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6.1 INTRODUCTION

Malaria, a vector-borne infectious disease caused by the Plasmodium parasite, is

still endemic in more than 100 countries in Africa, Southeast Asia, the Eastern

Mediterranean, Western Pacific, Americas, and Europe. In 2010 there were about

219 million malaria cases, with an estimated 660,000 deaths, mostly children under

5 in sub-Saharan Africa (WHO 2012). The malaria parasite is transmitted to humans

via the bites of infected female mosquitoes of the genus Anopheles. Mosquitoes can

become infected when they feed on the blood of infected humans. Thus the infection

goes back and forth between humans and mosquitoes.

Mathematical modeling of malaria transmission has a long history. It has helped

us to understand transmission mechanism, design and improve control measures,

forecast disease outbreaks, etc. The so-called Ross–Macdonald model

dh(t)
dt

= ab
H − h(t)

H
v(t) − rh(t)

dv(t)
dt

= ac
h(t)
H

(V − v(t)) − dv(t)

is the earliest malaria model, which was originally considered by Ross (1911) in

1911 and later extended by Macdonald (1952, 1956, 1957) in the 1950s. Here H and
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V are the total populations of humans and mosquitoes, respectively, h(t) and v(t) are,
respectively, the numbers of infected humans and mosquitoes at time t, a is the rate of
biting on humans by a single mosquito, b and c are the transmission probabilities from

infected mosquitoes to susceptible humans and from infected humans to susceptible

mosquitoes, respectively, 1∕r is the duration of the disease in humans and d is the

mortality rate of mosquitoes. On the basis of the modeling, Ross (1911) introduced

the threshold density concept and concluded that “… in order to counteract malaria

anywhere we need not banish Anopheles there entirely—we need only to reduce their

numbers below a certain figure.” Macdonald (1952, 1956, 1957) generalized Ross’

basic model, introduced the concept of basic reproduction number as the average

number of secondary cases produced by an index case during its infectiousness

period, and analyzed several factors contributing tomalaria transmission. Thework of

Macdonald had a very beneficial impact on the collection, analysis, and interpretation

of epidemic data on malaria infection (Molineaux and Gramiccia 1980) and guided

the enormous global malaria-eradication campaign of his era (Ruan et al. 2008). The

Ross–Macdonald model is very useful and successful in the sense that it captures

the essential features of malaria transmission process. The modeling structure is now

frequently used to investigate the transmission dynamics of many other vector-borne

diseases.

However, the Ross–Macdonald model is highly simplified and ignores many

important factors of real-world ecology and epidemiology (Ruan et al. 2008). For

example, it does not take into account the age structure and immunity in humans,

latencies in both humans and mosquitoes, environmental factors, vital dynamics in

humans, etc. Another omission is the spatial heterogeneity since both mosquitoes

and humans are moving around, which contributes to the spatial spread of the dis-

ease significantly. Malaria may vary spatially in the vectors that transmit it, in the

species causing the disease, and in the level of intensity. It can be easily spread

from one location to another due to extensive travel and migration (Martens and Hall

2000; Tatem et al. 2006; Stoddard et al. 2009). A possible reason for the failure of

the Global Malaria Eradication Program (1955–1969) is due to human movement

(Bruce-Chwatt 1968).

One way of introducing spatial effects into epidemic models is to divide the

population into n subpopulations and allow infective individuals in one patch to infect

susceptible individuals in another (see Lajmanovich and Yorke 1976; Sattenspiel and

Dietz 1995; Dushoff and Levin 1995; Lloyd and May 1996; Arino 2009; Wang

2007; and the references cited therein). Spatial heterogeneities can be modeled by

adding an immigration term where infective individuals enter the system at a constant

rate. This certainly allows the persistence of the disease since if it dies out in one

region then the arrival of an infective individual from elsewhere can trigger another

epidemic. Spatial heterogeneities have also been incorporated into epidemiological

models by using reaction-diffusion equations by some researchers (see, for example,

Murray 1989). Smith and Ruktanonchai (2010), Mandal et al. (2011), and Reiner

et al. (2013) have given comprehensive reviews on various mathematical models of

malaria. In what follows, we only introduce some spatial models solely developed

for malaria transmission. There are numerous spatial epidemic models for West Nile
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virus, dengue, and other vector-borne diseases that may be also applicable to malaria

study, but are excluded from this chapter.

