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a b s t r a c t 

Lassa fever, also known as Lassa hemorrhagic fever, is a virus that has generated recurrent outbreaks 

in West Africa. We use mechanistic modelling to study the Lassa fever epidemics in Nigeria from 2016- 

19. Our model describes the interaction between human and rodent populations with the consideration 

of quarantine, isolation and hospitalization processes. Our model supports the phenomenon of forward 

bifurcation where the stability between disease-free equilibrium and endemic equilibrium exchanges. 

Moreover, our model captures well the incidence curves from surveillance data. In particular, our model 

is able to reconstruct the periodic rodent and human forces of infection. Furthermore, we suggest that 

the three major epidemics from 2016-19 can be modelled by properly characterizing the rodent (or hu- 

man) force of infection while the estimated human force of infection also present similar patterns across 

outbreaks. Our results suggest that the initial susceptibility likely increased across the three outbreaks 

from 2016-19. Our results highlight the similarity of the transmission dynamics driving three major Lassa 

fever outbreaks in the endemic areas. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Lassa fever, also known as the Lassa hemorrhagic fever

LHF), is an acute viral hemorrhagic illness that last 2–21 days

n humans and generated recurrent outbreaks in West Africa

khuemokhan et al. (2017) ; Fichet-Calvet and Rogers (2009) ;

ichmond and Baglole (2003) ; WHO (2018) . The Lassa virus is

n arenavirus , from the family of arenaviradae , that is mainly

ransmitted to humans through direct contact with food or

ousehold items contaminated with urine or stools from in-

ected rodents Andersen et al. (2015) ; Hamblion et al. (2018) ;

HO (2018) ; Xiao et al. (2001) . The human-to-human and labora-

ory transmissions could also be possible Hamblion et al. (2018) ;

HO (2018) . Thus, LHF is largely a zoonotic disease, i.e., hu-
ans become infected when in contact with an infected animal 
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ichet-Calvet and Rogers (2009) ; Onuorah et al. (2016) . The dis-

ase is endemic in West Africa where the LHF risk areas approx-

mately cover 80% of Sierra Leon and Liberia, 50% of Guinea, 40%

f Nigeria, 30% of Benin, Cote d’Ivoire and Togo and 10% of Ghana

khmetzhanov et al. (2019) ; Fichet-Calvet and Rogers (2009) . Re-

arding its severity, it is life-threatening with an estimated 2–3

illion cases and 50 0 0–10,0 0 0 deaths annually Fichet-Calvet and

ogers (2009) ; Okokhere et al. (2018) ; Onuorah et al. (2016) . Since

ts discovery in 1969 in the village known as Lassa in Borno state

f northern Nigeria Hamblion et al. (2018) ; Khan et al. (2008) ;

nuorah et al. (2016) ; Richmond and Baglole (2003) , noso-

omial outbreaks of LHF occurs repeatedly in Liberia, Nigeria

nd Sierra Leone Bajanil et al. (1997) ; Bowen et al. (1975) ;

arey et al. (1972) ; Fichet-Calvet and Rogers (2009) ; Fisher-

och et al. (1995) ; John et al. (1984) ; Onuorah et al. (2016) . 

The animal host (reservoir) of LHF virus is a rodent of the

enus Mastomys natalensis called the multimammate rat which

as found to be first infected with the virus in Nigeria and in

https://doi.org/10.1016/j.jtbi.2020.110209
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2020.110209&domain=pdf
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2 S.S. Musa, S. Zhao and D. Gao et al. / Journal of Theoretical Biology 493 (2020) 110209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O  

d  

r  

o  

h  

t  

g

 

A  

O  

q  

a  

e  

r  

a  

t  

s  

I  

a  

fi  

m  

m  

f  

u  

c  

c  

b  

t  

t  

t  

g  

A

2

2

 

f  

l  

2  

B  

t  

o  

r  

m  

N  

D  

R  

R  

d  

2  

(  

C

2

 

i  

q  

a  

E  

t  

I

N

Sierra Leon in 1972, and Guinea in 2006 Coetzee (1965) ; Fichet-

Calvet et al. (2007) ; Fichet-Calvet and Rogers (2009) ; Fichet-

Calvet et al. (2014) ; Hamblion et al. (2018) ; Kerne’is et al. (2009) .

The infected rats do not become ill but they can shed the virus

through their urine and stools Fichet-Calvet and Rogers (2009) ;

Onuorah et al. (2016) ; WHO (2018) . About 80% of individuals in-

fected with LHF virus do not show symptoms WHO (2018) while

about 1 in every 5 symptomatic infections result in se-

vere cases in which numerous organs such as kidney, liver,

spleen are affected WHO (2018) . Reinfection can occur for LHF

McCormick et al. (1987) ; Meulen et al. (20 0 0) , even though more

clinical evidence is needed for this assertion Meulen et al. (20 0 0) .

According to previous studies, the LHF prevalence is ampli-

fied in the rainy season as rainfall influences rodent migra-

tion from its natural habitat to human environment in order

to breed and gain propinquity during the dry season (and at

the beginning of the rainy season) during which the rodent-

human contact rate increases, enhancing the risk of exposure

to LHF Akhmetzhanov et al. (2019) ; Akhuemokhan et al. (2017) ;

Demby et al. (2004) ; Fichet-Calvet et al. (2007) ; Fichet-Calvet and

Rogers (2009) ; Kerne’is et al. (2009) ; Monath et al. (1974) ;

Rocha et al. (2017) ; Meulen et al. (1996) . Previous studies re-

veal that rainfall plays an essential role (a key ecological fac-

tor) for the transmission of LHF, because the attack rate was 2–3

times higher in the rainy season than in the dry season Fichet-

Calvet et al. (2007) ; Fichet-Calvet and Rogers (2009) . Symptoms

associated with LHF include fever, headache, general weakness and

malaise, muscle pain, sore throat, nausea, chest pain, cough, vom-

iting, diarrhoea, and abdominal pain WHO (2018) . In severe cases,

fluid in the lung cavity, facial swelling, bleeding from the nose,

mouth, vagina or gastrointestinal tract and low blood pressure

may develop Akhuemokhan et al. (2017) ; WHO (2018) . In fatal

cases, death usually occurs two weeks after the onset of the symp-

toms WHO (2018) . Lost of hearing may also occur after recovery

Richmond and Baglole (2003) . 

Currently, there is no vaccine available against LHF. However,

the antiviral drug ribavirin appears to be an effective treatment if

administered early in the course of clinical illness Fichet-Calvet and

Rogers (2009) ; Onuorah et al. (2016) ; WHO (2018) . Control of the

rodent population has been largely unfeasible, therefore, measures

frequently focus on keeping rats out of home and food items

WHO (2018) . Further, there is evidence of vertical transmission in

the rodent population Fichet-Calvet et al. (2014) , and the vertical

transmission rate could be higher during the rainy season when

the rodents are more involved in patrolling their houses for mat-

ing and breeding Fichet-Calvet et al. (2014) . 

Various mathematical models have been developed to investi-

gate the transmission dynamics of LHF Akhmetzhanov et al. (2019) ;

James et al. (2015) ; Saez et al. (2018) ; Obabiyi and Onifade (2017) ;

Onuorah et al. (2016) ; Zhao et al. (2020) . Some of which fo-

cused on the study of theoretical modelling analysis reveal dy-

namical features of LHF transmission within human and rodent

(as a reservoir) populations. Saez et al. (2018) found that chem-

ical treatment intervention is the key control measure to re-

duce the rodent population, which in turn reduces LHF infection.

