);
Onuorah et al. (2016); Richmond and Baglole (2003), noso-
comial outbreaks of LHF occurs repeatedly in Liberia, Nigeria
and Sierra Leone Bajanil et al. (1997); Bowen et al. (1975);
Carey et al. (1972); Fichet-Calvet and Rogers (2009); Fisher-
Hoch et al. (1995); John et al. (1984); Onuorah et al. (2016).

The animal host (reservoir) of LHF virus is a rodent of the
genus Mastomys natalensis called the multimammate rat which
was found to be first infected with the virus in Nigeria and in
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Sierra Leon in 1972, and Guinea in 2006 Coetzee (1965); Fichet-
Calvet et al. (2007); Fichet-Calvet and Rogers (2009); Fichet-
Calvet et al. (2014); Hamblion et al. (2018); Kerne'is et al. (2009).
The infected rats do not become ill but they can shed the virus
through their urine and stools Fichet-Calvet and Rogers (2009);
Onuorah et al. (2016); WHO (2018). About 80% of individuals in-
fected with LHF virus do not show symptoms WHO (2018) while
about 1 in every 5 symptomatic infections result in se-
vere cases in which numerous organs such as kidney, liver,
spleen are affected WHO (2018). Reinfection can occur for LHF
McCormick et al. (1987); Meulen et al. (2000), even though more
clinical evidence is needed for this assertion Meulen et al. (2000).
According to previous studies, the LHF prevalence is ampli-
fied in the rainy season as rainfall influences rodent migra-
tion from its natural habitat to human environment in order
to breed and gain propinquity during the dry season (and at
the beginning of the rainy season) during which the rodent-
human contact rate increases, enhancing the risk of exposure
to LHF Akhmetzhanov et al. (2019); Akhuemokhan et al. (2017);
Demby et al. (2004); Fichet-Calvet et al. (2007); Fichet-Calvet and
Rogers (2009); Kerne'is et al. (2009); Monath et al. (1974);
Rocha et al. (2017); Meulen et al. (1996). Previous studies re-
veal that rainfall plays an essential role (a key ecological fac-
tor) for the transmission of LHF, because the attack rate was 2-3
times higher in the rainy season than in the dry season Fichet-
Calvet et al. (2007); Fichet-Calvet and Rogers (2009). Symptoms
associated with LHF include fever, headache, general weakness and
malaise, muscle pain, sore throat, nausea, chest pain, cough, vom-
iting, diarrhoea, and abdominal pain WHO (2018). In severe cases,
fluid in the lung cavity, facial swelling, bleeding from the nose,
mouth, vagina or gastrointestinal tract and low blood pressure
may develop Akhuemokhan et al. (2017); WHO (2018). In fatal
cases, death usually occurs two weeks after the onset of the symp-
toms WHO (2018). Lost of hearing may also occur after recovery
Richmond and Baglole (2003).

Currently, there is no vaccine available against LHF. However,
the antiviral drug ribavirin appears to be an effective treatment if
administered early in the course of clinical illness Fichet-Calvet and
Rogers (2009); Onuorah et al. (2016); WHO (2018). Control of the
rodent population has been largely unfeasible, therefore, measures
frequently focus on keeping rats out of home and food items
WHO (2018). Further, there is evidence of vertical transmission in
the rodent population Fichet-Calvet et al. (2014), and the vertical
transmission rate could be higher during the rainy season when
the rodents are more involved in patrolling their houses for mat-
ing and breeding Fichet-Calvet et al. (2014).

Various mathematical models have been developed to investi-
gate the transmission dynamics of LHF Akhmetzhanov et al. (2019);
James et al. (2015); Saez et al. (2018); Obabiyi and Onifade (2017);
Onuorah et al. (2016); Zhao et al. (2020). Some of which fo-
cused on the study of theoretical modelling analysis reveal dy-
namical features of LHF transmission within human and rodent
(as a reservoir) populations. Saez et al. (2018) found that chem-
ical treatment intervention is the key control measure to re-
duce the rodent population, which in turn reduces LHF infection.
Akhmetzhanov et al. (2019) developed a mathematical model to
explore the transmission dynamics of LHF in rodent population
and the impact to human cases, while quantifying the major sea-
sonal factors for the LHF infection, and found that seasonal migra-
tion of the rodent populations plays a significant role in seasonal
transmission of the LHF. James et al. (2015) proposed a determin-
istic model of LHF transmission dynamics and incorporated quar-
antine in an infectious class of humans. Onuorah et al. (2016) de-
veloped a mathematical model for the transmission dynamics of
LHF, and found that the basic reproduction ratio is most sensitive
to human birth rate followed by condom efficacy and compliance.

Obabiyi and Onifade (2017) designed a compartmental model to
describe the transmission dynamics of the LHF within humans and
reservoir populations. Their results suggested that early diagnosis
of infected human cases, maintaining hygienic environment, en-
hanced infection control in hospitals, and controlling the popula-
tion of the rodent population carrying the virus are the best strate-
gies to mitigate the spread of the virus.

In this paper, we will extend previous studies
Akhmetzhanov et al. (2019); Saez et al. (2018); James et al. (2015);
Onuorah et al. (2016); Obabiyi and Onifade (2017) by incorporating
quarantine or isolation and hospitalization of infected individu-
als to better understand the transmission dynamics of the LHF
epidemics. We also incorporate different types of transmission
routes, i.e.,, human-to-human, rodent-to-human, human-to-rodent,
and rodent-to-rodent. Note that rodent-to-human and human-
to-rodent may be regarded as one transmission route, which is
similar to the vectorial transmission for mosquito-borne diseases).
In addition, this paper considers both standard incidence and mass
action incidence rates and, to the best of our knowledge, it is the
first time to simultaneously include the two incidence functions in
modelling the transmission dynamics of the LHF. We also fit our
model to the real data to show the patterns of the LHF epidemics
from 2016 to 2019 in Nigeria. Our results contribute to a better
understanding of the LHF epidemics and highlight some useful
control measures to future LHF outbreaks. Further, we use the
center manifold theory to analyze the existence of the forward
bifurcation that the associated disease-free equilibrium (DFE) and
the endemic equilibrium (EE) exchanges stability at Rg =1 and
the detailed analysis can be found in Appendix A. Finally, sensi-
tivity analysis, and sub-exponential growth fitting of the initial
growth phases of the epidemics are also given in Appendix B and
Appendix C, respectively.

