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Abstract. Ticks, including the Ixodes ricinus and Ixodes scapularis hard tick

species, are regarded as the most common arthropod vectors of both human
and animal diseases in Europe and the United States capable of transmitting

a large number of bacteria, viruses and parasites. Since ticks in larval and

nymphal stages share the same host community which can harbor multiple
pathogens, they may be co-infected with two or more pathogens, with a sub-

sequent high likelihood of co-transmission to humans or animals. This paper

is devoted to the modeling of co-infection of tick-borne pathogens, with spe-
cial focus on the co-infection of Borrelia burgdorferi (agent of Lyme disease)

and Babesia microti (agent of human babesiosis). Considering the effect of co-

infection, we illustrate that co-infection with B. burgdorferi increases the like-
lihood of B. microti transmission, by increasing the basic reproduction number

of B. microti below the threshold smaller than one to be possibly above the
threshold for persistence. The study confirms a mechanism of the ecological

fitness paradox, the establishment of B. microti which has weak fitness (basic

reproduction number less than one). Furthermore, co-infection could facilitate
range expansion of both pathogens.

1. Introduction. The health burden of tick-borne diseases, such as Lyme disease,
human babesiosis and human granulocytic, is increasing partially due to a greater
exposure of humans to the infected vectors [12, 19] and tick expansion [22]. Ly-
me disease, one of the most common tick-borne diseases worldwide, is caused by
the spirochete Borrelia burgdorferi, claiming around 25,000 cases annually during
2008-2011 in the United States. Human babesiosis, caused by the blood protozoan
parasite Babesia microti, has also been increasing in the northeastern United States.
The cases of human granulocytic anaplasmosis, also known as human granulocytic
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ehrlichiosis and caused by the bacterium Anaplasma phagocytophilum, has increased
significantly over the last decade [15].

All these three diseases, Lyme disease, human babesiosis and human granulo-
cytic ehrlichiosis, are transmitted by Ixodes ticks. The blacklegged tick, Ixodes
scapularis, can be infected with a large and diverse array of human pathogens, such
as A. phagocytophilum, B. microti, and B. burgdorferi, or all of them simultaneously
[13, 15]. Ticks co-infected with multiple microorganisms have been documented in
previous studies [19, 28]. For example, 92 questing Ixodes ricinus ticks were collect-
ed in northern France to test for three micro-organisms, Bartonella sp., Borrelia
burgdorferi sensu lato and Babesia sp., which are known as suspected tick-borne
pathogens. Seven among 92 samples (7.6%) were positive for at least two of the
pathogens and one sample was positive for all three pathogens [13]. In another
study, 394 questing adult blacklegged ticks, Ixodes scapularis Say (Acari: Ixodi-
dae), collected at four sites were analyzed for five microbial species: Anaplasma
phagocytophilum, Babesia microti, Babesia odocoilei, Borrelia burgdorferi, and the
rickettsial I. scapularis endosymbiont. In 55% of infected ticks (193/351), a single
agent was detected. In 45% (158/351), two or more agents were detected, among
which 37% harbored two agents and 8% harbored three agents [26]. The reference
[15] produces a wonderful graph illustrating the mean level of co-infection preva-
lence of Anaplasma phagocytophilum, Babesia microti, and Borrelia burgdorferi in
questing Ixodes scapularis nymphs in various sites.

Since several of these pathogens can be harbored by the same tick species and
carried by the same rodent reservoir hosts, they can be co-transmitted to humans
in concert. In theory, when an individual is bitten by an infected tick with multi-
ple pathogens, or sequentially bitten by multiple ticks each transmitting a different
pathogen, the individual can get the co-infection. Several studies in various regions
have documented the co-infection of multiple tick-borne pathogens [15]. For exam-
ple, it was reported that 3 out of 19 patients with Human Granulocytic Ehrlichia
(15.8%) showed evidence of co-infection: 1 (5.3%) with B. burgdorferi, 1 (5.3%)
with B. microti, and 1 (5.3%) with both microorganisms. One patient diagnosed
with babesiosis was also seropositive for ehrlichiosis [19]. Among patients with a
confirmed tick-borne infection, the percentage of co-infection rates can reach as high
as 39%. The most commonly recognized co-infection in the eastern United States
is Lyme disease and human babesiosis, accounting for around 80% of co-infection
while Lyme disease and human granulocytic ehrlichiosis co-infection is less common,
occurring in 3%-15% of patients in Connecticut and Wisconsin [4].

Co-infection of multiple tick-borne diseases becomes an emerging problem since
the interaction of these pathogens may affect the severity and duration of symptoms
in humans, making diagnosis and treatment more challenging [12, 15, 27]. For
example, simultaneous Lyme disease and human babesiosis infection is shown to
be correlated with a more severe clinical progression and persistent symptoms than
either condition alone [1, 6, 15].