Akhmetzhanov et al. (2019) developed a mathematical model to

explore the transmission dynamics of LHF in rodent population

and the impact to human cases, while quantifying the major sea-

sonal factors for the LHF infection, and found that seasonal migra-

tion of the rodent populations plays a significant role in seasonal

transmission of the LHF. James et al. (2015) proposed a determin-

istic model of LHF transmission dynamics and incorporated quar-

antine in an infectious class of humans. Onuorah et al. (2016) de-

veloped a mathematical model for the transmission dynamics of

LHF, and found that the basic reproduction ratio is most sensitive

to human birth rate followed by condom efficacy and compliance.
babiyi and Onifade (2017) designed a compartmental model to

escribe the transmission dynamics of the LHF within humans and

eservoir populations. Their results suggested that early diagnosis

f infected human cases, maintaining hygienic environment, en-

anced infection control in hospitals, and controlling the popula-

ion of the rodent population carrying the virus are the best strate-

ies to mitigate the spread of the virus. 

In this paper, we will extend previous studies

khmetzhanov et al. (2019) ; Saez et al. (2018) ; James et al. (2015) ;

nuorah et al. (2016) ; Obabiyi and Onifade (2017) by incorporating

uarantine or isolation and hospitalization of infected individu-

ls to better understand the transmission dynamics of the LHF

pidemics. We also incorporate different types of transmission

outes, i.e., human-to-human, rodent-to-human, human-to-rodent,

nd rodent-to-rodent. Note that rodent-to-human and human-

o-rodent may be regarded as one transmission route, which is

imilar to the vectorial transmission for mosquito-borne diseases).

n addition, this paper considers both standard incidence and mass

ction incidence rates and, to the best of our knowledge, it is the

rst time to simultaneously include the two incidence functions in

odelling the transmission dynamics of the LHF. We also fit our

odel to the real data to show the patterns of the LHF epidemics

rom 2016 to 2019 in Nigeria. Our results contribute to a better

nderstanding of the LHF epidemics and highlight some useful

ontrol measures to future LHF outbreaks. Further, we use the

enter manifold theory to analyze the existence of the forward

ifurcation that the associated disease-free equilibrium (DFE) and

he endemic equilibrium (EE) exchanges stability at R 0 = 1 and

he detailed analysis can be found in Appendix A . Finally, sensi-

ivity analysis, and sub-exponential growth fitting of the initial

rowth phases of the epidemics are also given in Appendix B and

ppendix C , respectively. 

. Methods 

.1. Lassa fever cases data 

The time series data of LHF confirmed cases were obtained

rom the Nigeria Centre for Disease Control (NCDC) disease surveil-

ance report Nigeria Centre for Disease Control (2019) from 2016 to

019, and we focus our analysis on the first 30 weeks of each year.

ecause these time interval covers the dry season (during which

he rodent-human contact rate increases which enhance the risk

f exposure to LHF) and the beginning of the rainy season (since

ainfall influences rodent migration from its natural habitat to hu-

an environment which increases the rate of LHF transmission) in

igeria Akhmetzhanov et al. (2019) ; Akhuemokhan et al. (2017) ;

emby et al. (2004) ; Fichet-Calvet et al. (2007) ; Fichet-Calvet and

ogers (2009) ; Kerne’is et al. (2009) ; Monath et al. (1974) ;

ocha et al. (2017) ; Meulen et al. (1996) . Further, the LHF epi-

emics appear to be higher in the first 30 weeks of each year (i.e.,

016-19), since the population size of rodent is time dependent

low in Oct to Feb, high in Mar to May) Nigeria Centre for Disease

ontrol (2019) . 

.2. Epidemic model 

We split the total human population at time t , denoted by N h ( t ),

nto sub-populations of non-quarantined susceptible, S h ( t ), non-

uarantined latently-infected (latently-infected means those that

re infected but not yet show clinical symptoms of the disease),

 h ( t ), quarantined latently-infected, E q ( t ), non-quarantined symp-

omatically infected, I h ( t ), quarantined symptomatically infected,

 q ( t ), hospitalized, H ( t ) and recovered, R h ( t ), individuals, so that 

 h (t) = S h (t) + E h (t) + I h (t) + E q (t) + I q (t) + H(t) + R h (t) . 
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Humans

Reservoir

Fig. 1. Schematic diagram of the model (2.1) . 

Table 1 

Description of the state variables of the model (2.1) . 

Variable Description 

N h Total population of humans 

S h Susceptible humans with risk of LHF infection 

E h Non-quarantined humans exposed to LHF infection 

I h Non-quarantined infected humans with symptoms of LHF infection 

E q Quarantined exposed humans 

I q Quarantined infected humans 

H Hospitalized humans 

R h Recovered humans 

N r Total population of rodents 

S r Susceptible rodents 

I r LHF infected rodents 

T  

N  

r

N

 

a  

b  

f

H  

t

λ  

w

 

λ
r 
he total rodent (reservoir) population at time t , represented by

 r ( t ), is split into two compartments of susceptible and infected

odents. Hence, we have 

 r (t) = S r (t) + I r (t) . 

The LHF model presented in Fig. 1 , the state variables in Table 1 ,

nd the parameters in Table 2 (all the parameters are assumed to

e positive) satisfy the following system of non-linear ordinary dif-

erential equations, 

d S h 
d t 

= �h + ξR h − λh S h − μh S h , 

d E h 
d t 

= λh S h − (σ1 + γ + μh ) E h , 

d I h 
d t 

= σ1 E h − (τ1 + α1 + δ1 + μh ) I h , 

d E q = γ E h − (σ2 + μh ) E q , 
d t 
d I q 

d t 
= σ2 E q − (τ2 + α2 + δ2 + μh ) I q , 

d H 

d t 
= α1 I h + α2 I q − (τ3 + δ3 + μh ) H, 

d R h 

d t 
= τ1 I h + τ2 I q + τ3 H − (ξ + μh ) R h , 

d S r 

d t 
= b 

(
1 − N r 

K 

)
N r − λr S r − μr S r , 

d I r 

d t 
= λr S r − μr I r . (2.1) 

ere, the forces of infection for humans and rodents are respec-

ively given by 

h = λhh + λhr and λr = λrr + λrh , (2.2)

here 

λhh = 

β1 I h + β2 I q + β3 H 

N h 
, λhr = β4 I r , λrh = β5 I h + β6 I q + β7 H, and

rr = 

β8 I r 
N represent human-to-human transmission, rodent-to- 
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Table 2 

Description of parameters of the model (2.1) . 

Parameter Interpretation/description 

�h Recruitment rate for humans 

μh , μr Natural death rates of humans and rodents respectively 

βi (i = 1 , 2 , . . . , 8) Transmission rates 

σ 1 Progression rate from E h to I h 
σ 2 Progression rate from E q to I q 
τi (i = 1 , 2 , 3) Recovery rates 

αl (l = 1 , 2) Hospitalization rates 

γ Rate of quarantine from E h to E q 
ξ Rate of relapse from R h to S h 
K Maximal carrying capacity of rodents 

b Maximum growth rate of the rodents 

δi (i = 1 , 2 , 3) Disease-induced death rates for humans 
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human transmission, human-to-rodent transmission, and rodent-

to-rodent transmission, respectively. 

The Lassa induced death rate satisfies the inequality

δ1 > δ2 > δ3 , indicating that the death induced by the LHF is

higher in the I h class than I q class, followed by the H class.

This may be due to the impact of health care and treatment for

quarantined and hospitalized people. We further assume that the

susceptible rodent population follows a logistic growth rate, given

by, b(1 − N r 
K ) Bürger et al. (2019) . 

The basic reproduction number is calculated using the next

generation matrix technique, which represents the number of

secondary cases that one infected individual would reproduce if

the person is placed into a completely susceptible population

Diekmann et al. (1990) ; Musa et al. (2019b) ; van den Driessche

and Watmough (2002) . The bifurcation analysis is performed by

using Center Manifold Theory as presented in Castillo-Chavez and

Song (2004) . Detailed mathematical analyses of the model (2.1) can

be found in Appendix A . 

