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a b s t r a c t 

We present a mathematical model to investigate the transmission dynamics of the 2016–2017 Yemen 

cholera outbreak. Our model describes the interaction between the human hosts and the pathogenic bac- 

teria, under the impact of limited medical resources. We fit our model to Yemen epidemic data published 

by the World Health Organization, at both the country and regional levels. We find that the Yemen 

cholera outbreak is shaped by the interplay of environmental, socioeconomic, and climatic factors. Our 

results suggest that improvement of the public health system and strategic implementation of control 

measures with respect to time and location are key to future cholera prevention and intervention in 

Yemen. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In October 2016, a cholera outbreak started in Yemen. By March

2017, the outbreak was apparently in decline, but it resurged

on April 27, 2017 and remained ongoing since then. In just two

months, cholera rapidly spread to almost every governorate of the

country, with reported cases increasing at an average of 5,0 0 0 a

day. As of November 19, 2017, more than 945,0 0 0 suspected cases

and over 2,200 disease induced deaths were reported ( WHO ), mak-

ing it the worst cholera outbreak in modern history. 

This severe cholera outbreak is a direct consequence of two

years of heavy conflict and war, which have been devastating

Yemen and pushing the country towards social, economic and in-

stitutional collapse. As a result, two thirds of people in Yemen do

not have access to clean drinking water and sanitation services are

limited, further increasing the risk of catching cholera. Even worse,

the national health system has been nearly destroyed by the in-

tense conflict – a recent survey conducted by the World Health

Organization (WHO) revealed that only 45% of the health facilities

in Yemen remain functional due to shortages in health profession-

als and medical supplies ( WHO ). 

On the other hand, the spread of cholera in Yemen exhibits a

highly heterogeneous pattern. For example, almost half of the sus-

pected cholera cases have been reported from four governorates:
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manat Al Asimah, Al Hudaydah, Hajjah and Amran, all of which

re located on the west coast of the country. In contrast, for those

overnorates located on the east part, such as Sayun, Al Mukalla

nd Al Maharah, the numbers of cholera cases are notably lower

ranging from nearly 0 to slightly above 1,0 0 0). Even after scal-

ng by the population size, the attack rates in the west are still

ignificantly higher than those in the east (see Fig. 1 ). Such differ-

nt levels of disease prevalence and attack rates could be linked

o the geographical and climatic distinctions of the country, where

he east region is typically dry with an arid climate, and the west

egion is more humid with a tropical climate (see Fig. 2 ). 

Cholera is a waterborne disease caused by the bacterium Vibrio

holerae . It is known to spread rapidly in areas with limited access

o clean water and sanitation facilities. The transmission of cholera

nclude both indirect (i.e., environment-to-human) and direct (i.e.,

uman-to-human) routes ( Nelson et al., 2009 ). The indirect trans-

ission pathway typically takes place when people ingest water

r food from the environment that is contaminated by the vibrios.

he direct transmission may occur when people have close con-

acts (such as shaking hands or hugging) with infected individuals,

r eat food prepared by individuals with dirty hands. A number of

tudies have demonstrated that both transmission routes play im-

ortant roles in shaping the complex epidemic and endemic pat-

erns of cholera (see, e.g., Mukandavire et al., 2011; Posny and

ang, 2014; Tien and Earn, 2010; Wang et al., 2016; Yang et al.,

017 ). 
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Fig. 1. Map of Yemen and the division of three regions: southwest (cyan), northwest (green), and east (pink). The severity of the cholera outbreak is the highest in the 

northwest, followed by the southwest, and the lowest in the east. Numbers in blue show the attack rates per 10 0 0 people. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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There are several important questions that remain unanswered

egarding the Yemen cholera outbreak. First, why was there a small

pidemic (starting in October 2016) prior to the onset of the major

pidemic in April 2017? This is often referred to as a “herald wave”

n epidemiological study. But what factors trigger this herald wave

henomenon, and how is it connected to the major epidemic wave

ater on? Second, what is the underlying mechanism that drives

he strongly heterogeneous transmission and spread of cholera in

ifferent regions of the country? Additionally, what factors lead to

uch a severe cholera outbreak with long duration? We speculate

hat the cholera outbreak in Yemen is shaped by the interplay of

iological, environmental, socioeconomic, and climatic factors, and

nswers to these questions demand a systematic study that incor-

orate all these components. 