Co-infections from tick-borne diseases pose a threat to human health in the
northeastern and midwestern United States, but the risk of acquiring a co-infection
is not fully understood [15]. Field studies in ticks, reservoir hosts, and humans
indicate that co-infection with B. burgdorferi and B. microti is common, which
could promote transmission and emergence of B. microti in the enzootic cycle. Co-
infection by Borrelia burgdorferi, the primary agent of Lyme disease, and Babesia
microti, the primary agent of babesiosis, may serve as a diagram for the study
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of other vector-borne pathogen interactions [6]. There is an increasing body of
literatures, such as [3, 11, 21] among others, investigating the co-infection dynamics
of various diseases, which greatly improve our understanding of pathogen evolution.
To the best of our knowledge, very few theoretical studies, except [24, 29] have
been performed to address the co-infection of pathogens for vector-borne diseases,
especially for tick-borne pathogens. The possible co-infection of Zika virus and
several other mosquito-borne viruses of clinical importance, for example, the dengue
virus and West Nile virus, and yellow fever virus, poses a public health emergency
[23]. Identifying ecological drivers of pathogen emergence and host factors that fuel
disease severity in co-infected individuals will help to design effective preventive and
therapeutic strategies [6].

Although B. microti was identified earlier than B. burgdorferi and the geographic
range of both pathogens has expanded in the United States, the spread of babesiosis
has lagged behind that of Lyme disease. It is also illustrated that the geographic
expansion of B. microti has been restricted to those areas where Lyme disease is
already endemic [6]. Furthermore, it is generally regarded that the ecological fitness
of B. microti is weak and it is not easy to establish in a habitat in the sense that
its basic reproduction number is below the threshold for persistence. Therefore,
the persistence and geographic expansion pose an ecological paradox [6] in disease
transmission: why can the pathogen with reproduction number smaller than one
establish? The investigation of this paradox requires the incorporation of pathogen
interactions within realistic epidemiological and ecological contexts. Measuring and
identifying the effect of co-infection on Babesis emergence should help to predict
the spatial and temporal gains of this epidemic and design interventions to reduce
disease risk. In this study, we are going to test the hypothesis whether B. burgdorferi
can promote the fitness of B. microti. To do so, we develop a mathematical model
to assess the effect of co-infection on the disease dynamics of both pathogens.

2. Model formulation and dynamics. Generally, Ixodes scapulars ticks under-
go a four-stage life cycle: egg, larva, nymph and adult. When larvae take blood
meals from infected reservoirs, the pathogen fuses into and develops in the body.
After larvae molting to nymphs and feeding during late spring or early summer in
the following year, reservoir hosts may become infected. Humans are accidental
hosts and nymph is the primary vector for the transmission of Babesia microti and
Borrelia burgdorferi [6]. To develop a co-infection model, we start from describing
a single pathogen transmission with stage-structured tick population growth.

2.1. Stage-structured tick population model. There have been several stage-
structured models proposed, such as those in [9, 32], which present good descriptions
on tick population growth. Here, to keep the model simple while incorporating the
key features of both population growth and disease transmission simultaneously, we
derive the following model, which is similar to an autonomous version of the models
in [14, 17], by ignoring effects of seasonal weather conditions on tick development
and activities since the main focus of the current research is on the co-infection
dynamics of multiple tick-borne pathogens. Although the analytical approach in
[14, 17] remains applicable to the model here, for reader’s convenience, we perform
the model analysis tailored to the autonomous model system. The tick population
is stratified into the following stages: eggs (E), questing larvae (LQ), feeding larvae
(LF ), questing nymphs (NQ), feeding nymphs (NF ) and adults (A), and the size of
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each stage satisfies the following equations:

dE

dt
= bEA(t)− (µE + dE)E(t),

dLQ

dt
= dEE(t)− (µLQ + fL)LQ(t),

dLF

dt
= fLLQ(t)− (µLF + dL)LF (t)−DLLF

2(t),

dNQ

dt
= dLLF (t)− (µNQ + fN )NQ(t),

dNF

dt
= fNNQ(t)− (µNF + dN )NF (t)−DNNF

2(t),

dA

dt
= dNNF (t)− µAA(t).

(1)

It is worth to mention that nonlinear terms DLLF
2(t) and DNNF

2(t) in the above
system are used to measure the additional deaths of feeding individuals due to the
grooming effects of immature tick hosts (normally small animals). All variables and
parameters are detailed in Tables 1 and 2, respectively.