The number of cases of the i th week is 

Z i = 

∫ 
week i 

ρ∗(τ3 + δ3 + μH ) H d t, (2.3)

where ρ∗ denotes a constant reporting rate of the LHF cases. 

2.3. Fitting framework 

We model the reported LHF cases, C i for the i th week during

the study period, as a partially observed Markov process (POMP,

also known as hidden Markov model, HMM). Instead of imple-

menting Poisson-distributed priors Zhao et al. (2018a) , all C i ’s are

assumed to follow over-dispersed Poisson distributions according

to the theoretical modelling ( Eq. (2.3) ) outputs, Z i s. Since the rate

of Poisson distribution is a Gamma random variable, the observed

weekly number of people who are confirmed LHF cases ( C i of the

i th week) is a random sample from a negative-binomial (NB) dis-

tribution. Therefore, for each (or a single) year, 

 i ∼ NB ( mean = Z i , variance = Z i (1 + τZ i )) , (2.4)

where τ ( > 0) is an over-dispersion parameter for NB distribution

to be estimated. In this likelihood framework, we set L i,j ( · ) be the

likelihood function for the i th week of the j th year, which is the

probability measurement of the observed number of cases, given

the real cases from simulations Z i under the NB distribution in

Eq. (2.4) Breto et al. (2009) ; Lin et al. (2016) . The R (version 3.4.1)

package “POMP ” The website of R package POMP (2018) was used

for the model calibration. 

The overall log-likelihood, l , for the whole time series is 

l(�) = 

3 ∑ 

j=1 

T ∑ 

i =1 

ln [ L i, j (C i, j | C 0 , j , . . . , C i −1 , j ;�)] . (2.5)
Here, � is the parameter vector under estimation, and T repre-

ents the total number of weeks in a wave (in this work we only

ocus on the first 30 weeks in each wave and five parameters were

stimated). To express the l ( �) in this form it is convenient to sim-

late with an identical transmission rate for the three waves. 

We employed the iterated filtering algorithm with the plug-

nd-play likelihood-based inference framework to estimate the

aximum likelihood estimates (MLE) of � ( Camacho et al. (2011) ;

arn et al. (2012) ; He et al. (2011, 2010, 2015) ; Ionides et al.

2011, 2006) ; Lin et al. (2016) . We used the fixed-time-step Euler-

ultinomial algorithm to simulate the ODE system (2.1) . Model

erformance is compared by using the small-sample-size corrected

kaike’s Information Criterion (AICc) Camacho et al. (2011) . The

ICc is a measurement of the trade-off between the model com-

lexity and the goodness-of-fit. The AICc is given by 

ICc = −2 l 
(

ˆ �
)

+ 2 k + 

2 M(M + 1) 

N − M − 1 

. (2.6)

Here, N is the number of data points, i.e., sample size, and M

epresents the number of parameters to be estimated. 

To illustrate that the model (2.1) can be used to describe the

pidemics of LHF in Nigeria, we fit the model (with most param-

ter values given) to the 30 weeks of data for each of 2016, 2017,

nd 2018. The epidemics in 2016, 2017 and 2018 share strikingly

imilar patterns, but the magnitude is increasing by a factor of

roughly) two every year. The similar patterns in the data sug-

est that the driving force (from rodent) of the LHF epidemic could

ave similar pattern across years, or could be completely periodic

r differ only by a factor. 

We assumed that an infection from rodent to human is

ime-dependent and should be possible to synthesize all rodent

ontributed infection (to human) as one time-dependent func-

ion. Using the cubic spline numerical approach to fit the LHF

pidemic data and reconstruct the Z i series He et al. (2017) ;

hao et al. (2018b) . 

We let n z to represent the number of nodes in the cubic spline

f λh ( t ). Different possible values of n z ’s were tested to examine

he value that could give lowest AICs. In addition, we suggested

hat the 2016–2019 LHF epidemics share similar cubic spline func-

ion of λh ( t ), although we observed that the seasonal trends of the

HF epidemics might be increasing over a certain period of time. 

.4. Two fitting schemes 

We fit the model (2.1) to the weekly time series data on LHF

ases of three major outbreaks in Nigeria during 2016-19 to ex-

lore the LHF transmission dynamics. We conducted the fitting

ith two schemes (each with five parameters estimated) and in-

luded several biologically reasonable simplifications in the fitting. 
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By fitting the epidemic model to the real-world time series data

n LHF cases, we aim to reconstruct the time-varying transmission

ates or forces of infection (FoIs). 

.4.1. Scheme I 

In model (2.1) , the transmission paths are controlled by the ef-

ective contact parameters, i.e., β1 − β8 . The β4 and β8 are the

ffective “contact” rate from rodents to humans and to rodents,

espectively. Thus, both β4 ( t ) and β8 ( t ) attribute to the rodents

ontributed transmission effects. The remaining contact parame-

ers, i.e., β1 , β2 , β3 , β5 , β6 and β7 , are the humans contributed

ransmission effects. In scheme I, we assumed all the rodents con-

ributed transmission to be time-varying, and all humans con-

ributed transmission to be constant over the study period. 

In the preliminary fitting, we attempted two scenarios: (i)

4 ( t ) � = β8 ( t ), the two rodents contributed transmission paths de-

ermined by different time-varying functions, and (ii) β4 (t) =
8 (t) , the two rodents contributed transmission paths to be the

ame time-varying function. The preliminary fitting results showed

hat relaxing the scenario, i.e., changing from scenario (ii) to (i),

oes not improve the model in term of AICc. The likelihood ratio

LR) test yields a consistent outcome that the scenario (i) fails to

mprove the model performance significantly. Therefore, for sim-

licity, scenario (ii), is presumed and adopted in this scheme. 

Although human contributed β1 , β2 , β3 , β5 , β6 and β7 are not

ecessarily equal in the model (2.1) , we set β1 = β2 = β3 and β5 =
6 = β7 in the fitting. This is another simplification based on the

act that most of LHF cases would not be effectively quarantined

or hospitalized, and thus they could be as infectious as the cases

n the general population. 

.4.2. Scheme II 

Previous studies show that the great majority of LHF cases

esult from the transmission from rodents to humans Fichet-

alvet and Rogers (2009) ; Iacono et al. (2015) ; WHO (2018) . Based

n this fact, the similar qualitative patterns in the LHF epidemics

cross years stimulate us to presume that the rodents-driven trans-

ission path, i.e., λr in the model (2.1) , of the epidemic could have

he same pattern. In contrast, the force of infection (FoI) driven by

umans, λh , could present different shape across years. The two

oI’s, λr and λh , are considered to be time-varying and are re-

onstructed by using the cubic spline function. We model all ro-

ent contributed infections by one time-varying FoI, λr ( t ). Each

pidemic curve is fitted with the same reconstructed λr ( t ) but dif-

erent λh ( t ). In other words, the λr ’s are assumed to be the same

n each year, however, the λh could vary across years. 

. Results 

The fitting results under scheme I ( Section 2.4.1 ) were shown

n Fig. 2 . Our LHF epidemic model elucidates similar temporal pat-

erns of the LHF transmission dynamics in Nigeria from 2016-19

nder biologically reasonable conditions. Fig. 2 shows the dynam-

cs of the rodent population by incorporating a time-dependent ro-

ent population size, although the information on LHF prevalence

mong rodent is still insufficient. It reveals that the outbreak of

HF among rodents appears to be in the first half of each year.

herefore, the observed human outbreaks result from an outbreak

mong rodents plus a time-dependent (basically a step-function

ype) transmission rate from rodent to human (or spill-over rate).

he parameter β4 ( t ), which is time-varying, takes the maximum

alue from Nov to Feb of every year, after which the value drops

o a minimum. Our fitting result provides a possible mechanism for

nderstanding the annual outbreaks of LHF. The increasing ampli-

ude of LHF could be explained by higher initial/baseline infectious

uman cases in November 2017 and 2018 than in November 2016.
e assumed the transmission rates to be identical across the three

utbreaks. The higher initial infectious human cases could be due

o higher rainfall in 2017 and 2018 than in 2016, even though there

ould be other possible mechanisms such as differential impact of

revention efforts and behavior changes. 