2. Methods
2.1. Lassa fever cases data

The time series data of LHF confirmed cases were obtained
from the Nigeria Centre for Disease Control (NCDC) disease surveil-
lance report Nigeria Centre for Disease Control (2019) from 2016 to
2019, and we focus our analysis on the first 30 weeks of each year.
Because these time interval covers the dry season (during which
the rodent-human contact rate increases which enhance the risk
of exposure to LHF) and the beginning of the rainy season (since
rainfall influences rodent migration from its natural habitat to hu-
man environment which increases the rate of LHF transmission) in
Nigeria Akhmetzhanov et al. (2019); Akhuemokhan et al. (2017);
Demby et al. (2004); Fichet-Calvet et al. (2007); Fichet-Calvet and
Rogers (2009); Kerne'is et al. (2009); Monath et al. (1974);
Rocha et al. (2017); Meulen et al. (1996). Further, the LHF epi-
demics appear to be higher in the first 30 weeks of each year (i.e.,
2016-19), since the population size of rodent is time dependent
(low in Oct to Feb, high in Mar to May) Nigeria Centre for Disease
Control (2019).

2.2. Epidemic model

We split the total human population at time t, denoted by Nj(t),
into sub-populations of non-quarantined susceptible, S(t), non-
quarantined latently-infected (latently-infected means those that
are infected but not yet show clinical symptoms of the disease),
Ep(t), quarantined latently-infected, Eq(t), non-quarantined symp-
tomatically infected, I,(t), quarantined symptomatically infected,
I4(t), hospitalized, H(t) and recovered, Ry(t), individuals, so that

Np(t) = Sp(t) + Ep(t) + I, (t) + Eq(t) + Ig(t) + H(t) + Ry (t).
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Fig. 1. Schematic diagram of the model (2.1).

Table 1

Description of the state variables of the model (2.1).

Variable Description

Ny, Total population of humans

Sh Susceptible humans with risk of LHF infection

Ep Non-quarantined humans exposed to LHF infection
Iy Non-quarantined infected humans with symptoms of LHF infection
Eq Quarantined exposed humans

Iy Quarantined infected humans

H Hospitalized humans

Ry Recovered humans

N, Total population of rodents

Sr Susceptible rodents

Ir LHF infected rodents

The total rodent (reservoir) population at time t, represented by
Ni(t), is split into two compartments of susceptible and infected
rodents. Hence, we have

Ny (£) = S () + I (t).

The LHF model presented in Fig. 1, the state variables in Table 1,
and the parameters in Table 2 (all the parameters are assumed to
be positive) satisfy the following system of non-linear ordinary dif-
ferential equations,

ds,
dr
dE,
dt
dI,
dt
dE,
dt

= Iy + &Ry — ApSp — (nSh,

ApSp — (01 + ¥ + up)Ep,

01Ey — (11 + a1 + 61 + )y,

= YE, — (02 + up)Eq,

% = 03Eg — (12 + ay + 82 + pup)ly,

cll_l;l = aqly + azly — (13 + 83 + wp)H,

% = Tl + Toly + T3H — (€ + wp)Ry,

% = b(l - %)Nr — ArSr = 1rSy,

% I 1)

Here, the forces of infection for humans and rodents are respec-
tively given by
An = A+ Apr

where Bl +Bala P
+B2lg+
App = "R Ay = Bal,

and A; = Ap + A, (2.2)

)"rh = ﬂSIh + ﬂslq + ﬁ7H, and

)»rr=ﬁN%I’ represent human-to-human transmission, rodent-to-
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Table 2

Description of parameters of the model (2.1).

Parameter Interpretation/description

I, Recruitment rate for humans

Mhy Mr Natural death rates of humans and rodents respectively
Bi(i=1,2,..., 8) Transmission rates

o1 Progression rate from Ej, to I

03 Progression rate from E; to Iy
7i(i=1,2,3) Recovery rates

o(l=1,2) Hospitalization rates

y Rate of quarantine from Ej to Eq

& Rate of relapse from Rj, to Sy,

K Maximal carrying capacity of rodents

b Maximum growth rate of the rodents
§i(i=1,2,3) Disease-induced death rates for humans

human transmission, human-to-rodent transmission, and rodent-
to-rodent transmission, respectively.

The Lassa induced death rate satisfies the inequality
81> 08, > 83, indicating that the death induced by the LHF is
higher in the I class than I; class, followed by the H class.
This may be due to the impact of health care and treatment for
quarantined and hospitalized people. We further assume that the
susceptible rodent population follows a logistic growth rate, given
by, b(1 — %) Biirger et al. (2019).

The basic reproduction number is calculated using the next
generation matrix technique, which represents the number of
secondary cases that one infected individual would reproduce if
the person is placed into a completely susceptible population
Diekmann et al. (1990); Musa et al. (2019b); van den Driessche
and Watmough (2002). The bifurcation analysis is performed by
using Center Manifold Theory as presented in Castillo-Chavez and
Song (2004). Detailed mathematical analyses of the model (2.1) can
be found in Appendix A.

The number of cases of the ith week is

Zi= 0*(T3 4 83 + uy)H dt,

week i

(2.3)

where p* denotes a constant reporting rate of the LHF cases.