It is easy to see that the model system (1) fits into the general population growth
model in [8], which analyzes the stability and persistence of a general ODE model
for population growth. Therefore, the results of Fan et al. [8] can be readily applied
here. Specifically, the vector field

g(z) =


bEz6 − (µE + dE)z1
dEz1 − (µLQ + fL)z2

fLz2 − (µLF + dL)z3 −DLz
2
3

dLz3 − (µNQ + fN )z4
fNz4 − (µNF + dN )z5 −DNz

2
5

dNz5 − µAz6


with z = (E,LQ,LF,NQ,NF,A) is Lipschitz continuous on any bounded subset
of R6

+. Based on [8, Theorem 3.2], there exists a unique solution z(t) ∈ R6
+ with

z(0) = z0 ∈ R6
+. Using the argument in [8], the vector reproduction number for the

tick population can be written as the following form (it can also be computed by
using the next generation matrix approach [5, 7])

RT = bE ·
dE

µE + dE
· fL
µLQ + fL

· dL
dL + µLF

· fN
µNQ + fN

· dN
µNF + dN

· 1

µA
, (2)

where dE
µE+dE

· fL
µLQ+fL

· dL
dL+µLF

· fN
µNQ+fN

· dN
µNF+dN

represents the survival probability

of ticks from eggs to the adult stage while bE is the number of eggs produced by one
adult per unit time and 1

µA
is the egg reproducing duration. It then follows from

[8, Theorem 4.2] that the origin z = 0 is locally asymptotically stable if RT < 1
and unstable if RT > 1. Furthermore, Theorems 4.5 and 4.6 of [8] imply that 0 is
globally asymptotically stable when RT < 1. Moreover, the system is dissipative
and uniformly persistent according to Theorems 7.3 and 7.4 in [8] when RT > 1.
Furthermore, there exists a positive equilibrium in this scenario [8, Theorem 6.2].
In addition, the vector field g possesses the following properties:

(1) g is cooperative on R6
+ and Dg(z) = ( ∂gi∂zj

)1≤i,j≤6 is irreducible for every

z ∈ R6
+;

(2) g(0) = 0 and for all i ∈ {1, 2, 3, 4, 5, 6}, gi(z) ≥ 0 for all z ∈ R6
+ with zi = 0;
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(3) g is strictly sublinear on R6
+, i.e., g(αz) > αg(z) for any α ∈ (0, 1) and any

z ∈ Int(R6
+).

Therefore, the positive equilibrium is globally asymptotically stable for system (1)
by Corallary 3.2 of [34]. Summarizing the above arguments, we claim that the
vector reproduction number RT can completely determine the global dynamics of
the tick growth.

Theorem 2.1. The following statements are valid:

(i) If RT ≤ 1, zero is globally asymptotically stable for system (1) in R6
+;

(ii) If RT > 1, there exists a unique positive equilibrium (E∗, LQ∗, LF ∗, NQ∗,
NF ∗, A∗) and it is globally asymptotically stable with respect to all nontrivial
solutions.

The above theorem indicates that the tick population will die out if RT ≤ 1 while
it will eventually stabilize at a positive equilibrium (E∗, LQ∗, LF ∗, NQ∗, NF ∗, A∗)
if RT > 1.

2.2. Single pathogen infection dynamics. Now, we move to the pathogen trans-
mission dynamics by starting from the appearance of only one type of pathogen.
We assume that the host for adult ticks, mainly deer, is an incompetent reservoir
for pathogen transmission, that is, the adult host can neither harbor nor transmit
the pathogen to ticks. Furthermore, no vertical transmission from adult ticks is
observed for B. Burgdoferi and B. microti. Therefore, the pathogen transmission
cycle is maintained between immature ticks and the host species. Here we assume
that there is only one host species–mice for immature ticks.

2.2.1. The dynamics of Borrelia infection only. When there is only Borrelia in the
environment, the pathogen transmission can be described as

dE(t)

dt
= bE(A0(t) +A1(t))− (µE + dE)E(t),

dLQ(t)

dt
= dEE(t)− (µLQ + fL)LQ(t),

dLF0(t)

dt
= fLLQ(t)− (dL + µLF +DLLF (t))LF0(t)− β11M1(t)fLLQ(t)

M(t)
,

dLF1(t)

dt
= β11M1(t)fLLQ(t)

M(t)
− (µLF + dL +DLLF (t))LF1(t),

dNQ0(t)

dt
= dLLF0(t)− (µNQ + fN )NQ0(t),

dNQ1(t)

dt
= dLLF1(t)− (µNQ + fN )NQ1(t),

dNF0(t)

dt
= fNNQ0(t)− (dN + µNF +DNNF (t))NF0(t)− β̄11M1(t)fNNQ0(t)

M(t)
,

dNF1(t)

dt
= β̄11M1(t)fNNQ0(t)

M(t)
+ fNNQ1(t)− (dN + µNF +DNNF (t))NF1(t),

dA0(t)

dt
= dNNF0(t)− µAA0(t),

dA1(t)

dt
= dNNF1(t)− µAA1(t),

dM0(t)

dt
= bM (M(t))− (µM +DMM(t))M0(t)− γ11fNNQ1(t)M0(t)

M(t)
,

dM1(t)

dt
= γ11fNNQ1(t)M0(t)

M(t)
− (µM +DMM(t))M1(t),

(3)
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where

LF (t) = LF0(t) + LF1(t), NF (t) = NF0(t) +NF1(t) and M(t) = M0(t) +M1(t).