The fitting results under scheme II ( Section 2.4.2 ) were shown

n Fig. 3 . The rodents FoI ( λr ), the average prevalence rates (infec-

ion rates) of λh , and the temporal pattern of the λr ( t ) are shown

n Fig. 3 . We found that the LHF epidemics can be reconstructed

y the same FoI from rodents ( λr ) together with similar FoI from

umans ( λh ). Our model (2.1) is able to capture the observed LHF

pidemics for the three years with synchronized λr . The synchro-

ization of λr across years indicates the strong seasonality in the

odent-driven FoI is perfectly in-phase. Although λh ’s are assumed

o be fully flexible (i.e., different) from 2016-19, the reconstructed

h ’s appear to have a similar pattern (i.e., seasonality) in each year.

Given the same λr for each year, though λh ’s appear to have

 similar pattern across years, it is neither perfectly in-phase nor

ith the same scale. Although we show that the estimated FoI’s

xhibit similar seasonal trends in 2016–2019, not all of them were

ynchronized in each case despite their proximity. These results

lso can be extended on the LHF transmissibility in terms of the

ffective reproduction number, denoted by R eff. Note that R eff =
 0 S h (0) , where R 0 is the basic reproduction number and s h (0)

ranges from 0 to 1) is the percentage of population which is sus-

eptible at the initial stage of the outbreak. The initial susceptibil-

ty s h (0) at the beginning of each year are estimated to increase

cross years. Note that the infection rate of the cases in terms of

he standard “SIR” model is defined by the product of the effec-

ive transmission rate ( β), population susceptibility ( S h ) and in-

ectivity ( I r ), i.e., “βS h I r ”. Although we have restricted the major

oI (i.e., λr ) to be the same across years for the fitting simplic-

ty, it is more likely to be variable in practice. Thus, the estimated

ncrease in the s h (0) actually reflects increase in the case preva-

ence rate across years. If we denote the FoI as λ = βI r , the case

revalence rate should be λS h ∝ R effI r . Therefore, the estimated in-

rease in the S h (0) across years could be due to an increase in

he transmissibility ( β), and amount of infected rodents ( I r ). Since

S h ∝ R effI r = R 0 S h I r , the transmissibility and susceptibility cannot

e disentangled. 

In scheme I, the assumption β4 = β8 does not improve the fit-

ing result extensively. We also show that β5 ( β5 = β6 = β7 ) is

mall, and β1 ( β1 = β2 = β3 ) is relatively high, this means that

uman-to-human transmission is relatively high (or comparable to

odent-to-human and rodent-to-rodent transmission, respectively), 

here the human-to-rodent transmission is negligible. In scheme

I, we found that the maximum level, max { β4 I r } = exp (7 . 248) ≈
405 . 6 . However, at the steady state I r = N r (1 − 1 

R 0 r 
) . The R 0 r is

he rodent only basic reproduction number (without human cases,

.e., the number of secondary infections that one infected rodent

ould reproduce if it is placed into a completely susceptible ro-

ent population). Thus find the relationship between β4 and R 0 r .

ence, max β4 N r (1 − 1 
R 0 r 

) ≈ 1405 . 6 . Note that, the I r 
N r 

is relatively

igh if R 0 r is high. Therefore, we cannot extricate I r and β4 , but

e can find their relations. 

. Discussion 

The transmission dynamics of LHF are mostly driven by

oonotic transmission involving human and rodent populations.

he Lassa virus infections may spillover from rodent to human

y different transmission routes. Secondary infection between in-

ividuals may occur in large gatherings while individuals who de-

elop clinical symptoms may seed the infection into hospital and

enerate nosocomial outbreaks Monath (1975) . The force of infec-

ion of LHF is largely influenced by seasonal and climatic factors
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Fig. 2. Fitting transmission rates of the model (2.1) by using the cubic spline function for scheme I. The black circles are the observed numbers of LHF cases, and the red 

solid line are the simulation medians. The grey shaded regions represent the 95% CIs from the simulation. The black curve (thick line) represents the daily rainfall with 

delay of 145 days. The blue dashed line represents the transmission rate from rodents to humans, β4 ; and the brown dashed-dotted line represents the human-to-human 

transmission rate, β1 . The parameter estimates are summarized in Table 3 . The inset panel in (b) shows the AICc as a function of n z , the number of nodes in the cubic 

spline. Since n z = 4 attains the minimum AICc, thus n z = 4 was used in (a–c). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 3 

Baseline values and ranges for parameters of model (2.1) . 

Parameter Baseline (Range) Units Sources Fitting status 

N h 5 × 10 7 (2–10 × 10 7 ) Persons Estimated by The World Bank demography (2019) Fixed 

μh 0.00005 (0.00003–0.00006) Day −1 Estimated by Okuneye and Gumel (2017) Fixed 

μr 0.002 (0.001–0.006) Day −1 Sengupta (2013) Fixed 

�h 2500 (1000–5000) Persons day 
−1 

Estimated by The World Bank demography (2019) Fixed 

K 4000 (2000–10 , 0 0 0) Rodents Assumed Fixed 

σ 1 0.52 (0.1–1) Day −1 Estimated by Agusto (2017) Fixed 

σ 2 0.41 (0.1–1) Day −1 Estimated by Agusto (2017) Fixed 

α1 0.0123 (0.001–0.025) Day −1 Estimated by Agusto et al. (2015) Fixed 

α2 0.012 (0.0015–0.025) Day −1 Estimated by Agusto et al. (2015) Fixed 

γ 0.1 (0.09–0.51) Day −1 Estimated by Safi and Gumel (2011) Fixed 

ξ 0.0067 (0.0035–0.03) Day −1 Estimated by Safi and Gumel (2011) Fixed 

τ1 = τ2 = τ3 0.0517 (0–1) Day −1 Assumed Fixed 

δ1 0.21 (0.1–0.5) Day −1 Obabiyi and Onifade (2017) Fixed 

δ2 0.2 (0.1–0.5) Day −1 Obabiyi and Onifade (2017) Fixed 

δ3 0.19 (0.1–0.5) Day −1 Obabiyi and Onifade (2017) Fixed 

b 41 (35–50) Day −1 Assumed Fixed 

β1 = β2 = β3 0.22 (0.03–0.5) Day −1 Estimated by Dénes and Gumel (2019) Fixed, to be estimated 

β4 0.3045 (0.1–0.8) Day −1 Agusto (2017) Time-varying, to be estimated 

β5 = β6 = β7 0.075 (0.03–0.2) Day −1 Assumed Fixed, to be estimated 

β8 0.142 (0.05–0.4) Day −1 Assumed Time-varying, to be estimated 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

p  

e

 

e  

i  

h  

p  

d  

f  

t  

t  

m  
that contribute eminently in the emergence of human cases. Attack

rates appear to be lower in children than in adults Monath (1975) .

The infection of LHF in rodent population appears to be asymp-

tomatic (i.e., infectious but do not show symptoms) and temporary

(after the infection the LHF virus can be cleared from the blood

of an infected animal). However, the virus can be present in the

urine of a rodent for more than 100 days. Further, both horizon-

tal and vertical transmissions are possible for the LHF transmission

Akhmetzhanov et al. (2019) . Rodent to human transmission route

has been considered as the major transmission path of the LHF in-

fection, this is because the reservoir of the LHF is omnipresent per

domestic rat; rodents are infected with the LHF virus in-utero and

would stay infectious with the virus throughout its lifetime, excret-
ng about 1,0 0 0 to 10,0 0 0 viral particles per milliliter of urine; the

revalence of the LHF in human and rodent is significantly influ-

nced by the geographical correlations between them. 