6.2 MALARIAMODELSWITH CONSTANT INFECTIVE IMMIGRANTS

In modern time, humans travel more frequently on scales from local to global.

One million people are reported to travel internationally each day, and one million

people travel from developed to developing countries (and vice versa) each week

(Garrett 1996). A more recent report quoted a figure of 700 million tourist arrivals

per year (Gössling 2002). These types of movements have the potential to spread

disease pathogens and their vectors over long distances. Infected people frommalaria-

endemic regions can bring the disease to malaria-free regions and this has happened

in the United States where an estimated 1500 malaria cases are diagnosed annually

in this country, of which about 60% are among US travelers (Newman et al. 2004).

Perhaps the simplest way to include spatial effects is to assume that there is a constant

recruitment through human movement with a fraction of infective immigrants.

Tumwiine et al. (2010) developed such a model with the SIRS structure for

humans and the SI structure for mosquitoes. Let NH(t) and NV (t) be the total numbers

of humans and mosquitoes at time t, respectively. The human population is divided

into three subclasses: susceptible, infectious, and semi-immune, with numbers at

time t in these classes given by SH(t), IH(t), and RH(t), respectively. The mosquito

population is divided into two subclasses: susceptible SV (t) and infectious IV (t). Thus
NH(t) = SH(t) + IH(t) + RH(t) and NV (t) = SV (t) + IV (t). A flow Λ of new members

enters into the human population through birth or immigration with a fraction 𝜙 of

infectives. It is assumed that there are no immigrants that enter the immune class.

The model takes the form

dSH
dt

= (1 − 𝜙)Λ − ab
SH
NH

IV + 𝜈IH + 𝛾RH − 𝜇hSH ,

dIH
dt

= 𝜙Λ + ab
SH
NH

IV − (𝜈 + r + 𝛿 + 𝜇h)IH ,

dRH
dt

= rIH − (𝛾 + 𝜇h)RH ,

dSV
dt

= 𝜆vNV − ac
IH
NH

SV − 𝜇vSV ,

dIV
dt

= ac
IH
NH

SV − 𝜇vIV ,

(6.1)

where a is the number of humans a mosquito bites per unit time, b is the proportion
of infected bites on humans that produce an infection, c is the transmission efficiency

from humans to mosquitoes, 𝜇h and 𝜇v are the natural death rates for humans and

mosquitoes, respectively, 𝛿 is the disease-induced death rate for humans, r is the
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progression rate that infectious humans become semi-immune, 𝜈 is the progression

rate that infectious humans become susceptible, 𝛾 is the rate of loss of immunity for

humans, and 𝜆v is the birth rate of mosquitoes.

Since a female mosquito takes a fixed number of blood meals per unit time

independent of the abundance of the host, the mosquito–human ratiom = NV
NH

is taken

as a constant. Set sh =
SH
NH

, ih =
IH
NH

, rh =
RH
NH

, sv =
SV
NV

and iv =
IV
NV

as the proportions

for classes SH , IH ,RH , SV , and IV , respectively, so that

sh + ih + rh = 1 ⇒ rh = 1 − sh − ih and sv + iv = 1 ⇒ sv = 1 − iv.

Then system (6.1) reduces to

dsh
dt

= 𝛾 + (1 − 𝜙)(𝜇h + 𝛿ih) − [abmiv + 𝜇h + 𝛾]sh + (𝜈 − 𝛾)ih,

dih
dt

= 𝜙(𝜇h + 𝛿ih) + abmshiv − [𝜈 + r + 𝜇h + 𝛿]ih,

div
dt

= ac(1 − iv)ih − 𝜆viv

(6.2)

provided that
Λ
NH

= 𝜇h + 𝛿ih. It can be shown that the biologically feasible region

T = {(sh, ih, iv) ∈ ℝ3
+ : 0 ≤ sh, 0 ≤ ih, sh + ih ≤ 1, 0 ≤ iv ≤ 1}

is positively invariant with respect to system (6.2). Clearly, system (6.2) always has

a disease-free equilibrium E0 = (1, 0, 0) when 𝜙 = 0 (namely, there are no infective

immigrants). So we can define a basic reproduction number

0 =

√
a2bmc

𝜆v(𝜈 + r + 𝜇h + 𝛿)

for system (6.2) if 𝜙 = 0. There exists a unique endemic equilibrium, denoted by E1,
if 𝜙 = 0 and0 > 1. For 𝜙 > 0, system (6.2) has no disease-free equilibrium but has

exactly one endemic equilibrium, denoted by Ẽ1, for all parameter values. Following

Tumwiine et al. (2010), we have the following results:

Theorem 6.1. Let
◦
T be the interior of T.