In this system, we use subscript 0 to represent susceptible class while 1 to denote
Borrelia infected class. Then the total population size for mice follows the logistic
growth

dM(t)

dt
= bMM(t)− µMM(t)−DMM

2(t),

which admits a globally asymptotically stable positive equilibrium M∗ = bM−µM
DM

provided that bM −µM > 0. To be population persistent, we assume bM −µM > 0.
A standard argument can show that every solution of (3) with a nonnegative initial
value remains nonnegative (see for example [25, Theorem 5.2.1]). Moreover, the tick
population sizes of eggs (E), questing larvae (LQ), feeding larvae (LF=LF0 +LF1),
questing nymphs (NQ=NQ0 +NQ1), feeding nymphs (NF=NF0 +NF1) and adults
(A=A0 +A1) satisfy the tick population growth system (1).

When RT ≤ 1, we have

0 ≤ lim
t→∞

LF1(t) ≤ lim
t→∞

LF (t) = 0

and similarly, we have

lim
t→∞

NQ1(t) = lim
t→∞

NF1(t) = lim
t→∞

A1(t) = 0.

The equation for M1 gives the following asymptotically autonomous system

dM1(t)

dt
= −µMM1(t)−DM (M0(t) +M1(t))M1(t).

By the theory of asymptotically autonomous semiflows (see [30, Corollary 4.3]), we
have

lim
t→∞

M1(t) = 0.

When RT > 1, we have

lim
t→∞

(LF (t), LQ(t)) = (LF ∗, LQ∗).

Then we have the following asymptotically autonomous system to describe the
Borrelia transmission dynamics

dLF1

dt
= fLβ11

M1(t)
M∗ LQ∗ − (dL + µLF +DLLF

∗)LF1(t),

dNQ1

dt
= dLLF1(t)− (µNQ + fN )NQ1(t),

dM1

dt
= fNγ11NQ1(t)M

∗−M1(t)
M∗ − (µM +DMM

∗)M1(t).

(4)

The basic reproduction number of the Borrelia can be derived through the next
generation matrix method proposed by [5, 7] as

R1 =

√
fLβ11fNγ11dLLQ∗

(dL + µLF +DLLF ∗)(µNQ + fN )(µM +DMM∗)M∗
.

Using a similar argument as in Theorem 2.1, we have the following result indicating
that R1 determines the disease dynamics.
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Lemma 2.2. Assume that RT > 1, then the following statements are valid:

(i) If R1 ≤ 1, then Borrelia-free solution is globally asymptotically stable for
system (4) in R3

+;
(ii) If R1 > 1, then system (4) admits a unique positive endemic equilibrium

(LF ∗1 , NQ
∗
1,M

∗
1 ) and it is globally asymptotically stable for all nontrivial solu-

tions.

A rigorous proof similar to that in [18, Theorem 2.2] via the theory of internally
chain transitive sets [16, 33] shows that the dynamics of the model system (3) are
determined by the two threshold parameters: the reproduction number of ticks
(RT ) and the basic reproduction number of Borrelia (R1). The theory of internally
chain transitive sets has been widely applied to lift the dynamics of the limiting
system to the whole model system, and readers may refer to [10, 14, 18] for some
wonderful applications.

Theorem 2.3. The following statements are valid for model system (3):

(i) If RT ≤ 1, the trivial equilibrium

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,M∗, 0)

is globally attractive;
(ii) If RT > 1 and R1 ≤ 1, then the pathogen-free equilibrium (E∗, LQ∗, LF ∗,

0, NQ∗, 0, NF ∗, 0, A∗, 0, M∗, 0) is globally attractive with respect to all
nontrivial solutions;

(iii) If RT > 1 and R1 > 1, then the system admits a positive equilibrium

(E∗, LQ∗, LF ∗0 , LF
∗
1 , NQ

∗
0, NQ

∗
1, NF

∗
0 , NF

∗
1 , A

∗
0, A

∗
1,M

∗
0 ,M

∗
1 )

which is globally attractive with respect to all positive solutions.

2.2.2. The dynamics of Babesia infection only. In system (3), replacing β11 with
β22 which is the Babesiosis transmission probability of ticks from infected mice to
susceptible questing larvae and replacing γ11 with γ22 which is the Babesia trans-
mission probability of mice from infected questing nymphs to susceptible mice, we
obtain a model system to describe the Babesia transmission between ticks and reser-
voirs. Then the basic reproduction number for Babesia R2 can be figured out by
employing the same method, which becomes

R2 =

√
fLβ22fNγ22dLLQ∗

(dL + µLF +DLLF ∗)(µNQ + fN )(µM +DMM∗)M∗
.

The similar result as Theorem 2.3 also holds for Babesia transmission when other
tick-borne pathogens do not appear.

2.3. Co-infection dynamics. We consider co-infection of B. microti and B.
burgdorferi between reservoir mice and vector ticks. The co-infection disease trans-
mission process between ticks and their hosts can be described by the diagram in
Figures 1 and 2. Each post-egg age group is divided into four subgroups based on
their infection statuses with various infectious pathogens: susceptibles to both B.
microti and B. burgdorferi (subscript 0), infected with B. burgdorferi only (subscrip-
t 1), infected with B. microti only (subscript 2), and co-infected with B. microti
and B. burgdorferi (subscript 3). The same subscripts are used for mice which are
stratified into four compartments: M0, M1, M2, and M3. In theory, hosts can
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Table 1. The state variables for the co-infection model. Bo and
Ba represent Borrelia and Babesia, respectively.