In the present paper, we propose a new mathematical model to

nvestigate the Yemen cholera outbreak, as a pilot study toward

ddressing the aforementioned questions. The model represents

he interaction between human hosts and the pathogenic bacte-

ia (i.e., the vibrios) and includes both direct and indirect trans-

ission pathways. The model particularly incorporates the impact

f limited medical resources on the transmission and spread of

holera in Yemen. We conduct data fitting of our model by using

he weekly epidemiological reports published by WHO ( WHO ). Our

esults contribute to deeper understanding of the transmission dy-

amics underlying the Yemen cholera outbreak, and provide useful

uidelines for the design of control strategies in future. 

. Methods 

We propose a mathematical model based on differential equa-

ions to investigate the transmission dynamics of the Yemen
holera outbreak. The model involves five compartments: the sus-

eptible individuals (denoted by S ), the infectious individuals (de-

oted by I ), the recovered individuals (denoted by R ), the con-

entration of the pathogenic vibrios in the environment (denoted

y B ), and the availability of medical resources in the country

denoted by M ). For convenience of discussion, we normalize the

ange of M to [0, 1], with the upper limit M = 1 (or 100%) repre-

enting the maximum strength of the medical resources available

n Yemen. Details of the model are provided in Supplemental Ma-

erials, S1.1. 

We consider both the direct (human-to-human) and the indi-

ect (environment-to-human) transmission routes ( Nelson et al.,

009 ). The direct and indirect transmission rates are assumed to

oth depend on the time and the availability of medical resources,

n the form of 

β1 (M, t) = β(t) · [ a 1 + b 1 (1 − M)] , 

β2 (M, t) = β(t) · [ a 2 + b 2 (1 − M)] , 
(2.1) 

here a i and b i ( i = 1 , 2 ) are constants, and β is an exponential

ubic spline function characterizing the temporal dependence of

he transmission rates. 

It is well known that the transmission rates play a critical role

n determining the output of an epidemic model and, often, the

ransmission rates vary from place to place. This is especially true

or cholera epidemics ( Mukandavire et al., 2011 ). In the present

tudy, we use data fitting to evaluate the key parameters a i , b i and

he function β( t ), which determine the direct and indirect trans-

ission rates. Other model parameters and their values are dis-

ussed in Supplemental Materials, S1.2. 

We employ the algorithm of iterated filtering ( Ionides et al.,

011; King et al., 2008 ) for the data fitting, implemented in a R
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Fig. 2. Distribution of temperature and precipitation for the three climatic zones in Yemen. The symbols ‘1’, ‘2’ and ‘3’ refer to the northwest, southwest, and east regions, 

respectively. 
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software package POMP ( King et al., 2016 ). In particular, when fit-

ting the function β( t ), we use a number of nodes (controlled by

the parameter n β ) uniformly distributed over the entire epidemic

period. To quantify the errors of the data fitting and to measure the

quality of our model, we calculate the Akaike Information Crite-

rion (AICc), using the small-sample-size corrected version ( Akaike,

1974; 1985 ). The values of AICc indicate the trade-off between the

quality of the fitting and the complexity of the model. A smaller

AICc typically suggests a better model. Particularly, in our data fit-

ting, we estimate how many nodes in the cubic spline function

β( t ) may minimize the AICc. 

We utilize the outbreak data in the Yemen Situation Reports

published weekly by WHO ( WHO ). These data sets contain the

weekly reported suspected cases and cumulative cases (as of

November 19, 2017) for each governorate as well as the entire

country. We conduct data fitting to four time series: country

level weekly reported cases, and regional level (the northwest, the

southwest, and the east) weekly reported cases. In this study, the

three regions (see Fig. 1 ) are defined as 

• East: Longitude + Latitude > 60 °; 
• Northwest: Longitude + Latitude < 60 ° & Latitude > 14.5 °; 
• Southwest: Longitude + Latitude < 60 ° & Latitude < 14.5 °. 

Such a division roughly corresponds to the three major climatic

zones in Yemen ( Yemen ). 