(i) If 𝜙 = 0 and 0 ≤ 1, then the disease-free equilibrium E0 of system (6.2) is
the only equilibrium in T and is globally asymptotically stable.

(ii) If 𝜙 = 0 and 0 > 1, then the disease-free equilibrium E0 of system (6.2)
becomes unstable and there exists a unique endemic equilibrium E1, which is
globally asymptotically stable in

◦
T .

(iii) If 0 < 𝜙 < 1, then the unique endemic equilibrium Ẽ1 of system (6.2) is
globally asymptotically stable in

◦
T .
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The global stability of E0 is proved by constructing a Lyapunov function and the
global stabilities of E1 and Ẽ1 are proved by employing the geometrical approach
developed in Li and Muldowney (1996). These indicate that a constant influx of

infected immigrants plays a significant role in the spread and persistence of malaria

and it could result in new disease outbreaks in area where malaria had once been

eradicated.

6.3 MALARIA MODELS WITH DISCRETE DIFFUSION

Multi-patch models are widely used to model directly transmitted diseases as well as

vector-borne diseases (see Arino 2009; Wang 2007). A patch may be referred to as a

village, city, country, or some other geographical region. Either humans, mosquitoes,

or both are mobile; the case mainly depends on the spatial scale under consideration.

Because mosquitoes have relatively lower mobility, we usually neglect mosquito

movement in the larger geographical scale, but consider both or mosquito movement

in the small scale. In this section, we will first introduce some multi-patch models

with constant population size, then present multi-patch models with birth and death.

At the end we will discuss a multi-strain model in a heterogeneous environment.

6.3.1 Multi-patch Models Without Vital Dynamics of Humans

In the Ross–Macdonald model, both human and mosquito populations are constant

and there is no latent period or partially immune class. Its simplicity allows us to

do some in-depth investigations. The early multi-patch malaria models follow the

Ross–Macdonald structure (see Dye and Hasibeder 1986; Hasibeder and Dye 1988;

Torres-Sorando and Rodrı́guez 1997; Rodrı́guez and Torres-Sorando 2001).

To take account of the nonhomogeneous mixing between vectors and hosts, Dye

and Hasibeder (1986) and Hasibeder and Dye (1988) proposed and analyzed the

following epidemic model with m host patches and n vector patches

dSi
dt

= 𝛼

(∑

j

𝛾jiIj
)(
1 −

Si
Hi

)
− 𝜌Si, 1 ≤ i ≤ m,

dIj
dt

= 𝛽
(
Vj − Ij

)(∑

i

𝛾ji
Si
Hi

)
− 𝛿Ij, 1 ≤ j ≤ n,

(6.3)

where Hi is the total host population size in patch i with Si being infected and
Vj is the total vector population size in patch j with Ij being infected, 𝛼 and 𝛽

are the transmission rates of infection from vectors to hosts and vice versa, 𝛾ji is

the probability that a vector from patch j commutes to and bites in host patch i, 𝜌
is the human recovery rate and 𝛿 is mosquito death rate. As far as we know, this

is the first multi-patch malaria model that is somewhat different from those we will

present later. A mosquito from any one of the n vector patches can bite any one of
the m host patches. The nonnegative terms 𝛾ji are assumed to satisfy

∑
1≤i≤m 𝛾ji = 1

for j = 1, 2,… , n.



114 MALARIA MODELS WITH SPATIAL EFFECTS

We call model (6.3) a p∕q model if m = p and n = q. Let H and V be the total

hosts and vectors over all patches, respectively. The following result suggests that

nonuniform host selection bymosquitoes leads to basic reproduction numbers greater

than or equal to those obtained under uniform host selection.

Theorem 6.2 (Theorem 2 in Hasibeder and Dye 1988). The basic reproduction
number R(m∕n) for the m∕n model (6.3) can be estimated against the basic repro-
duction numbers R(m∕1),R(1∕1),R(1∕n) for the corresponding m∕1, 1∕1, and 1∕n
models according to

R(m∕n) ≥ R(m∕1) ≥ R(1∕1) = R(1∕n) = 𝛼𝛽V∕𝜌𝛿H.