2.3. Fitting framework

We model the reported LHF cases, C; for the ith week during
the study period, as a partially observed Markov process (POMP,
also known as hidden Markov model, HMM). Instead of imple-
menting Poisson-distributed priors Zhao et al. (2018a), all C;’s are
assumed to follow over-dispersed Poisson distributions according
to the theoretical modelling (Eq. (2.3)) outputs, Z;s. Since the rate
of Poisson distribution is a Gamma random variable, the observed
weekly number of people who are confirmed LHF cases (C; of the
ith week) is a random sample from a negative-binomial (NB) dis-
tribution. Therefore, for each (or a single) year,

C; ~ NB(mean = Z;, variance = Z;(1 + t%;)), (2.4)

where t (> 0) is an over-dispersion parameter for NB distribution
to be estimated. In this likelihood framework, we set L;;( - ) be the
likelihood function for the ith week of the jth year, which is the
probability measurement of the observed number of cases, given
the real cases from simulations Z; under the NB distribution in
Eq. (2.4) Breto et al. (2009); Lin et al. (2016). The R (version 3.4.1)
package “POMP” The website of R package POMP (2018) was used
for the model calibration.
The overall log-likelihood, [, for the whole time series is

3T
1(©) =Y > " In[Lij(Gj | Coj. - .. G1j: ©)].

j=1 i=1

(2.5)

Here, ® is the parameter vector under estimation, and T repre-
sents the total number of weeks in a wave (in this work we only
focus on the first 30 weeks in each wave and five parameters were
estimated). To express the [(®) in this form it is convenient to sim-
ulate with an identical transmission rate for the three waves.

We employed the iterated filtering algorithm with the plug-
and-play likelihood-based inference framework to estimate the
maximum likelihood estimates (MLE) of ® (Camacho et al. (2011);
Earn et al. (2012); He et al. (2011, 2010, 2015); lonides et al.
(2011, 2006); Lin et al. (2016). We used the fixed-time-step Euler-
multinomial algorithm to simulate the ODE system (2.1). Model
performance is compared by using the small-sample-size corrected
Akaike’s Information Criterion (AICc) Camacho et al. (2011). The
AICc is a measurement of the trade-off between the model com-
plexity and the goodness-of-fit. The AlCc is given by

2M(M + 1)

N (2.6)

AICc = —21(©) + 2k +

Here, N is the number of data points, i.e.,, sample size, and M
represents the number of parameters to be estimated.

To illustrate that the model (2.1) can be used to describe the
epidemics of LHF in Nigeria, we fit the model (with most param-
eter values given) to the 30 weeks of data for each of 2016, 2017,
and 2018. The epidemics in 2016, 2017 and 2018 share strikingly
similar patterns, but the magnitude is increasing by a factor of
(roughly) two every year. The similar patterns in the data sug-
gest that the driving force (from rodent) of the LHF epidemic could
have similar pattern across years, or could be completely periodic
or differ only by a factor.

We assumed that an infection from rodent to human is
time-dependent and should be possible to synthesize all rodent
contributed infection (to human) as one time-dependent func-
tion. Using the cubic spline numerical approach to fit the LHF
epidemic data and reconstruct the Z; series He et al. (2017);
Zhao et al. (2018b).

We let n, to represent the number of nodes in the cubic spline
of An(t). Different possible values of n,’s were tested to examine
the value that could give lowest AICs. In addition, we suggested
that the 2016-2019 LHF epidemics share similar cubic spline func-
tion of A;(t), although we observed that the seasonal trends of the
LHF epidemics might be increasing over a certain period of time.

2.4. Two fitting schemes

We fit the model (2.1) to the weekly time series data on LHF
cases of three major outbreaks in Nigeria during 2016-19 to ex-
plore the LHF transmission dynamics. We conducted the fitting
with two schemes (each with five parameters estimated) and in-
cluded several biologically reasonable simplifications in the fitting.
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By fitting the epidemic model to the real-world time series data
on LHF cases, we aim to reconstruct the time-varying transmission
rates or forces of infection (Fols).

24.1. Scheme I

In model (2.1), the transmission paths are controlled by the ef-
fective contact parameters, i.e., 8; — Bs. The B4 and Bg are the
effective “contact” rate from rodents to humans and to rodents,
respectively. Thus, both B4(t) and Bg(t) attribute to the rodents
contributed transmission effects. The remaining contact parame-
ters, ie., B1, B2, B3, Bs, Be and B, are the humans contributed
transmission effects. In scheme I, we assumed all the rodents con-
tributed transmission to be time-varying, and all humans con-
tributed transmission to be constant over the study period.

In the preliminary fitting, we attempted two scenarios: (i)
B4(t)# Bs(t), the two rodents contributed transmission paths de-
termined by different time-varying functions, and (ii) B4(t) =
Bs(t), the two rodents contributed transmission paths to be the
same time-varying function. The preliminary fitting results showed
that relaxing the scenario, i.e., changing from scenario (ii) to (i),
does not improve the model in term of AICc. The likelihood ratio
(LR) test yields a consistent outcome that the scenario (i) fails to
improve the model performance significantly. Therefore, for sim-
plicity, scenario (ii), is presumed and adopted in this scheme.

Although human contributed 81, B, B3, Bs, B and B are not
necessarily equal in the model (2.1), we set B = B, = 83 and S5 =
Bs = B in the fitting. This is another simplification based on the
fact that most of LHF cases would not be effectively quarantined
nor hospitalized, and thus they could be as infectious as the cases
in the general population.

2.4.2. Scheme II

Previous studies show that the great majority of LHF cases
result from the transmission from rodents to humans Fichet-
Calvet and Rogers (2009); lacono et al. (2015); WHO (2018). Based
on this fact, the similar qualitative patterns in the LHF epidemics
across years stimulate us to presume that the rodents-driven trans-
mission path, i.e., Ar in the model (2.1), of the epidemic could have
the same pattern. In contrast, the force of infection (Fol) driven by
humans, A, could present different shape across years. The two
Fol's, A; and Ap, are considered to be time-varying and are re-
constructed by using the cubic spline function. We model all ro-
dent contributed infections by one time-varying Fol, A.(t). Each
epidemic curve is fitted with the same reconstructed A,(t) but dif-
ferent Ap(t). In other words, the A;’s are assumed to be the same
in each year, however, the A, could vary across years.