Mastomys natalensis rodents appear to be numerous in the for-

st resulting in high prevalence of the LHF in human population

n forest area, while the proportion of the LHF infected rodents is

igher in communities resulting in high infection rates in human

opulation Akhmetzhanov et al. (2019) ; Kerne’is et al. (2009) . Evi-

ence shows that rodent consumers have a higher risk of LHF in-

ection (which is about twice) than non-consumers, even though

he association does not fulfill the conventional 5% significance

hreshold (with p -value of 0.10) Kerne’is et al. (2009) . We used a

echanistic modelling technique and data fitting to explore the
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Fig. 3. Fitting forces of infection of the model (2.1) by using the cubic spline function for scheme II. The black circles are the observed numbers of LHF cases, and the red 

solid lines are the simulation medians. The grey shaded regions represent the 95% CIs from the simulation. The black curve (thick line) represents the rainfall with delay 

of 145 days. The blue dashed line represents the force of infection from rodents, λr ; and the brown dot-dashed line represents the force of infection from humans, λh . The 

parameter estimates are summarized in Table 3 . The inset panel in (b) shows the AICc as a function of n z , the number of nodes in the cubic spline. Since n z = 3 attains the 

minimum AICc, thus n z = 3 was used in (a–c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ransmission dynamics of the annual LHF epidemics in Nigeria

rom 2016–2019. The findings in this work provide a better under-

tanding of the patterns and driving forces of the LHF outbreaks

n endemic areas, which is to the best of our knowledge was not

eported in the prior studies. The iterated filtering statistical in-

erence framework was used on the model (2.1) for the data fit-

ing. The model (2.1) was fitted to time series data on LHF cases in

igeria from 2016-19 in Figs. 2 and 3 using two different schemes.

he proposed LHF epidemic model was able to predict the LHF epi-

emics in Nigeria from 2016-19 under biologically reasonable set-

ings. 

In Fig. 2 , we reveal the dynamics of the rodent population

y incorporating a time-dependent rodent population size even

hough the information on LHF prevalence among rodent is inad-

quate. Thus, the model fitting result suggests that the observed

uman outbreaks are a combination effect of the rodent outbreaks

ogether with time-dependent (basically a step-function type) of

ransmission rate from rodent to human (or spill-over rate). The

esult also highlights the existence of LHF outbreaks among ro-

ents in the first half of each year. The parameter β4 ( t ) takes the

aximum value between Nov and Feb of every year, after which

he value drops to a minimum. Our fitting result gives one possi-

le scenario which can explain the annual outbreaks of LHF. The

ncreasing amplitude of LHF could be explained by higher initial

nfectious human cases in Nov 2017 and 2018 than in Nov 2016.

e assumed the transmission rates to be identical across the three

ears outbreaks. The higher initial infectious human cases could be

ue to higher rainfall in 2017 and 2018 than in 2016, even though

here could be other possible scenarios. However, more knowledge

n the rodent population (population size and virus prevalence)

ould be helpful to figure out the true scenario. Nevertheless, this

ork is the first attempt to analyze these outbreak data through

echanistic modeling framework. 

We found that the epidemics in each year could be recon-

tructed by the same FoI’s (i.e., λh ( t )), and also could be estimated

ith the same model structure. The similarity of patterns in the

ata leads to a presumption that the driving force (from rodent)
f the epidemic could have the same or similar pattern across

ears, or could be completely be periodic or may differ only by

 factor. The proposed reconstruction approach presents equivalent

oodness-of-fit in terms of the values of log-likelihood. In Fig. 3 we

ssumed that all human cases were explained as rodent infected,

ince the β4 ( μv ( t )) is much larger than β1 . And the observed out-

reak among human were explained by either an outbreak among

odent (if the spill-over rate is constant) or the time-varying spill-

ver and a constant prevalence of the LHF among rodent, or a com-

ination of these both effects. We ignored the detailed dynamics of

odent, and simply modeled the transmission rate from rodent as

ime dependent. The reason to choose this scheme is for lack in-

ormation on rodent (such as population size and LHF prevalence

mong rodent). 

We also explored the sub-exponential growth feature in the LHF

pidemics. Fig. A3 is the fitting results of the weekly reported cases

f the LHF using the sub-exponential growth formulation adopted

rom Chowell et al. (2016a,b) , which highlights the positive impact

n obtaining the accurate assessment of the effective reproduction

umber of the LHF outbreaks. 

The model parameters and reconstructed rodent infections set

 reasonable modeling framework for further improvement. The

odel also allows simulation-based analysis to evaluate the prac-

ical control measures. The initial susceptibility ( S h ( t )) is increased

rom 2016 to 2017 and from 2017 to 2018, by a factor of (roughly)

 each year. However, this could be due to the assumption that

he rates of transmission of the three years were identical (includ-

ng both human-to-human, and rodent-to-human transmissions).

iven that the initial susceptibility and transmission rates cannot

e disentangled in reality, it could be that the initial susceptibil-

ty had been kept the same at the beginning of the three years,

hen the transmission rates had been increased by a factor of 2

rom year to year. Nevertheless, the transmission rate shared strik-

ngly similar temporal patterns, as this can be seen from the raw

ata. 

Although our basic model contained both human and ro-

ent populations, the fitting result was able to capture dy-
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namical features of the human population and some of the

rodent population. We presumed that it could be sufficient

to synthesize all rodent-contributed infections (to human) as

one time-dependent function in the analysis. Furthermore, our

model could also be extended to incorporate weather and

climate data into the rodent contributed infections. This is

to replace the flexible cubic spline with a mechanistic form

which could give more detailed dynamics features of the LHF

epidemics. 

We reveal that the estimated FoI’s exhibited similar seasonal

patterns from 2016 to 2019, however, not all of them were syn-

chronized in each year despite their proximity. These results also

can be extended on the LHF transmissibility in terms of the ef-

fective reproduction number. We also allowed the initial condi-

tion of the susceptibility to vary across years and to be esti-

mated between 0 and 1. Although we have restricted the ma-

jor FoI (rodent ro human) to be the same across years for

the fitting simplicity, it is more likely to be variable in prac-

tice. Thus, the estimated increase in the initial susceptibility ac-

tually reflects an increase in the case prevalence rate across

years. Therefore, the estimated increase in the initial susceptibil-

ity across years could be due to the increase in the transmissi-

bility (in terms of effective transmission rate, β), or amount of

infected rodents (reflected by the number of infected cases, I r ),

or joint effect of β and I r (e.g., in terms of FoI, λ = βI r ) in each

year. 

Our model was able to capture numerous dynamical fea-

tures, even though some features were missed due to the in-

sufficiency of the data, especially in the rodent population.

This part is left for future analysis when the data becomes

available. Further analysis and numerical results show that our

model exhibits forward bifurcation (exchanges of stability be-

tween the disease-free equilibrium and the endemic equilib-

rium when the basic reproduction number equals one, see

Appendix A for detail). The sensitivity analysis in Appendix B also

reveals the top-ranked parameters (i.e., rodent-to-human trans-

mission rate, the maximum growth rate of the rodents, and

the rodent mortality) that could be important for the LHF 

control. 
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A

A

ical features. The total human and rodent populations satisfy the fol- 

l

a

(b−μr ) 
b 

} . It can be shown (by solving N h and N r ) that all solutions of 

t s, the region  is positively invariant, and it is sufficient to consider 

s  continuity results hold for the system Forouzannia and Gumel (2014) ; 

H

tained by setting the right-hand sides of the model equations to zero, 

g

E
μr ) 

, 0 

)
. 