3. Results 

Using the method of iterated filtering, we fit our model to the

weekly reported outbreak data published by WHO ( WHO ) in four

scenarios that include the entire country and the three regions.
ig. 3 presents our best results of data fitting based on the com-

uted AICc. In particular, we observe that only a small number

f nodes are needed to fit the exponential cubic spline function

( t ), and that fast convergence of the AICc is achieved when n β
ncreases from 2 to 10, with n β = 10 yielding the most accurate

esults. In all the four scenarios in Fig. 3 , we observe reasonably

ood agreement between our simulation result (red curve) and the

eported data (black curve with circles). Particularly, our simulation

learly generates the herald wave; i.e., the minor epidemic wave

uring November 2016 – March 2017 that preceded the major out-

reak starting in April/May 2017. 

Meanwhile, we have computed the time-dependent reproduc-

ion number, R 0 (t) , of our mathematical model at any given time

 (see Supplemental Materials, S1.3). We find that R 0 (t) has two

omponents: one is the contribution from the human-to-human

ransmission, denoted by R H (t) ; the other is the contribution from

he environment-to-human transmission, denoted by R E (t) . We

reat both R H and R E as functions of the time variable t , and plot

hem together in Fig. 3 . 

Fig. 3 -a shows the result at the country level. At any time, the

alue of R E (represented by the green line with dots) is higher

han that of R H (represented by the blue dashed line), indicating

hat the environment-to-human transmission plays a more impor-

ant role than the human-to-human transmission, on the scale of

he entire country. Both R E and R H attain their peak values be-

ween late April and early May, 2017, which coincides with the

esurgence of the outbreak (the “major” wave) starting on April

7. They attain their second highest values between October and

ovember, 2016, which corresponds to the onset of the outbreak

the herald wave). Their third highest values occur in September

017, where the reported data show a moderate increase of infec-
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Fig. 3. Data fitting results in four scenarios: (a) the entire country; (b) the southwest region; (c) the northwest region; (d) the east region. Black line with circles denotes 

reported cases, red line denotes model simulation median, blue dashed line and green line with dots show the time evolution of R H and R E , respectively, and shaded region 

represents 95% bound of 10 0 0 model simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ion cases, after a period (about 3 months) of steady decrease. At

ny time t , we see that R 0 = R E + R H > 1 . 

The results for the southwest region ( Fig. 3 -b) and the north-

est region ( Fig. 3 -c) show a similar pattern to those in the coun-

ry level. For the east region ( Fig. 3 -d), however, we observe that

he value of R H is always higher than that of R E , indicating the

ominance of the human-to-human transmission in this particular

egion. 

Additionally, it is easy to observe that the northwest region has

he highest R 0 (i.e., R E and R H combined) at any time, among the

hree regions, followed by the southwest region, and the east re-

ion has the lowest R 0 . This observation is consistent with the fact

hat the northwest and east regions exhibit the highest and lowest

egrees of outbreak severity, respectively. 
. Discussion 

The transmission and spread of cholera involve complex biolog-

cal and socioeconomic processes, and the underlying mechanisms

or a cholera outbreak vary from place to place. In this study, we

ave attempted to use mathematical modeling and data fitting to

nvestigate the Yemen cholera outbreak, with an aim to better un-

erstand the patterns and driving forces for this extremely severe

nd long lasting cholera epidemic. 

The unusually high prevalence and severity of this cholera out-

reak are certainly linked to the collapsed health system and lim-

ted medical resources in Yemen. In our work, we have incorpo-

ated the strength of the medical resources as an essential variable

n the model, on which the transmission rates explicitly depend.
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Another important feature of our model is that we have introduced

a time-dependent function β( t ) which can characterize the trans-

mission rates at different times due to the change of environmen-

tal, socioeconomic and climatic conditions. In particular, the func-

tion β( t ) takes different values at the three different regions of the

country, representing the impact of spatial and geographical het-

erogeneity on cholera transmission. These features enable us to fit

our model to realistic data and obtain meaningful fitting results. 