Variable Meaning
E number of eggs

LQ number of questing larvae
LF0 number of feeding larvae susceptible to both Ba and Bo

LF1 number of feeding larvae infected with Bo only

LF2 number of feeding larvae infected with Ba only
LF3 number of feeding larvae co-infected with Ba and Bo

NQ0 number of questing nymphs susceptible to both Ba and Bo

NQ1 number of questing nymphs infected with Bo only
NQ2 number of questing nymphs infected with Ba only

NQ3 number of questing nymphs co-infected with Ba and Bo

NF0 number of feeding nymphs susceptible to both Ba and Bo
NF1 number of feeding nymphs infected with Bo only

NF2 number of feeding nymphs infected with Ba only

NF3 number of feeding nymphs co-infected with Ba and Bo
A0 number of adults susceptible to both Ba and Bo

A1 number of adults infected with Bo only

A2 number of adults infected with Ba only
A3 number of adults co-infected with Ba and Bo

M0 number of mice susceptible to both Ba and Bo
M1 number of mice infected with Bo only

M2 number of mice infected with Ba only

M3 number of mice co-infected with Ba and Bo

get infected with multiple pathogens either through a single bite by a tick harbor-
ing both pathogens, or sequential bites of ticks with each transmitting a different
pathogen [15].

All variable are summarized in Table 1, with 18 variables for various tick stages
and disease statuses, and 4 variables for mice with different disease statuses. There-
fore, we can write down a system (6) of 22 equations, which is postponed to the
appendix.

A standard argument can show that every solution through a nonnegative initial
value remains nonnegative (see for example [25, Theorem 5.2.1]). Moreover, the
population sizes of eggs (E), questing larvae (LQ), feeding larvae (LF=LF0 +LF1 +
LF2 + LF3), questing nymphs (NQ=NQ0 + NQ1 + NQ2 + NQ3), feeding nymphs
(NF=NF0 +NF1 +NF2 +NF3) and adults (A=A0 +A1 +A2 +A3) can be described
by the tick population growth model (1), which implies that the solution remains
bounded. In turn, we have the biological well-posedness for the model system.

Theorem 2.4. For any initial value x0 ∈ R22
+ , system (6) has a unique nonnegative

and bounded solution x(t,x0) for all t ≥ 0.

WhenRT ≤ 1, an argument similar to that used in the previous subsection shows
that all variables related to ticks go to zero and the disease dies out. When RT > 1,
we will figure out the co-infection basic reproduction number R0. According to
Theorem 2.1, we have

lim
t→∞

(E(t), LQ(t), LF (t), NQ(t), NF (t), A(t),M(t)) = (E∗, LQ∗, LF ∗, NQ∗, NF ∗, A∗,M∗).
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Table 2. Definitions and corresponding values of the model pa-
rameters with the daily timescale. Abbreviations: Bo: Borrelia;
Ba: Babesia; TP: transmission probability; AS: assumed parame-
ter values.

Symbol Description Value Ref
µM mortality rate of mice 0.01 [2]

bM birth rate of mice 0.02 [2]

DM density-dependent death rate of mice 5 × 10−5 AS

bE egg reproduction rate 16657
365

[17]

µE mortality rate of eggs 0.0025 [17]

µLQ mortality rate of questing larvae 0.006 [17]

µLF mortality rate of feeding larvae 0.038 [17]

µNQ mortality rate of questing nymphs 0.006 [17]

µNF mortality rate of feeding nymphs 0.028 [17]

µA mortality rate of adults 0.01 [17]

dE development rate of eggs 2.4701
365

[17]

dL development rate of larvae 2.2571
365

[17]

dN development rate of nymphs 1.7935
365

[17]

fL feeding rate of larvae 1.0475
365

[17]

fN feeding rate of nymphs 1.0475
365

[17]

DL density-dependent mortality rate of LF 0.01
200

AS

DN density-dependent mortality rate of LN 0.01
200

AS

β11 TP of Bo from M1 to LQ 0.6 [17]