T on terms) associated with the model (2.1) are given, respectively, by 

F

0 0 0 

0 0 0 

0 0 0 

 

Q 4 0 0 

−α2 Q 5 0 

0 0 μr 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

w

Q  4 = τ2 + α2 + δ2 + μh , 

Q 3 , C 4 = 

β4 �h 

μh 

nd C 8 = β8 . 

H

R (A1-1) 

w

g  3 Q 4 Q 5 , 

g 2 Q 2 
2 Q 3 

2 Q 4 
2 Q 5 

2 

2 Q 2 + 2 Q 1 Q 3 Q 

2 
4 Q 5 

g

C 1 = C 2 = C 3 and C 5 = C 6 = C 7 . Using Theorem 2 of van den Driessche 

a

T locally asymptotically stable (LAS) if R 0 < 1 , and unstable if R 0 > 1 . 

 secondary cases that one infectious individual would generate over 

t tely susceptible population van den Driessche and Watmough (2002) ; 

Z

A

e where the disease persists in the population, that is, when at least 

o pty. Let E ∗ = (S ∗
h 
, E ∗

h 
, I ∗

h 
, E ∗q , I ∗q , H 

∗, R ∗, S ∗r , I ∗r ) be an endemic equilibrium 

s .1) to zero, the endemic equilibrium in terms of the forces of infection 

λ

ppendix A. Mathematical analysis 

1. Disease-free equilibrium and basic reproduction number 

The model (2.1) will be analyzed to gain insight into its dynam

owing equations 

dN h (t) 

dt 
= �h − μh N h − δ1 I h − δ2 I q − δ3 H ≤ �h − μh N h , 

nd 

dN r (t) 

dt 
= b 

(
1 − N r 

K 

)
N r − μr (S r + I r ) = N r 

(
b − μr − b 

K 

N r 

)
. 

Denote  = { (S h , E h , I h , E q , I q , H, R, S r , I r ) ∈ R 

9 + : N h ≤ �h 
μh 

: N r ≤ K

he system starting in the region  remain in  for all t > 0. Thu

olutions in . In this region, the usual existence, uniqueness and

ussaini et al. (2016) ; Usaini et al. (2018) ; Musa et al. (2019c,a) . 

The model (2.1) has a unique disease-free equilibrium (DFE), ob

iven by 

 0 = (S 0 h , E 
0 
h , I 

0 
h , E 

0 
q , I 

0 
q , H 

0 , R 

0 , S 0 r , I 
0 
r ) = 

(
�h 

μh 

, 0 , 0 , 0 , 0 , 0 , 0 , 
K(b −

b 

he matrices F (for the new infection terms) and V (for the transiti

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 C 1 0 C 2 C 3 C 4 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 C 5 0 C 6 C 7 C 8 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

and V = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

Q 1 0 0 

−σ1 Q 2 0 

−γ 0 Q 3 

0 0 −σ2

0 −α1 0 

0 0 0 

here, 

 1 = σ1 + γ + μh , Q 2 = τ1 + α1 + δ1 + μh , Q 3 = σ2 + μh , Q

 5 = τ3 + δ3 + μh , Q 6 = ξ + μh , C 1 = β1 , C 2 = β2 , C 3 = β

C 5 = 

β5 K(b − μr ) 

b 
, C 6 = 

β6 K(b − μr ) 

b 
, C 7 = 

β7 K(b − μr ) 

b 
, a

ence, 

 0 = ρ(F V 

−1 ) = 

g 1 + 

√ 

g 2 
g 3 

, 

here, 

 1 = ( γ σ2 ( C 2 Q 5 + C 3 α2 ) Q 2 + Q 4 Q 3 σ1 ( C 1 Q 5 + C 3 α1 ) ) μr + C 8 Q 1 Q 2 Q

 2 = ( γ σ2 ( C 2 Q 5 + C 3 α2 ) Q 2 + Q 4 Q 3 σ1 ( C 1 Q 5 + C 3 α1 ) ) 
2 μr 

2 − C 8 
2 Q 1 

+ 2 Q 4 Q 5 Q 1 Q 3 · ( ( −2 C 6 C 4 + C 2 C 8 ) Q 5 + α2 ( C 3 C 8 − 2 C 7 C 4 ) ) γ σ

( ( C 1 C 8 − 2 C 5 C 4 ) Q 5 + α1 ( C 3 C 8 − 2 C 7 C 4 ) ) σ1 Q 3 Q 2 μr , 

 3 = 2 Q 1 Q 2 Q 3 Q 4 Q 5 μr . 

Since we assume that, β1 = β2 = β3 and β5 = β6 = β7 so that 

nd Watmough (2002) , the following result can be established. 

heorem A1.1. The disease-free equilibrium, E 0 , of the model (2.1) is 

The threshold quantity R 0 represents the average number of

he duration of the infectious period if introduced into a comple

hao et al. (2019) . 

2. Endemic equilibrium 

The endemic equilibrium of the model (2.1) is the steady stat

ne of the infected classes/compartments of the model is non-em

olution of model (2.1) . Then, equating the right hand side of Eq. (2

h and λr , is given by, 

S ∗h = 

Q 1 Q 2 Q 5 Q 6 �h Q 3 Q 4 

( ( U 1 − U 2 ) Q 2 − U 3 ) λ + U 4 

, 

h 
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 5 − τ3 α1 ) , 

1 ) Q 3 , 

= Q 3 Q 4 σ1 ( τ1 Q 5 + τ3 α1 ) . 

d Theory as presented in Castillo-Chavez and Song (2004) . Here, the 

 forward or backward bifurcation to occur are analyzed Carr (1981) ; 

sche and Watmough (2002) . One can see that the backward bifurcation 

 action incidence function in the model formulation, see for instance, 

urs when R 0 crosses unity from below; a small positive asymptotically 

its stability Castillo-Chavez and Song (2004) . 

ted by simulating the model (2.1) using the following parameter values, 

 625 day −1 
, σ1 = 0 . 85 day −1 

, σ2 = 0 . 80 day −1 
, α1 = 0 . 23 day −1 

, α2 = 

2 = 0 . 2 day 
−1 

, δ3 = 0 . 19 day 
−1 

, τ1 = 0 . 25 day 
−1 

, τ2 = 0 . 27 day 
−1 

, τ3 = 

that these parameter values are chosen for illustrative purpose only. 

 = 0 . 8213 . Note that A and B are the associated bifurcation coefficients 

resented in Fig. A.1 . Thus, the following result is established. 

t R 0 = 1 whenever the bifurcation coefficients, A and B are negative and 

re Manifold Theory Carr (1981) ; Castillo-Chavez and Song (2004) ; 

nsider the system 

dx 

dt 
= f (x, ψ) , where ψ is the bifurcation parame- 

d ψ . The disease-free equilibrium is the point (x 0 = 0 , ψ = 0) and the 

 ( x 0 , 0) van den Driessche and Watmough (2002) . Now, we show that 

we let R 0 = 1 from Eq. (A1-1) , then, by Theorem A1.1 , the disease-free 

β1 > β∗
1 

. Here β1 = β∗
1 

is a bifurcation value. 