3. Results

The fitting results under scheme I (Section 2.4.1) were shown
in Fig. 2. Our LHF epidemic model elucidates similar temporal pat-
terns of the LHF transmission dynamics in Nigeria from 2016-19
under biologically reasonable conditions. Fig. 2 shows the dynam-
ics of the rodent population by incorporating a time-dependent ro-
dent population size, although the information on LHF prevalence
among rodent is still insufficient. It reveals that the outbreak of
LHF among rodents appears to be in the first half of each year.
Therefore, the observed human outbreaks result from an outbreak
among rodents plus a time-dependent (basically a step-function
type) transmission rate from rodent to human (or spill-over rate).
The parameter f4(t), which is time-varying, takes the maximum
value from Nov to Feb of every year, after which the value drops
to a minimum. Our fitting result provides a possible mechanism for
understanding the annual outbreaks of LHF. The increasing ampli-
tude of LHF could be explained by higher initial/baseline infectious
human cases in November 2017 and 2018 than in November 2016.

We assumed the transmission rates to be identical across the three
outbreaks. The higher initial infectious human cases could be due
to higher rainfall in 2017 and 2018 than in 2016, even though there
could be other possible mechanisms such as differential impact of
prevention efforts and behavior changes.

The fitting results under scheme II (Section 2.4.2) were shown
in Fig. 3. The rodents Fol (A;), the average prevalence rates (infec-
tion rates) of A, and the temporal pattern of the A.(t) are shown
in Fig. 3. We found that the LHF epidemics can be reconstructed
by the same Fol from rodents (A;) together with similar Fol from
humans (Ap). Our model (2.1) is able to capture the observed LHF
epidemics for the three years with synchronized A. The synchro-
nization of A, across years indicates the strong seasonality in the
rodent-driven Fol is perfectly in-phase. Although A;,’s are assumed
to be fully flexible (i.e., different) from 2016-19, the reconstructed
Ap's appear to have a similar pattern (i.e., seasonality) in each year.

Given the same A, for each year, though A,’s appear to have
a similar pattern across years, it is neither perfectly in-phase nor
with the same scale. Although we show that the estimated Fol's
exhibit similar seasonal trends in 2016-2019, not all of them were
synchronized in each case despite their proximity. These results
also can be extended on the LHF transmissibility in terms of the
effective reproduction number, denoted by R.g. Note that R =
RS, (0), where R is the basic reproduction number and sp(0)
(ranges from O to 1) is the percentage of population which is sus-
ceptible at the initial stage of the outbreak. The initial susceptibil-
ity s,(0) at the beginning of each year are estimated to increase
across years. Note that the infection rate of the cases in terms of
the standard “SIR” model is defined by the product of the effec-
tive transmission rate (8), population susceptibility (S;) and in-
fectivity (I), ie., “BSpl;". Although we have restricted the major
Fol (i.e., A;) to be the same across years for the fitting simplic-
ity, it is more likely to be variable in practice. Thus, the estimated
increase in the s,(0) actually reflects increase in the case preva-
lence rate across years. If we denote the Fol as A = Iy, the case
prevalence rate should be AS, « Rl Therefore, the estimated in-
crease in the S,(0) across years could be due to an increase in
the transmissibility (8), and amount of infected rodents (I;). Since
ASh & Reflr = RoSplr, the transmissibility and susceptibility cannot
be disentangled.

In scheme I, the assumption B4 = Bg does not improve the fit-
ting result extensively. We also show that S5 (85 = B = f7) is
small, and B (B = B, = B3) is relatively high, this means that
human-to-human transmission is relatively high (or comparable to
rodent-to-human and rodent-to-rodent transmission, respectively),
where the human-to-rodent transmission is negligible. In scheme
I, we found that the maximum level, max{B4l;} = exp(7.248) ~
1405.6. However, at the steady state I = Ny(1 — R%r)‘ The Rq, is
the rodent only basic reproduction number (without human cases,
i.e.,, the number of secondary infections that one infected rodent
would reproduce if it is placed into a completely susceptible ro-
dent population). Thus find the relationship between B4 and Ryg;.
Hence, max B4N:(1 — %m) ~ 1405.6. Note that, the ){,—Tr is relatively
high if Rq, is high. Therefore, we cannot extricate I, and B4, but
we can find their relations.

4. Discussion

The transmission dynamics of LHF are mostly driven by
zoonotic transmission involving human and rodent populations.
The Lassa virus infections may spillover from rodent to human
by different transmission routes. Secondary infection between in-
dividuals may occur in large gatherings while individuals who de-
velop clinical symptoms may seed the infection into hospital and
generate nosocomial outbreaks Monath (1975). The force of infec-
tion of LHF is largely influenced by seasonal and climatic factors
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Fig. 2. Fitting transmission rates of the model (2.1) by using the cubic spline function for scheme I. The black circles are the observed numbers of LHF cases, and the red
solid line are the simulation medians. The grey shaded regions represent the 95% Cls from the simulation. The black curve (thick line) represents the daily rainfall with
delay of 145 days. The blue dashed line represents the transmission rate from rodents to humans, B4; and the brown dashed-dotted line represents the human-to-human
transmission rate, §1. The parameter estimates are summarized in Table 3. The inset panel in (b) shows the AICc as a function of n,, the number of nodes in the cubic
spline. Since n, = 4 attains the minimum AICc, thus n, = 4 was used in (a-c). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 3

Baseline values and ranges for parameters of model (2.1).

Parameter Baseline (Range) Units Sources Fitting status

Ny, 5x 107 (2-10 x 107) Persons Estimated by The World Bank demography (2019)  Fixed

h 0.00005 (0.00003-0.00006) Day ™! Estimated by Okuneye and Gumel (2017) Fixed

r 0.002 (0.001-0.006) Day ™! Sengupta (2013) Fixed

I, 2500(1000-5000) Persons day’1 Estimated by The World Bank demography (2019)  Fixed