Moreover, the disease dynamics are completely determined by the basic reproduc-

tion number (Theorem 7 in Hasibeder and Dye 1988). Namely, the disease either goes

extinct (if R(m∕n) ≤ 1) or persists at an endemic equilibrium level (if R(m∕n) > 1)

in the whole system.

Torres-Sorando and Rodrı́guez (1997) and Rodrı́guez and Torres-Sorando (2001)

clearly stated two types of mobility patterns in humans for malaria infection: migra-

tion between patches without return, and visitation in which the individuals return

to their patch of origin after visiting other patches. Conditions for invasibility of

the disease are obtained for the models under further assumptions. More recently,

Auger et al. (2008) and Cosner et al. (2009) generalized the models in Dye and

Hasibeder (1986), Hasibeder and Dye (1988), Torres-Sorando and Rodrı́guez (1997),

and Rodrı́guez and Torres-Sorando (2001) to an evenmore general form. In particular,

Cosner et al. (2009) studied the following visitation model

dXi

dt
=

(
N∑

j=1
AijYj

)
(Hi − Xi) − riXi,

dYi
dt

=

(
N∑

j=1
BijXj

)
(Vi − Yi) − 𝜇iYi,

(6.4)

and migration model

dXi

dt
=AiYi(H

∗
i − Xi) − riXi +

N∑

j=1
CijXj,

dYi
dt

=BiXi(V
∗
i − Yi) − 𝜇iYi +

N∑

j=1
DijYj,

(6.5)

where Ai = aibie
−𝜇i𝜏i∕H∗

i and Bi = aici∕H∗
i for i = 1,… ,N. Here N is the number of

patches in the network; Xi and Yi are the numbers of infected humans andmosquitoes,

respectively; Hi and Vi are the total numbers of humans and mosquitoes for the ith
patch in isolation, respectively; ri and 𝜇i are the recovery rate for humans and
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mortality rate of mosquitoes, respectively; Aij and Bij measure the rates that a vector

from patch j bites and infects a host in patch i and a host in patch i gets infection from
a vector in patch j, respectively; ai and 𝜏i are the human feeding rate and the extrinsic

incubation period of malaria within mosquitoes, respectively; bi and ci measure

the transmission efficiencies from infected mosquitoes to susceptible humans and

from infected humans to susceptible mosquitoes in patch i, respectively; Cij and Dij
are the movement rates of humans and mosquitoes from patch j to patch i, i ≠ j,
respectively; −Cii =

∑N
j=1,j≠i Cji and −Dii =

∑N
j=1,j≠i Dji are the emigration rate of

humans and mosquitoes in patch i, respectively; (H∗
1
,… ,H∗

N) and (V∗
1
,… ,V∗

N) are

the equilibrium population size of humans and mosquitoes, which are the unique

positive solutions to

N∑

j=1
CijH

∗
j = 0, i = 1,… ,N, and

N∑

j=1
H∗
j =

N∑

j=1
Hj,

N∑

j=1
DijV

∗
j = 0, i = 1,… ,N, and

N∑

j=1
V∗
j =

N∑

j=1
Vj,

respectively.

The basic reproduction number for each modeling approach is computed using

the method of van den Driessche and Watmough (2002) and it is a threshold that

determines the global dynamics of the disease.

Theorem 6.3 (Theorem 1 in Cosner et al. 2009). Let 𝒜 = ((AijHi∕𝜇j)) and ℬ =
((BijVi∕rj)), where the entries in𝒜 andℬ are taken frommodel (6.4). Assume that the
matrices𝒜 ,ℬ are irreducible. Then formodel (6.4) wemay take R2

0
= 𝜌(𝒜ℬ)where

𝜌 is the spectral radius. If R0 < 1 then the disease-free equilibrium in model (6.4)
is stable while if R0 > 1 it is unstable. If the disease-free equilibrium in model (6.4)
is stable then there is no positive equilibrium and the disease-free equilibrium
is globally stable among nonnegative solutions. If the disease-free equilibrium is
unstable then there is a unique positive equilibrium that is globally stable among
positive solutions.