β31 TP of Bo from M3 to LQ 1.5 ∗ β11 − β33 AS

β22 TP of Ba from M2 to LQ 0.45 AS

β32 TP of Ba from M3 to LQ 1.5 ∗ β22 − β33 AS

β33 TP of both pathogens from M3 to LQ β22 AS

β̄11 TP of Bo from M1 to NQ0 β11 AS

β̄31 TP of Bo from M3 to NQ0 β31 AS

β̄22 TP of Ba from M2 to NQ0 β22 AS

β̄32 TP of Ba from M3 to NQ0 β32 AS

β̄33 TP of both pathogens from M3 to NQ0 β33 AS

βNQ1
23 TP of Ba from M2 to NQ1 β22 AS

βNQ1
33 TP of both pathogens from M3 to NQ1 β33 AS

βNQ2
13 TP of Bo from M1 to NQ2 β11 AS

βNQ2
33 TP of both pathogens from M3 to NQ2 β33 AS

γ11 TP of Bo from NF1 to M0 0.6 AS

γ31 TP of Bo from NF3 to M0 β31 AS

γ22 TP of Ba from NF2 to M0 β22 AS

γ32 TP of Ba from NF3 to M0 β32 AS

γ33 TP of both pathogen from NF3 to M0 β33 AS

γ̄23 TP of Ba from NF2 to M1 β22 AS

γ̄33 TP of Ba from NF3 to M1 β22 AS

γ̃13 TP of Bo from NF1 to M2 β11 AS

γ̃33 TP of Bo from NF3 to M2 β11 AS

Linearizing the system (6) at the disease-free equilibrium, we can obtain the
following system for the infected compartments:

dLF1(t)

dt
= β11M1(t)+β31M3(t)

M∗ fLLQ
∗ − (dL + µLF +DLLF

∗)LF1(t),
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Figure 1. A schematic diagram of co-infection in the tick popu-
lation. Here E (eggs), LQ (questing larvae), LF (feeding larvae),
NQ (questing nymphs), NF (feeding nymphs) and A (adults) rep-
resent the stages of tick population with subscripts denoting the
infectious status for each pathogen. Subscript 0: no pathogen in
ticks; 1: Borrelia only; 2: Babesia only; 3: both pathogens.

M0 M3

M1

M2
NQ2

NQ3

NQ3

NQ3

NQ3

NQ2

NQ1
NQ3

NQ1

Figure 2. A schematic diagram of co-infection in mice M with
subscripts denoting the infectious status for each pathogen.

dLF2(t)

dt
= β22M2(t)+β32M3(t)

M∗ fLLQ
∗ − (dL + µLF +DLLF

∗)LF2(t),

dLF3(t)

dt
= β33

M3(t)
M∗ fLLQ

∗ − (dL + µLF +DLLF
∗)LF3(t),

dNQ1(t)

dt
= dLLF1(t)− (µNQ + fN )NQ1(t),

dNQ2(t)

dt
= dLLF2(t)− (µNQ + fN )NQ2(t),

dNQ3(t)

dt
= dLLF3(t)− (µNQ + fN )NQ3(t),

dM1(t)

dt
= fN (γ11NQ1(t) + γ31NQ3(t))− (µM +DMM

∗)M1(t),
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dM2(t)

dt
= fN (γ22NQ2(t) + γ32NQ3(t))− (µM +DMM

∗)M2(t),

dM3(t)

dt
= fNγ33NQ3(t)− (µM +DMM

∗)M3(t).

(5)

Note that in this system, infected feeding nymphs and adults are not included as
they play no role on pathogen transmission between immature ticks and reservoirs.
From the above linearized system, we can figure out the basic reproduction number
using the ideas of [5, 7]. In particular, we set the disease transmission matrix

F̃ =



0 0 0 0 0 0 β11fL
LQ∗

M∗ 0 β31fL
LQ∗

M∗

0 0 0 0 0 0 0 β22fL
LQ∗

M∗ β32fL
LQ∗

M∗

0 0 0 0 0 0 0 0 β33fL
LQ∗

M∗

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 γ11fN 0 γ31fN 0 0 0

0 0 0 0 γ22fN γ32fN 0 0 0

0 0 0 0 0 γ33fN 0 0 0


and the transition matrix

Ṽ =



κ 0 0 0 0 0 0 0 0

0 κ 0 0 0 0 0 0 0

0 0 κ 0 0 0 0 0 0
−dL 0 0 ν 0 0 0 0 0

0 −dL 0 0 ν 0 0 0 0

0 0 −dL 0 0 ν 0 0 0
0 0 0 0 0 0 σ 0 0

0 0 0 0 0 0 0 σ 0
0 0 0 0 0 0 0 0 σ


,

where κ = dL + µLF + DLLF
∗, ν = µNQ + fN and σ = µM + DMM

∗. Then, the

next next generation matrix can be written as: F̃ Ṽ −1 =


0 0 0 0 0 0
β11fLLQ

∗
M∗σ 0

β31fLLQ
∗

M∗σ
0 0 0 0 0 0 0

β22fLLQ
∗

M∗σ
β32fLLQ

∗
M∗σ

0 0 0 0 0 0 0 0
β33fLLQ

∗
M∗σ

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

dLγ11fN
κν

0
dLγ31fN

κν
γ11fN
ν

0
γ31fN
ν

0 0 0

0
dLγ22fN

κν
dLγ32fN

κν
0

γ22fN
ν

γ32fN
ν

0 0 0

0 0
dLγ33fN

κν
0 0

γ33fN
ν

0 0 0


.