K 4000(2000-10, 000) Rodents Assumed Fixed

04 0.52(0.1-1) Day™! Estimated by Agusto (2017) Fixed

[P 0.41(0.1-1) Day ! Estimated by Agusto (2017) Fixed

o 0.0123(0.001-0.025) Day~! Estimated by Agusto et al. (2015) Fixed

o> 0.012(0.0015-0.025) Day™! Estimated by Agusto et al. (2015) Fixed

Yy 0.1(0.09-0.51) Day™! Estimated by Safi and Gumel (2011) Fixed

& 0.0067(0.0035-0.03) Day~! Estimated by Safi and Gumel (2011) Fixed

U=T="1 0.0517(0-1) Day™! Assumed Fixed

81 0.21(0.1-0.5) Day~! Obabiyi and Onifade (2017) Fixed

8 0.2(0.1-0.5) Day ™! Obabiyi and Onifade (2017) Fixed

83 0.19(0.1-0.5) Day ! Obabiyi and Onifade (2017) Fixed

b 41(35-50) Day ™! Assumed Fixed

Bi=pP=P0s 0.22(0.03-0.5) Day ™! Estimated by Dénes and Gumel (2019) Fixed, to be estimated
Ba 0.3045(0.1-0.8) Day ™! Agusto (2017) Time-varying, to be estimated
Bs = Ps = P7 0.075(0.03-0.2) Day ™! Assumed Fixed, to be estimated
Bs 0.142(0.05-0.4) Day™! Assumed Time-varying, to be estimated

that contribute eminently in the emergence of human cases. Attack
rates appear to be lower in children than in adults Monath (1975).
The infection of LHF in rodent population appears to be asymp-
tomatic (i.e., infectious but do not show symptoms) and temporary
(after the infection the LHF virus can be cleared from the blood
of an infected animal). However, the virus can be present in the
urine of a rodent for more than 100 days. Further, both horizon-
tal and vertical transmissions are possible for the LHF transmission
Akhmetzhanov et al. (2019). Rodent to human transmission route
has been considered as the major transmission path of the LHF in-
fection, this is because the reservoir of the LHF is omnipresent per
domestic rat; rodents are infected with the LHF virus in-utero and
would stay infectious with the virus throughout its lifetime, excret-

ing about 1,000 to 10,000 viral particles per milliliter of urine; the
prevalence of the LHF in human and rodent is significantly influ-
enced by the geographical correlations between them.

Mastomys natalensis rodents appear to be numerous in the for-
est resulting in high prevalence of the LHF in human population
in forest area, while the proportion of the LHF infected rodents is
higher in communities resulting in high infection rates in human
population Akhmetzhanov et al. (2019); Kerne'is et al. (2009). Evi-
dence shows that rodent consumers have a higher risk of LHF in-
fection (which is about twice) than non-consumers, even though
the association does not fulfill the conventional 5% significance
threshold (with p-value of 0.10) Kerne'is et al. (2009). We used a
mechanistic modelling technique and data fitting to explore the
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Fig. 3. Fitting forces of infection of the model (2.1) by using the cubic spline function for scheme II. The black circles are the observed numbers of LHF cases, and the red
solid lines are the simulation medians. The grey shaded regions represent the 95% Cls from the simulation. The black curve (thick line) represents the rainfall with delay
of 145 days. The blue dashed line represents the force of infection from rodents, A,; and the brown dot-dashed line represents the force of infection from humans, A,. The
parameter estimates are summarized in Table 3. The inset panel in (b) shows the AICc as a function of n,, the number of nodes in the cubic spline. Since n, = 3 attains the
minimum AICc, thus n, = 3 was used in (a-c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transmission dynamics of the annual LHF epidemics in Nigeria
from 2016-2019. The findings in this work provide a better under-
standing of the patterns and driving forces of the LHF outbreaks
in endemic areas, which is to the best of our knowledge was not
reported in the prior studies. The iterated filtering statistical in-
ference framework was used on the model (2.1) for the data fit-
ting. The model (2.1) was fitted to time series data on LHF cases in
Nigeria from 2016-19 in Figs. 2 and 3 using two different schemes.
The proposed LHF epidemic model was able to predict the LHF epi-
demics in Nigeria from 2016-19 under biologically reasonable set-
tings.

In Fig. 2, we reveal the dynamics of the rodent population
by incorporating a time-dependent rodent population size even
though the information on LHF prevalence among rodent is inad-
equate. Thus, the model fitting result suggests that the observed
human outbreaks are a combination effect of the rodent outbreaks
together with time-dependent (basically a step-function type) of
transmission rate from rodent to human (or spill-over rate). The
result also highlights the existence of LHF outbreaks among ro-
dents in the first half of each year. The parameter f4(t) takes the
maximum value between Nov and Feb of every year, after which
the value drops to a minimum. Our fitting result gives one possi-
ble scenario which can explain the annual outbreaks of LHF. The
increasing amplitude of LHF could be explained by higher initial
infectious human cases in Nov 2017 and 2018 than in Nov 2016.
We assumed the transmission rates to be identical across the three
years outbreaks. The higher initial infectious human cases could be
due to higher rainfall in 2017 and 2018 than in 2016, even though
there could be other possible scenarios. However, more knowledge
on the rodent population (population size and virus prevalence)
could be helpful to figure out the true scenario. Nevertheless, this
work is the first attempt to analyze these outbreak data through
mechanistic modeling framework.

We found that the epidemics in each year could be recon-
structed by the same Fol's (i.e., Ay(t)), and also could be estimated
with the same model structure. The similarity of patterns in the
data leads to a presumption that the driving force (from rodent)

of the epidemic could have the same or similar pattern across
years, or could be completely be periodic or may differ only by
a factor. The proposed reconstruction approach presents equivalent
goodness-of-fit in terms of the values of log-likelihood. In Fig. 3 we
assumed that all human cases were explained as rodent infected,
since the B4(uy(t)) is much larger than ;. And the observed out-
break among human were explained by either an outbreak among
rodent (if the spill-over rate is constant) or the time-varying spill-
over and a constant prevalence of the LHF among rodent, or a com-
bination of these both effects. We ignored the detailed dynamics of
rodent, and simply modeled the transmission rate from rodent as
time dependent. The reason to choose this scheme is for lack in-
formation on rodent (such as population size and LHF prevalence
among rodent).

We also explored the sub-exponential growth feature in the LHF
epidemics. Fig. A3 is the fitting results of the weekly reported cases
of the LHF using the sub-exponential growth formulation adopted
from Chowell et al. (2016a,b), which highlights the positive impact
in obtaining the accurate assessment of the effective reproduction
number of the LHF outbreaks.