 = x 6 , R h = x 7 , S r = x 8 , I r = x 9 , so that N h = x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + 

 with x = (x 1 , x 2 , . . . , x 9 ) 
T , the model (2.1) can be written as dx 

dt 
= f (x ) 

(A2-1) 

6 x 5 + β7 x 6 . (A2-2) 
E ∗h = 

Q 2 Q 5 Q 6 λh �h Q 3 Q 4 

( ( U 1 − U 2 ) Q 2 − U 3 ) λh + U 4 

, 

I ∗h = 

Q 5 Q 6 λh �h Q 3 Q 4 σ1 

( U 5 − U 6 ) λh + U 4 

, 

E ∗q = 

Q 4 Q 6 λh γ Q 2 Q 5 �h 

( ( U 1 − U 2 ) Q 2 − U 3 ) λh + U 4 

, 

I ∗q = 

Q 6 λh γ Q 2 Q 5 σ2 �h 

( ( U 1 − U 2 ) Q 2 − U 3 ) λh + U 4 

, 

H 

∗ = 

( γ Q 2 α2 σ2 + Q 3 Q 4 σ1 α1 ) Q 6 λh �h 

( ( U 1 − U 2 ) Q 2 − U 3 ) λh + U 4 

, 

R 

∗
h = 

λh ( U 7 + U 8 ) �h 

( ( U 1 − U 2 ) Q 2 − U 3 ) λh + U 4 

, 

S ∗r = 

Kμr ( b − μr ) 

b ( λr + μr ) 
, and I ∗r = 

λr K ( b − μr ) 

b ( λr + μr ) 
, 

where 

U 1 = Q 1 Q 5 Q 6 Q 3 Q 4 , U 2 = ξ γ σ2 ( α2 τ3 − Q 5 τ2 ) , U 3 = ξ Q 3 Q 4 σ1 ( τ1 Q

U 4 = Q 1 Q 2 Q 5 μh Q 6 Q 3 Q 4 , U 5 = Q 4 ( ( Q 1 Q 2 Q 6 − ξ σ1 τ1 ) Q 5 − ξ σ1 τ3 α
U 6 = ξ γ Q 2 σ2 ( α2 τ3 − Q 5 τ2 ) , U 7 = γ σ2 ( α2 τ3 + Q 5 τ2 ) Q 2 , and U 8 

A3. Bifurcation analysis 

The bifurcation analysis is performed by using Center Manifol

conditions on the parameter values in the model (2.1) that cause

Castillo-Chavez and Song (2004) ; Musa et al. (2019a) ; van den Dries

may not exist, which is probably due to the presence of the mass

Garba et al. (2008) ; Roop-O et al. (2015) . A forward bifurcation occ

stable equilibrium appears and the disease-free equilibrium losses 

Thus, forward bifurcation would occur at R 0 = 1 . This is illustra

�h = 11 , μh = 0 . 345 day −1 
, μr = 0 . 86 day −1 

, K = 1500 day −1 
, b =

0 . 23 day 
−1 

, γ = 0 . 065 day 
−1 

, ξ = 0 . 203 day 
−1 

, δ1 = 0 . 21 day 
−1 

, δ
0 . 35 day −1 

, β1 = β2 = . . . = β8 = 0 . 05 day −1 ; it should be stated 

With these set of parameters R 0 = 0 . 36337 , A = −667 . 0934 and B

obtained. The forward bifurcation diagram of the model (2.1) is rep

Theorem A1.2. The LHF model (2.1) undergoes forward bifurcation a

positive, respectively. 

Proof. The proof of the above theorem is based on the Cent

Musa et al. (2019a) ; van den Driessche and Watmough (2002) . Co

ter, and f is continuously differentiable at least twice in both x an

local stability of the disease-free equilibrium changes at the point

there is nontrivial equilibrium near the bifurcation point ( x 0 , ψ). 

Suppose that β1 = β∗
1 is chosen as a bifurcation parameter and 

equilibrium, E 0 , is locally stable when β1 < β∗
1 

and unstable when 

For convenience, let S h = x 1 , E h = x 2 , I h = x 3 , E q = x 4 , I q = x 5 , H

x 7 and N r = x 8 + x 9 . Further, by adopting the same vector notation

where f = ( f 1 , f 2 , . . . , f 9 ) 
T is as follows: 

f 1 = �h + ξx 7 − λh x 1 − μh x 1 , 

f 2 = λh x 1 − Q 1 x 2 , 

f 3 = σ1 x 2 − Q 2 x 3 , 

f 4 = γ x 2 − Q 3 x 4 , 

f 5 = σ2 x 4 − Q 4 x 5 , 

f 6 = α1 x 3 + α2 x 5 − Q 5 x 6 , 

f 7 = τ1 x 3 + τ2 x 5 + τ3 x 6 − Q 6 x 7 , 

f 8 = b 

(
1 − x 8 + x 9 

K 

)
(x 8 + x 9 ) − λr x 8 − μr x 8 , 

f 9 = λr x 8 − μr x 9 , 

where the associated forces of infection are respectively given by 

λh = 

β1 x 3 + β2 x 5 + β3 x 6 ∑ 7 x i 
+ β4 x 9 , and λr = 

β8 x 9 
x 8 + x 9 

+ β5 x 3 + β

i =1 
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Fig. A1. Forward bifurcation diagram of the model (2.1) . 

th β1 = β∗
1 , is given by 

J

0 −n 1 

 0 n 1 

 0 0 

 0 0 

 0 0 

 0 0 

 6 0 0 

 n 5 n 6 

 0 n 7 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (A2-3) 

w  5 = −b + μr , n 6 = −b + 2 μr − β8 , n 7 = β8 − μr . 

 eigenvalue (other eigenvalues have negative real parts). Hence, the CMT 

C h (2002) can be used to investigate the dynamics of the system (A2- 

1 tations in Castillo-Chavez and Song (2004) , the following computations 

a

The Jacobian of the system (A2-1) , evaluated at the DFE ( E 0 ) wi

(E 0 ) = F − V = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−μh 0 −β1 0 −β2 −β3 ξ
0 −Q 1 β1 0 β2 β3 0
0 σ1 −Q 2 0 0 0 0
0 γ 0 −Q 3 0 0 0
0 0 0 σ2 −Q 4 0 0
0 0 α1 0 α2 −Q 5 0
0 0 τ1 0 τ2 τ3 −Q
0 0 −n 2 0 −n 3 −n 4 0
0 0 n 2 0 n 3 n 4 0

here, n 1 = 

β4 �h 
μh 

, n 2 = 

β5 K(b−μr ) 
b 

, n 3 = 

β6 K(b−μr ) 
b 

, n 4 = 

β7 K(b−μr ) 
b 

, n

The Jacobian matrix J ( E 0 ) of the system (A2-1) has a simple zero

astillo-Chavez and Song (2004) ; van den Driessche and Watmoug

) located at β1 = β∗
1 Castillo-Chavez and Song (2004) . Using the no

re carried out. 
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Fig. A2. The PRCC of R 0 against model parameters. 



S.S. Musa, S. Zhao and D. Gao et al. / Journal of Theoretical Biology 493 (2020) 110209 13 

Fig. A3. Fitting results of the LHF cumulative number of weekly reported cases at time t , with sub-exponential growth formulation. r denotes the growth rate, p ∈ [0, 1] 

represents deceleration of growth parameter with 95% CIs in the brackets and A is the constant initialization. 

 shown that the J ( E 0 ) has a right eigenvector (corresponding to the zero 

e

w  

τ2 σ2 γ

Q 3 Q 4 

+ 

τ3 

Q 5 

(
α1 σ1 

Q 2 

+ 

α2 σ2 γ

Q 3 Q 4 

))

w
 

σ1 

 2 

+ 

α2 σ2 γ

Q 3 Q 4 

)
w 2 , 

w

w  

n 3 σ2 γ

Q 3 Q 4 

+ 

n 4 

Q 5 

(
α1 σ1 

Q 2 

+ 

α2 σ2 γ

Q 3 Q 4 

)))
w 2 , 

w

esponding to the zero eigenvalue), denoted by v = (v 1 , v 2 , . . . , v 9 ) , are 

g

v  

n 3 

 7 

))
v 2 , 

v
(
β3 − n 1 n 4 

n 7 

)
− n 3 n 1 

n 7 

)
v 2 , 

v

1 

 