Theorem 6.4 (Theorem 2 in Cosner et al. 2009). Consider the system (6.5)
restricted to the invariant region {(X1,… ,XN ,Y1,… , YN) : 0 ≤ Xi ≤ H∗

i , 0 ≤ Yi ≤
V∗
i , i = 1,… ,N}. Let C = ((Cij)) and D = ((Dij)). Let 𝒜 ∗ = ((AiH

∗
i 𝛿ij)), ℬ∗ =

((BiV
∗
i 𝛿ij)),𝒞

∗ = ((Cij − ri𝛿ij)), and𝒟
∗ = ((Dij − 𝜇i𝛿ij)), where 𝛿ij is the Kronecker

delta (i.e., 1 when i = j and 0 otherwise). Assume that the matrices C and D are
irreducible. Then for system (6.5) we may take R2

0
= 𝜌(𝒜 ∗𝒟 ∗−1ℬ∗𝒞 ∗−1). If R0 < 1

then the disease-free equilibrium in system (6.5) is stable while if R0 > 1 it is unsta-
ble. If the disease-free equilibrium in system (6.5) is stable then there is no positive
equilibrium and the disease-free equilibrium is globally stable among nonnegative
solutions. If the disease-free equilibrium is unstable then there is a unique positive
equilibrium that is globally stable among positive solutions.
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An numerical example in Cosner et al. (2009) shows that a vector-borne disease

can become endemic when humans move between patches, even though the disease

dies out in each isolated patch. In fact, for a model consisting of two identical patches

we can show that the basic reproduction number of the isolated patch, labeled

by Ri,0, is always less than or equal to the basic reproduction number R0 of the

two-patch model.

Theorem 6.5. Consider system (6.5) with two identical patches connected by human
movement, that is, ai = a, bi = b, ci = c,𝜇i = 𝜇, ri = r, 𝜏i = 𝜏,Hi = H,Vi = V, i =
1, 2, C12 > 0, C21 > 0 and D12 = D21 = 0. Then R0 ≥ R1,0 = R2,0 with equality if
and only if C12 = C21.

Based on the above result, we present an example to illustrate this inter-

esting phenomenon. For i = 1, 2, suppose ai = 0.2, bi = 0.3, ci = 0.3,𝜇i = 0.095,

ri = 0.07, 𝜏i = 0, Hi = 1,Vi = 1.8. Thus R1,0 = R2,0 = 0.9871 < 1 and the disease

dies out in each isolated patch (see Figure 6.1). Now we allow humans to migrate

between these two patches with C12 = 0.1 and C21 = 0.5. The basic reproduction

number of the two-patch model is R0 = 1.0357 > 1. Therefore, the disease becomes

endemic in both patches (see Figure 6.2).

However, the scenario cannot happen for a SIS multi-patch model with standard

incidence (see Gao and Ruan 2011) where the basic reproduction number of the full

model is between the maximum and minimum of the basic reproduction numbers of

each isolated patch, but can occur for a SIS multi-patch model with bilinear incidence

(Wang and Zhao 2004) where we can rigorously establish a result on R0 similar

to Theorem 6.5 under the assumption that susceptible and infectious individuals

0 500 1000 1500 2000

0.005

0.010

0.015

0.020

Time

vi

hi

Figure 6.1 When there is no movement between the two patches, the disease disappears in

both patches. Here hi(0) = 0.02, vi(0) = 0.01, i = 1, 2
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Figure 6.2 When nonsymmetric human movement occurs, the disease becomes endemic in

both patches. Here C12 = 0.1,C21 = 0.5, hi(0) = 0.02, and vi(0) = 0.01, i = 1, 2

have identical travel rates. In addition, this scenario does not exist for a multi-patch

Ross–Macdonald model with constant mosquito–human ratio in each patch. The

following conclusion follows from Proposition 2.2 in Gao and Ruan (2011).

Theorem 6.6. Consider system (6.5) with an arbitrary number of patches connected
by human movement satisfying Vi∕Hi = V∗

i ∕H
∗
i = mi and Dij = 0 for i, j = 1,… ,N.

Then min1≤i≤N Ri0 ≤ R0 ≤ max1≤i≤N Ri,0.