The model parameters and reconstructed rodent infections set
a reasonable modeling framework for further improvement. The
model also allows simulation-based analysis to evaluate the prac-
tical control measures. The initial susceptibility (Sy(t)) is increased
from 2016 to 2017 and from 2017 to 2018, by a factor of (roughly)
2 each year. However, this could be due to the assumption that
the rates of transmission of the three years were identical (includ-
ing both human-to-human, and rodent-to-human transmissions).
Given that the initial susceptibility and transmission rates cannot
be disentangled in reality, it could be that the initial susceptibil-
ity had been kept the same at the beginning of the three years,
then the transmission rates had been increased by a factor of 2
from year to year. Nevertheless, the transmission rate shared strik-
ingly similar temporal patterns, as this can be seen from the raw
data.

Although our basic model contained both human and ro-
dent populations, the fitting result was able to capture dy-
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namical features of the human population and some of the
rodent population. We presumed that it could be sufficient
to synthesize all rodent-contributed infections (to human) as
one time-dependent function in the analysis. Furthermore, our
model could also be extended to incorporate weather and
climate data into the rodent contributed infections. This is
to replace the flexible cubic spline with a mechanistic form
which could give more detailed dynamics features of the LHF
epidemics.

We reveal that the estimated Fol's exhibited similar seasonal
patterns from 2016 to 2019, however, not all of them were syn-
chronized in each year despite their proximity. These results also
can be extended on the LHF transmissibility in terms of the ef-
fective reproduction number. We also allowed the initial condi-
tion of the susceptibility to vary across years and to be esti-
mated between 0 and 1. Although we have restricted the ma-
jor Fol (rodent ro human) to be the same across years for
the fitting simplicity, it is more likely to be variable in prac-
tice. Thus, the estimated increase in the initial susceptibility ac-
tually reflects an increase in the case prevalence rate across
years. Therefore, the estimated increase in the initial susceptibil-
ity across years could be due to the increase in the transmissi-
bility (in terms of effective transmission rate, ), or amount of
infected rodents (reflected by the number of infected cases, I),
or joint effect of 8 and I, (e.g., in terms of Fol, A = BI;;) in each
year.

Our model was able to capture numerous dynamical fea-
tures, even though some features were missed due to the in-
sufficiency of the data, especially in the rodent population.
This part is left for future analysis when the data becomes
available. Further analysis and numerical results show that our
model exhibits forward bifurcation (exchanges of stability be-
tween the disease-free equilibrium and the endemic equilib-
rium when the basic reproduction number equals one, see
Appendix A for detail). The sensitivity analysis in Appendix B also
reveals the top-ranked parameters (i.e., rodent-to-human trans-
mission rate, the maximum growth rate of the rodents, and
the rodent mortality) that could be important for the LHF
control.
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Appendix A. Mathematical analysis
Al. Disease-free equilibrium and basic reproduction number

The model (2.1) will be analyzed to gain insight into its dynamical features. The total human and rodent populations satisfy the fol-
lowing equations

dI\Z]t(t) = Hh — MhNh — 511;1 — (Szlq — 83H < Hh — ,bLhNh,

and

dN:(6) N, B b
= b(l _ ?>N, (S + 1) = N,(b — - Km).

Denote 2 = {(Sy, Ep, Iy, Eq, Ig. H, R, Sr, Ir) e RY 1 Ny < E—: IN; < %}. It can be shown (by solving N, and N;) that all solutions of
the system starting in the region Q2 remain in  for all t> 0. Thus, the region Q is positively invariant, and it is sufficient to consider
solutions in €2. In this region, the usual existence, uniqueness and continuity results hold for the system Forouzannia and Gumel (2014);
Hussaini et al. (2016); Usaini et al. (2018); Musa et al. (2019c,a).

The model (2.1) has a unique disease-free equilibrium (DFE), obtained by setting the right-hand sides of the model equations to zero,
given by

Eo = (SO, ED. 19, EQ, 19, HO,R°, 2, I9) = (E: 0,0,0,0,0,0, M o).

The matrices F (for the new infection terms) and V (for the transition terms) associated with the model (2.1) are given, respectively, by

0G 0 G G G Q 0 0 0 0 o0
00 0 0 0 O oy Q 0 0 0 0
o 0o 0o 0o o0 o |-y 0o @ o0 o0 o
F=1o0 0 0 0o o of®™V=| 0 -0, Q 0 0/
00 0 0 0 O 0 - 0 —ay Q5 O
0 G 0 G G G 0 0 0 0 0
where,

Q=01+y+upn Q=m4+ar+6+u, Q=02+ Q=To+a+08+ iy,
I1
QB =13+8+un Q=E+u, CG=pH., G=pF. G=4;s, C4=M

M“n
Cs = M CSZM, C7:M’ and G = Bs.
b b b
Hence,
Ro= p(FV-1) = BLEVE (A1-1)
&3
where,

g1 = (Y02(GQs + Gor2)Qz + Q4Q301 (G1Q5 + Garr)) pr + CsQ1Q2Q5Q40Qs5,
£ = (¥02(GQs +Ge2)Q + Q301 (C1Qs + Gan))*pr? — G6* Q12 Q% Q" Q%057
+ 2QuQ5Q1Qs - ((—2GsCs + GoGs)Qs + 012 (C3Cg — 2C7C4)) ¥ 02Q2 + 2 Q1Q3Q5Qs
(GG = 2CsCa) Qs + a1 (GG — 2GCy) )01 Q3 Qo phr,
g3 = 2Q1Q2Q3Q4Q5 .

Since we assume that, 81 = 8, = B3 and B5 = Bg = B7 so that (; =G, =C3 and (5 = G5 = ;. Using Theorem 2 of van den Driessche
and Watmough (2002), the following result can be established.

Theorem A1.1. The disease-free equilibrium, Egy, of the model (2.1) is locally asymptotically stable (LAS) if Rg < 1, and unstable if Ry > 1.