We have employed time-dependent reproduction numbers, R E 

and R H , as a means to quantify the disease risks throughout the

epidemic period. We find that the values of R E and R H vary sig-

nificantly among the three different regions, a clear indication that

the different levels of epidemic severity are linked to the geo-

graphical and climatic heterogeneity. For example, the east region

is characterized by the arid (or, desert) climate with very low pre-

cipitation throughout the year ( Yemen ). Such a dry environment

is “hostile” to the growth and survival of V. cholerae . It is thus

not surprising to see that the environment-to-human transmission

route plays a minor role in this region, whereas the human-to-

human transmission pathway accounts for the majority of the dis-

ease prevalence. In contrast, the southwest and northwest regions

are much more humid, with a tropical climate, which tends to pro-

mote the transmission and spread of the vibrios, particularly in

April/May when the precipitation optimizes the growth of the vib-

rios. For example, the capital Sana’a, a city located in the north-

west region and heavily plagued by the cholera outbreak, has an

average rainfall of 1 mm in each month of October, November, De-

cember and January, 9 mm in February, 7 mm in March, and 35

mm and 13 mm in April and May, respectively ( Yemen ). Thus, the

months of April and May mark a period with a sharp increase in

precipitation, coinciding with the onset of the major epidemic that

started in Sana’a on April 27, 2017 and the fact that the sewer sys-

tem in the city stopped working just a few days before. 

Through data fitting, we obtain simulation results that closely

represent the first, minor epidemic (the herald wave) and the sec-

ond, severe epidemic (the major wave). The herald wave from

November 2016 to March 2017 is accompanied by relatively high

values of R E and R H in the beginning. As both R E and R H de-

crease, the wave is in decline in the following months. However,

a sudden increase of R E and R H to their peak values in late April

triggers the major epidemic wave. Such a rapid change of R E and

R H is possibly attributed to the change of both environmental and

socioeconomic conditions. For most parts of Yemen, on top of the

higher precipitations in April/May, the temperature in April/May

could reach mid 30s Celsius which is optimal for the growth and

reproduction of V. cholerae ( de Magny and Colwell, 2009; Singleton

et al., 1982 ). Meanwhile, as the war continues, more health facil-

ities and medical resources are destroyed, and public infrastruc-

tures get damaged (particularly, the dysfunction of Sana’a’s sewer

system in April 2017), further increasing the risk of cholera trans-

mission and rendering people in Yemen more vulnerable to the in-

fection. 

Our study indicates that several major factors collectively shape

the epidemics of the Yemen cholera outbreak. First, the collapsed

health system and limited medical resources directly impact the

transmission and spread of the disease, and transmission rates in-

crease when the strength of the medical resources decays. Sec-

ond, the evolution of both the direct and indirect transmission

pathways with time leads to a peak level of transmission rates in

April/May 2017 that triggers the major epidemic. Third, the geo-

graphical and climatic distinctions among the west and east re-

gions account for the heterogeneous epidemic patterns throughout

the country. 

These results have important implications to future cholera pre-

vention/intervention in Yemen. Improvement of public health in-

frastructure and recovery of medical facilities are of fundamen-
al importance. In addition, control efforts should be implemented

trategically with respect to time and location: Stronger con-

rol measures should be planned for the time periods (such as

pril/May) when the temperature and precipitation optimize the

rowth of the pathogen, and the west part of the country (particu-

arly the northwest region) demands a higher level of control than

he east part. 

Finally, there are several limitations in our study. First, our

athematical epidemic model is a non-autonomous system, for

hich there is no general theory to define or compute the basic

eproduction number (note that the standard next-generation ma-

rix framework for autonomous systems ( Diekmann et al., 1990;

an den Driessche and Watmough, 2002 ) and some extended work

or periodic systems ( Posny and Wang, 2014; Wang and Zhao,

008 ) do not apply to our model). We have used a simple way

o evaluate R H and R E by freezing the system at each time t and

reating it as an autonomous system at t . Although this approach

acks mathematical rigor, it provides an intuitive means to mea-

ure the risks of infection (due to the direct and indirect trans-

issions, respectively) that change with time. Second, in our data

tting, we set the recruitment rate, �, for the medical resources as

. This simplifies the task of data fitting, but may not realistically

epresent the situation in Yemen. Additionally, in reality, several

ther model parameters such as the bacterial shedding rate and

he disease recovery rate, may also take complex forms and may

ary with time and space, and such complications are not explored

n the current study. 
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