Based on [5, 7], the spectral radius of F̃ Ṽ −1 is the basic reproduction number,
which can be computed as

R0 = ρ(F̃ Ṽ −1) = max{R1,R2,R3}

where, similar to R1 and R2,

R3 =

√
β33fL

LQ∗

M∗σ
· γ33fN

dL
κν

=

√
β33fLLQ∗γ33fNdL

M∗(µM +DMM∗)(dL + µLF +DLLF ∗)(µNQ + fN )
.

We can see that γ31, γ32, γ̄23, γ̄33, γ̃13, γ̃23 do not appear in the expression of the
basic reproduction number. These parameters measure the probabilities of further
infection of infected mice due to sequential tick bites. Hence sequential infection of
another pathogen for infected reservoirs does not increase the basic reproduction
number.
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3. Numerical simulations and discussion. To perform the numerical simula-
tions, it is pivotal to choose biologically acceptable parameter values. The birth
and death rates for mice are taken from [2]. The density-dependent death rate for
mice is chosen such that the mice population size is at the steady state 200. In
reality, the tick development and feeding rates are strongly affected by biotic and
abiotic factors, in particular, seasonal temperature variations [32]. Since the main
focus of the current study is to investigate the co-infection dynamics of tick-borne
pathogens, we formulate the model in a simpler setting that all related parameter-
s are temperature-independent, and hence time-independent by taking the annual
average. For this purpose, the averaged tick development and feeding rates are
adopted from [17]. Previous studies measure the transmission probabilities for Bor-
relia and we take reasonable values as in Table 2. The transmission probabilities
related to the Babesia transmission are set such that the basic reproduction number
for Babesia (R2) is less than one. Since there are few studies on the effect of co-
infection on promoting the transmission probabilities, we assume the co-infection
can enlarge the transmission probabilities for any pathogen 1.5 times. The model
parameters and their values are summarized in Table 2.

In all the simulation plots, we focus on nymphs as this stage is responsible for
the majority of human infections with tick-borne diseases. Based on the parameter
values in Table 2, the vector reproduction number for ticks is RT = 7.2892, and
therefore the tick population size will stabilize at a constant level (Figure 3(a)).
When co-infection is not considered, the reproduction numbers of Borrelia and
Babesia are R1 = 1.2148 and R2 = 0.9111, respectively. According to Theorem 2.1,
single Babesia transmission can not be established as R2 < 1 while single Borrelia
transmission can be maintained since R1 > 1. The single pathogen transmission
dynamics are simulated in Figures 3(b) and 3(c).

However, when co-infection is considered, both Borrelia and Babesia can establish
in the habitat. In this case, the basic reproduction number is R0 = R1 = 1.2148.
Some ticks are infected with Borrelia only while some infected with Babesia only
(Figures 3(d) and (e)). Some other ticks may get infected with both pathogens
(Figure 3(f)). The co-infection can increase the infected tick size, in particular,
the size of infected ticks with Borrelia is also promoted. Since R0 ≥ R1 ≥ R2,
co-infection promotes the transmission of human babesiosis, which provides one
mechanism to resolve the ecological paradox of babesisa transmission: it has weak
fitness (R2 < 1) while gets established in the region where Borrelia remains endemic.

Ticks transmit more pathogens than other arthropods. Previous studies have
demonstrated that co-infection occurred in almost half of the infected ticks, and
that ticks could be infected with up to five pathogens [20]. The current work studies
the co-infection dynamics of tick-borne pathogens, which highlights the co-infection
phenomenon in ticks. In particular, it illustrates that co-infection can facilitate
the transmission of both pathogens and promote the risk of each disease, which
emphasizes the need for new diagnostic tests better adapted to tick-borne diseases
and novel control measures for co-infection of tick-borne pathogens.

Pathogens interacting within a single host could in theory facilitate, compete or
have no effect on others [11, 15]. In our numerical simulations, we only assume
that co-infection of Borrelia and Babesia can boost the transmission probabilities of
both pathogens. However, in a long-term field study, evidence for both positive and
negative interactions between B. microti and A. phagocytophilum were reported,
with the outcome dependent on the duration of A. phagocytophilum infection [15].
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co-infection.
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(f) Ticks infected with both pathogens.

Figure 3. Solution simulations with the model parameters in Ta-
ble 2. Solutions through different initial values converge to the con-
stant level for ticks (a), constant infected ticks for Borrelia infection
only (b) and Babesia transmission cycle can not establish without
the co-infection (c). However, on the scenario of coinfection, both
pathogens can get established ((d), (e) and (f)). More interesting-
ly, some ticks becomes infected with only Babesia or Borrelia while
some others get infected with both pathogens.

It would be interesting to study the negative interaction of co-infection in hosts
in the future. Further investigations can also be performed to refine the obtained
results here with the consideration of following aspects: (a) the host community of
immature ticks containing more than one host species. Since rates of transmission
from infected ticks to vertebrate hosts can vary and increased co-infection was
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observed in larval ticks that fed on small mammal hosts, but not on sciurid, or
avian hosts [15, 17]; (b) spatial spread of ticks due to host movement, such as
deer, mice and birds [14, 22, 31]; (c) Seasonality on tick population growth which is
driven by the seasonal temperature variations [17]. Moreover, since diverse results
are reported about the prevalence of co-infection and infection by a single pathogen
in different regions [15], sites with different epidemiological and ecological features
should be tested to make the model more realistic and conclusions more reliable.
From the mathematical point of view, the interaction of multiple pathogens in
a simple model can induce very complicated dynamics, such as the competition
exclusion, backward bifurcation, and so on [11] while here, we haven’t performed
these analyses for such a complicated model. All these topics remain as our future
work.