The threshold quantity Rq represents the average number of secondary cases that one infectious individual would generate over
the duration of the infectious period if introduced into a completely susceptible population van den Driessche and Watmough (2002);
Zhao et al. (2019).

A2. Endemic equilibrium

The endemic equilibrium of the model (2.1) is the steady state where the disease persists in the population, that is, when at least
one of the infected classes/compartments of the model is non-empty. Let E* = (S;, E, I, Eg., [§, H*, R*, S, If) be an endemic equilibrium
solution of model (2.1). Then, equating the right hand side of Eq. (2.1) to zero, the endemic equilibrium in terms of the forces of infection
Ap and A, is given by,

o _ _ U005QsT105%

(U = Uy)Qy — Us)Ay + Uy’
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B — Q2Q5Q614,11,Q3Q4

" (U =U2)Q —Us)ap +Us”
- Q5Q62411;,Q3Q407

T (Us —Ug)hn + Uy’
B Q4QsAny QQsIT,

q ((Up —Uy)Qy —U3)Ap + Uy’
[ QsApy Q2Qs50,11,

a- (U —Uy)Qy —U3)Ap + Uy’
(¥ Quoa02 + Q3Q40101) Qs A I,

H* =
((U] — Uz)Qz — Ug))\h + U4
R — )Lh(U7+U8)Hh
(U —U2)Qa —Us)Ay + Uy’
* I</"Lr(b — H‘r) * __ )Lrl((b — l‘l’r)
R R A
where

Uy = Q1Q5Q6Q3Q4, Uy =& ¥ 02(apT3 — Q572), Us = & Q3Q4071(T1Q5 — T321),
Us = Q1Q205141,Q5Q3Q4, Us = Q4((Q1Q2Q5 — & 0171)Q5 — § 0173011)Q3,
Us =&y Qo (@273 — QsT3), Uy = ¥ 02 (2273 + Q572)Q2, and Ug = Q3Q407 (T1Qs5 + T30x7).

A3. Bifurcation analysis

The bifurcation analysis is performed by using Center Manifold Theory as presented in Castillo-Chavez and Song (2004). Here, the
conditions on the parameter values in the model (2.1) that cause forward or backward bifurcation to occur are analyzed Carr (1981);
Castillo-Chavez and Song (2004); Musa et al. (2019a); van den Driessche and Watmough (2002). One can see that the backward bifurcation
may not exist, which is probably due to the presence of the mass action incidence function in the model formulation, see for instance,
Garba et al. (2008); Roop-O et al. (2015). A forward bifurcation occurs when Ry crosses unity from below; a small positive asymptotically
stable equilibrium appears and the disease-free equilibrium losses its stability Castillo-Chavez and Song (2004).

Thus, forward bifurcation would occur at Ry = 1. This is illustrated by simulating the model (2.1) using the following parameter values,
I, = 11, ), = 0.345 day™ ', pr = 0.86 day~', K = 1500 day™', b =625 day ™!, o7 = 0.85 day~!, 0, = 0.80 day™', oy = 0.23 day ™!, o, =
0.23 day™!, y =0.065 day™', £ =0.203 day™ !, §; =0.21 day™!, 8, =0.2 day™', 83 =0.19 day™!, 7; =0.25 day™ !, 7, =0.27 day !, 73 =
0.35 day’l, Bi=pPr=...=Bsg=0.05 day’l; it should be stated that these parameter values are chosen for illustrative purpose only.
With these set of parameters Ry = 0.36337, A= —667.0934 and B = 0.8213. Note that A and B are the associated bifurcation coefficients
obtained. The forward bifurcation diagram of the model (2.1) is represented in Fig. A.1. Thus, the following result is established.

Theorem A1.2. The LHF model (2.1) undergoes forward bifurcation at Rg = 1 whenever the bifurcation coefficients, A and B are negative and
positive, respectively.

Proof. The proof of the above theorem is based on the Centre Manifold Theory Carr (1981); Castillo-Chavez and Song (2004);

Musa et al. (2019a); van den Driessche and Watmough (2002). Consider the system % = f(x,¥), where ¥ is the bifurcation parame-

ter, and f is continuously differentiable at least twice in both x and . The disease-free equilibrium is the point (xo =0, ¢ = 0) and the
local stability of the disease-free equilibrium changes at the point (xg, 0) van den Driessche and Watmough (2002). Now, we show that
there is nontrivial equilibrium near the bifurcation point (xq, V).

Suppose that B; = B is chosen as a bifurcation parameter and we let Rg = 1 from Eq. (A1-1), then, by Theorem Al1, the disease-free
equilibrium, Eq, is locally stable when B; < B} and unstable when B; > B;. Here B; = B; is a bifurcation value.

For convenience, let Sy = X1, Ep, =Xy, Iy = X3, Eg = X4, Ig = X5, H=Xg, Ry =X7, St =Xg, Ir = Xg, so that Ny = X1 + X + X3 + X4 + X5 + Xg +
x7 and Ny = Xg + Xq. Further, by adopting the same vector notation with x = (x;,X»,...,X9)T, the model (2.1) can be written as % = f(x)
where f = (f1, fa, ..., fo)T is as follows:

fi =Ty +8x7 — Apxy — ppks,
f2 = Apx1 — Qixa,
f3 = 01x2 — Qax3,
fa = yx2 — Q3xa,
f5 = 02x4 — QuXs,

fe = (1X3 + 0X5 — Q5X5,
f7 = T1x3 + TaXs + T3X6 — QsX7,
Xg + X
fs = b(l - % 9)()(8 +Xg) — ArXg — [UrXg,
fo = ArXg — tiXo, (A2-1)

where the associated forces of infection are respectively given by

X3 + P2Xs5 + P3X X
Ay = Prxs ﬂf 5+ BsXs +Baxg, and A, = P, Bsxs + BeXs + PrXs. (A2-2)
i1 Xi X8+ Xa
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Fig. A1. Forward bifurcation diagram of the model (2.1).