+ A 2 and v 2 = 1 respectively, where 

A
2 

 

 

Q 4 

(
β2 + 

α2 β3 

Q 5 

− α2 n 1 n 4 

Q 5 n 7 

− n 1 n 3 

n 7 

))

a

A
1 σ1 n 4 

Q 2 Q 5 

+ 

α2 σ2 γ

Q 3 Q 4 Q 5 

)
, 

s

 of f i (i = 1 , . . . , 9) , that the associated bifurcation coefficients, A and B , 

a

A
 8 �h a 4 ] K − 2 v 9 w 

2 
9 β8 b�h 

 

) 
, 
Eigenvectors of J(E 0 ) β1 = β∗
1 

: For the case when R 0 = 1 it can be

igenvalue), given by w = (w 1 , w 2 , . . . , w 9 ) 
T , where 

 1 = 

−1 

μh 

(
β1 σ1 

Q 2 

+ 

β2 σ2 γ

Q 3 Q 4 

+ 

β3 

Q 5 

(
α1 σ1 

Q 2 

+ 

α2 σ2 γ

Q 3 Q 4 

)
− ξ

Q 6 

(
τ1 σ1 

Q 2 

+

− n 1 

n 7 

(
n 2 σ1 

Q 2 

+ 

n 3 σ2 γ

Q 3 Q 4 

+ 

n 4 

Q 5 

(
α1 σ1 

Q 2 

+ 

α2 σ2 γ

Q 3 Q 4 

)))
w 2 , 

 2 > 0 , w 3 = 

σ1 

Q 2 

w 2 , w 4 = 

γ

Q 3 

w 2 , w 5 = 

σ2 γ

Q 3 Q 4 

w 2 , w 6 = 

1 

Q 5 

(
α1

Q

 7 = 

1 

Q 6 

(
τ1 σ1 

Q 2 

+ 

τ2 σ2 γ

Q 3 Q 4 

+ 

τ3 

Q 5 

(
α1 σ1 

Q 2 

+ 

α2 σ2 γ

Q 3 Q 4 

))
w 2 , 

 8 = 

1 

n 5 

(
n 2 

σ1 

Q 2 

+ n 3 
σ2 γ

Q 3 Q 4 

+ 

n 4 

Q 5 

(
α1 σ1 

Q 2 

+ 

α2 σ2 γ

Q 3 Q 4 

)
+ 

n 6 

n 7 

(
n 2 σ1 

Q 2 

+

 9 = 

−1 

n 7 

(
n 2 σ1 

Q 2 

+ 

n 3 σ2 γ

Q 3 Q 4 

+ 

n 4 

Q 5 

(
α1 σ1 

Q 2 

+ 

α2 σ2 γ

Q 3 Q 4 

))
w 2 . 

Similarly, the components of the left eigenvector of J ( E 0 ) (corr

iven by 

 1 = 0 , v 2 > 0 , v 3 = 

1 

σ1 

(
Q 1 − γ σ2 

Q 3 Q 4 

(
β2 + 

α2 

Q 5 

(
β3 − n 1 n 4 

n 7 

)
− n 1

n

 4 = 

σ2 

Q 3 Q 4 

(
β2 + 

α2 

Q 5 

(
β3 − n 1 n 4 

n 7 

)
− n 1 n 3 

n 7 

)
v 2 , v 5 = 

1 

Q 4 

(
β2 + 

α2 

Q 5 

 6 = 

1 

Q 5 

(
β3 − n 1 n 4 

n 7 

)
v 2 , v 7 = 0 , v 8 = 0 , v 9 = −n 1 

n 7 

v 2 . 

Note that the free components (entry) are chosen to be w 2 = 

A 1

 1 = 1 + 

(
Q 1 

Q 2 

− γ σ2 

Q 2 Q 3 Q 4 

(
β2 + 

α2 β3 

Q 5 

− α2 n 1 n 4 

Q 5 n 7 

− n 1 n 3 

n 7 

))
+ 

(
γ σ

Q 

2
3

+ 

1 

Q 3 Q 

2 
4 

(
σ2 γ β2 + 

αβ3 σ2 γ

Q 5 

− α2 n 1 n 4 σ2 γ

n 7 

− n 1 n 3 σ2 γ

n 7 

)
, 

nd 

 2 = 

(
β3 

Q 5 

− n 1 n 4 

Q 5 n 7 

)(
α1 σ1 

Q 2 Q 5 

+ 

α2 σ2 γ

Q 3 Q 4 Q 5 

)
+ 

n 1 

n 

2 
7 

(
n 2 σ1 

Q 2 

+ 

n 3 σ2 γ

Q 3 Q 4 

+ 

α

o that, v · w = 1 (in line with Castillo-Chavez and Song, 2004 ). 

It can be shown, by computing the non-zero partial derivatives

re given, respectively, by 

 = 

9 ∑ 

k,i, j=1 

v k w i w j 

∂ 2 f k (0 , 0) 

∂ x i ∂ x j 
= 

2(b − μr )[(−a 1 a 2 μh + a 3 ) v 2 + v 9 w
�h K(b − μr
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 a

bi

ib

fre

rc

 i

 , w

d.

od

 s

 r

gr

as

ti
B = 

9 ∑ 

k,i =1 

v k w i 

∂ 2 f k (0 , 0) 

∂ x i ∂ β1 

= v 2 w 3 , 

where a 1 = w 3 β1 + w 5 β2 + w 6 β3 , a 2 = w 2 + w 3 + w 4 + w 5 + w 6 + w

a 4 = w 5 β6 + w 6 β7 + w 3 β5 . 

Since v 2 > 0 and w 2 > 0 imply that B > 0, hence we have forwa

and backward bifurcation when A > 0. Thus, the LHF model (2.1) e

1 . If R 0 < 1 then no endemic equilibrium appears and the disea

endemic equilibrium exists. For this reason, there is a forward b

disease prevalence is an increasing function of R 0 (see Fig. A.1 ) wh

Appendix B. Sensitivity analysis 

Following previous studies Gao et al. (2016) ; Zhao et al. (2018a

sitivity analysis. The PRCC of the R 0 of the model (2.1) is estim

parameters to be emphasized in controlling the LHF epidemics (i.e

rodents K , and rodent natural death rate μr ). 

Appendix C. Sub-exponential fitting results 

We fitted the LHF cumulative number of cases at time t , w

(2016a,b) . The parameter r (which is positive) represents the grow

sionless and we have p ∈ [0, 1], which represents the deceleration 

in Chowell et al. (2016a) ; Zhao et al. (2020, 2019) . 

The parameter A = C 
(1 −p) 
0 

, where C 0 is the initial number of

exponential” to exponential. When p = 1 , then it becomes an expon
 3 = w 1 w 9 β4 �h , and 

furcation if and only if A < 0 (see Fig. A.1 for illustrative purpose)

its the phenomenon of forward bifurcation, which occurs at R 0 =
e equilibrium is the only local attractor. But if R 0 > 1 then the

ation because in the neighborhood of the bifurcation point, the

mplies that the LHF model (2.1) exhibits a forward bifurcation. �

e adopted the partial rank correlation coefficient (PRCC) for sen-

 The sensitivity analysis results in Fig. A2 reveal the top ranked

ent-to-human transmission rate β4 , maximum growth rate of the

ub-exponential growth formulation adopted from Chowell et al.

ate with units of people 1 −p per unit time. Here, the p is dimen-

owth parameter. The function of this sub-exp fitting can be found

es, and p is the parameter that indicates how close this “sub-

al growth rate. 
 7 ,

rd 

xh

se-

ifu

ich

,b)

ate

., r
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th
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