Appendix: The model system for co-infection dynamics. As shown in Fig-
ures 1 and 2, we formulate the following system:
dE(t)
dt

= bE(A0(t) + A1(t) + A2(t) + A3(t))− (µE + dE)E(t),

dLQ(t)
dt

= dEE(t)− (µLQ + fL)LQ(t),

dLF0(t)
dt

= fLLQ(t)− (dL + µLF +DLLF (t))LF0(t)

−
(
β11M1(t) + β31M3(t) + β22M2(t) + β32M3(t) + β33M3(t)

)
fLLQ(t)

M(t)
,

dLF1(t)
dt

= −(dL + µLF +DLLF (t))LF1(t) +
(
β11M1(t) + β31M3(t)

)
fLLQ(t)

M(t)
,

dLF2(t)
dt

= −(dL + µLF +DLLF (t))LF2(t) +
(
β22M2(t) + β32M3(t)

)
fLLQ(t)

M(t)
,

dLF3(t)
dt

= −(dL + µLF +DLLF (t))LF3(t) + β33M3(t)
fLLQ(t)

M(t)
,

dNQ0(t)
dt

= dLLF0(t)− (µNQ + fN )NQ0(t),

dNQ1(t)
dt

= dLLF1(t)− (µNQ + fN )NQ1(t),

dNQ2(t)
dt

= dLLF2(t)− (µNQ + fN )NQ2(t),

dNQ3(t)
dt

= dLLF3(t)− (µNQ + fN )NQ3(t),

dNF0(t)
dt

= fNNQ0(t)− (dN + µNF +DNNF (t))NF0(t)

−
(
β̄11M1(t) + β̄31M3(t) + β̄22M2(t) + β̄32M3(t) + β̄33M3(t)

)
fN
M(t)

NQ0(t),

dNF1(t)
dt

= fNNQ1(t)− (dN + µNF +DNNF (t))NF1(t)

+
[
(β̄11M1(t) + β̄31M3(t))NQ0(t)− βNQ1

23 NQ1M2(t)− βNQ1
33 NQ1M3(t)

]
fN
M(t)

dNF2(t)
dt

= fNNQ2(t)− (dN + µNF +DNNF (t))NF2(t)

+
[
(β̄22M2(t) + β̄32M3(t))NQ0(t)− βNQ2

13 NQ2(t)M1(t)− βNQ2
33 NQ2(t)M3(t)

]
fN
M(t)

,

dNF3(t)
dt

= fNNQ3(t)− (dN + µNF +DNNF (t))NF3(t) +
[
β
NQ1
23 NQ1(t)M2(t) + β

NQ2
13 NQ2(t)M1(t)

+β
NQ2
33 NQ2(t)M3(t) + β̄33M3(t)NQ0(t) + β

NQ1
33 NQ1M3(t)

]
fN
M(t)

,

dA0(t)
dt

= dNNF0(t)− µAA0(t),

dA1(t)
dt

= dNNF1(t)− µAA1(t),

dA2(t)
dt

= dNNF2(t)− µAA2(t),

dA3(t)
dt

= dNNF3(t)− µAA3(t),

dM0(t)
dt

= bMM(t)− (µM +DMM(t))M0(t)

− fN
M(t)

M0(t)
[
γ11NQ1(t) + γ31NQ3 + γ22NQ2(t) + γ32NQ3 + γ33NQ3(t)

]
,

dM1(t)
dt

=
fN
M(t)

[
(γ11NQ1(t) + γ31NQ3)M0(t)− (γ̄23NQ2(t) + γ̄33NQ3(t))M1(t)

]
−(µM +DMM(t))M1(t),

dM2(t)
dt

=
fN
M(t)

[
(γ22NQ2(t) + γ32NQ3(t))M0(t)− (γ̃13NQ1(t) + γ̃33NQ3(t))M2(t)

]
−(µM +DMM(t))M2(t),
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dM3(t)
dt

=
fN
M(t)

[
γ33NQ3(t)M0(t) + (γ̄23NQ2 + γ̄33NQ3(t))M1(t) + (γ̃13NQ1 + γ̃33NQ3(t))M2

]
−(µM +DMM(t))M3(t),

(6)

where

LF (t) = LF0(t) + LF1(t) + LF2(t) + LF3(t),

NF (t) = NF0(t) +NF1(t) +NF2(t) +NF3(t),

M(t) = M0(t) +M1(t) +M2(t) +M3(t)

are the population sizes for feeding larvae, feeding nymphs and mice, respectively.
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