The Jacobian of the system (A2-1), evaluated at the DFE (Ep) with 8y = B}, is given by

—up 0 =B 0 B B3 £ 0 -m
0 - B 0 B2 B3 0 0 m
0 o1 —-Q 0 0 0 0 0 0
0 y 0 —Qs 0 0 0 0 0
JE)=F-V=| 0 0 0 o, -0 0 0 0 0 | (A2-3)
0 0 o 0 o —Qs 0 0 0
0 0 T 0 T T3 —-Q O 0
0 0 —ny 0 —n3 —Ny 0 Nsg Ng
L 0 0 nyp 0 ns Ny 0 0 n; |
where, n; = %’ ny = W’ n3 = ﬂsK(l;*llr)’ ng = /371((1;*Mr)7 Ns = —b+ r, ng = —b+2ur — Pg, N7 = Pg — fhr.

The Jacobian matrix J(Eq) of the system (A2-1) has a simple zero eigenvalue (other eigenvalues have negative real parts). Hence, the CMT
Castillo-Chavez and Song (2004); van den Driessche and Watmough (2002) can be used to investigate the dynamics of the system (A2-
1) located at By = B; Castillo-Chavez and Song (2004). Using the notations in Castillo-Chavez and Song (2004), the following computations
are carried out.
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Fig. A3. Fitting results of the LHF cumulative number of weekly reported cases at time t, with sub-exponential growth formulation. r denotes the growth rate, p [0, 1]
represents deceleration of growth parameter with 95% Cls in the brackets and A is the constant initialization.

Eigenvectors of J(Ej) Br=B; For the case when Ry = 1 it can be shown that the J(Ej) has a right eigenvector (corresponding to the zero

eigenvalue), given by w = (wy, W, ..., wg)T, where

_;1 /310'1 ﬂzUz)/ é o101 o0y E T101 oY o101 o0y
W“m( e o +%< o’ Q3Q4> (T % +%< o’ Q3Q4>>

_E Ny01 n3oyy ng 0101 o0y
n7< e 0 +Q5< e o )))w-
1

wy > 0, w3 = %Wz, Wy = éWz, W5 = %Wz, Wg = @(a]le + aéfér)

_ 1 /no1 | noyy Q101 | 0Q02Y
W7_Qs( e o +Q5( e "o ))we

1 (o5 oy (()510'1 Ole'z)/) n6<n201 n3oyy ng <(¥]G] O[z()'z]/)))
wg = —(m=-+n + + += + + + wy,
: n5< ‘L Ve Qs e Gu/) m\Qe U G\ U 2
we = ;1<712<71 L Moy | M iy (01101 n azaz)/))wz'

o\ Q Q3Q Q Q3Qu
Similarly, the components of the left eigenvector of J(Ey) (corresponding to the zero eigenvalue), denoted by v = (vq,14,...,V9), are
given by
1 ) 4ep) nqng nins
v1=0, 1,>0, V13=— ——2) - =) ),
! S 01<Q1 <ﬁ2+ (3 n7) n7))2

Uy =

e -2 2 = )22

1 nin n
Vg = *( 3—g>vz, V7 =0, Vg =0, Vg =——1,.
n; n

Qs 7

Note that the free components (entry) are chosen to be w, = A1l 7 and v, = 1 respectively, where

_ Q Y02 wfs  axmng  mins Y02 wfs  oomng  mn
A=t (Qz 2ea (P % G ) (G (B )
af3ooy  opmingoyy  mnsozy
Q3Qf (021/,32+ 0 " n >

and
nin 101 O30 ny (Ny0q N30 101Ny 00
A2:<'B3 14)(11+22V) 71(21+32V+114+22)/>7

Qs Qsn7 J\Q2Qs  Q3QuQs Q Qs Q4 Q05 Q3Qu0s
so that, v-w =1 (in line with Castillo-Chavez and Song, 2004).
It can be shown, by computing the non-zero partial derivatives of f;(i=1,...,9), that the associated bifurcation coefficients, A and B,

are given, respectively, by

3£ (0.0)  2(b — ur)[(—a1G2ptn + a3)V + VoW TT1as]K — 2vew3 BgbIT,

VgWiW; =
ki.zj=1 KT 8Xj8Xj HhK(b—,er)
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82.[]((03 O)
B= klz_:] vkwiTa'Bl = 1,Ws,

where a; = w31 +ws By + W3, ay = Wy + W3 + Wy + W5 + W + Wy, a3 = wiwg 411, and

aq = ws B + wgf7 + w3 ps.

Since v, >0 and w, >0 imply that B> 0, hence we have forward bifurcation if and only if A<0 (see Fig. A.1 for illustrative purpose)
and backward bifurcation when A > 0. Thus, the LHF model (2.1) exhibits the phenomenon of forward bifurcation, which occurs at Ry =
1. If Rg <1 then no endemic equilibrium appears and the disease-free equilibrium is the only local attractor. But if Rg > 1 then the
endemic equilibrium exists. For this reason, there is a forward bifurcation because in the neighborhood of the bifurcation point, the
disease prevalence is an increasing function of Rq (see Fig. A.1) which implies that the LHF model (2.1) exhibits a forward bifurcation. O

Appendix B. Sensitivity analysis

Following previous studies Gao et al. (2016); Zhao et al. (2018a,b), we adopted the partial rank correlation coefficient (PRCC) for sen-
sitivity analysis. The PRCC of the R of the model (2.1) is estimated. The sensitivity analysis results in Fig. A2 reveal the top ranked
parameters to be emphasized in controlling the LHF epidemics (i.e., rodent-to-human transmission rate 4, maximum growth rate of the
rodents K, and rodent natural death rate ).

Appendix C. Sub-exponential fitting results

We fitted the LHF cumulative number of cases at time t, with sub-exponential growth formulation adopted from Chowell et al.
(2016a,b). The parameter r (which is positive) represents the growth rate with units of people!~? per unit time. Here, the p is dimen-
sionless and we have p € [0, 1], which represents the deceleration of growth parameter. The function of this sub-exp fitting can be found
in Chowell et al. (2016a); Zhao et al. (2020, 2019).

The parameter A:Cél’p), where Cy is the initial number of cases, and p is the parameter that indicates how close this “sub-
exponential” to exponential. When p = 1,then it becomes an exponential growth rate.
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