So the possible occurrence of the aforementioned scenario depends on the contact

rate, namely, the scenario appears if the contact rate is a function of the total population

and disappears if it is a constant. The other interesting observation with respect to

system (6.5) is the non-monotone dependence of R0 upon the travel rate. For example,

using the same parameters as in Figure 6.1 except that C12 = 0.2 and C21 = m, the
curve R0 against m from 0.05 to 0.70 is given in Figure 6.3.

Auger et al. (2010) also considered an n-patch Ross–Macdonald model with host

migration under the assumptions that the susceptible and infected hosts have different

movement rates and the migration process is faster than the epidemic phenomenon.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
m

1.00

1.02

1.04

1.06

R0

Figure 6.3 The relation between R0 and m = C21. The disease dies out when the travel rate
from patch 1 to patch 2 is neither too small nor too large; it persists otherwise

The model can possess multiple endemic equilibria when the basic reproduction
number of the model is greater than one. Prosper et al. (2012) eliminated the equation
for infected mosquitoes from the classical Ross–Macdonald model provided that
the infected mosquito population equilibrates much faster than the infected human
population.When extended to a patchy environment with humanmigration, a directly
transmitted disease like model was derived. For the two-patch case, they found that
the basic reproduction number of the whole system is between the basic reproduction
numbers of the two patches in isolation. In fact, we can easily generalize this result to
a system with an arbitrary number of patches and even establish the global dynamics
of the system by using some earlier results in Gao and Ruan (2011).

6.3.2 Multi-patch Models with Vital Dynamics of Humans

In this subsection, we present two metapopulation models in which the acquired
immunity in humans and the demographic process (births and deaths) of both humans
and mosquitoes are incorporated and the transmission process is more complicated.

6.3.2.1 A Multi-patch Model with Constant Recruitment
Arino et al. (2012) developed amulti-patchmalariamodel with SIRS and SI structures
for the hosts and vectors, respectively. In the absence of disease and humanmigration,
both humans and mosquitoes are modeled by a simple linear growth model with a
constant recruitment rate and a constant natural death rate. It is assumed that a recov-
ered person (asymptomatic carrier) is temporarily immune to the disease but who
may be still infectious to mosquitoes. The total number of patches is n. At time t in
patch i, there are SH,i(t) susceptible humans, IH,i(t) infectious humans, RH,i(t) recov-
ered humans, SV ,i(t) susceptible mosquitoes, and IV ,i(t) infectious mosquitoes. Let
Hi(t) = SH,i(t) + IH,i(t) + RH,i(t) and Vi(t) = SV ,i(t) + IV ,i(t) be the total human and
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mosquito populations in patch i at time t, respectively. Then the malaria transmission

dynamics are governed by the equations

dSH,i
dt

= ΛH,i + 𝛽H,iRH,i + 𝜌H,iIH,i − 𝜇H,iSH,i − ΦH,iSH,i +
n∑
j=1

mSijSH,j,

dIH,i
dt

= ΦH,iSH,i − (𝛼H,i + 𝛾H,i + 𝜌H,i + 𝜇H,i)IH,i +
n∑
j=1

mIijIH,j,

dRH,i
dt

= 𝛼H,iIH,i − (𝛽H,i + 𝜇H,i)RH,i +
n∑
j=1

mRijRH,j,

dSV ,i
dt

= ΛV ,i − 𝜇V ,iSV ,i − ΦV ,iSV ,i,

dIV ,i
dt

= ΦV ,iSV ,i − 𝜇V ,iIV ,i,

(6.6)

where ΦH,i = ΦH,i(SH,i, SV ,i, IH,i,RH,i, IV ,i) and ΦV ,i = ΦV ,i(SH,i, SV ,i, IH,i,RH,i, IV ,i)
are the forces of infection from mosquitoes to humans and from humans to

mosquitoes, respectively. A classic form and a general form of ΦH,i and ΦV ,i can be

found in Ngwa and Shu (2000) and Chitnis et al. (2006), respectively.

For patch i, ΛH,i and ΛV ,i are the recruitment of humans and mosquitoes, respec-

tively, 𝛼H,i is the rate of progression from the infectious to the partially immune

class, 𝜌H,i is the rate of recovery from being infectious, 𝜇H,i and 𝜇V ,i are the natu-

ral death rates for humans and mosquitoes, respectively, 𝛾H,i is the disease-caused

death rate, and 𝛽H,i is the rate of loss of immunity for humans. Let m𝜋
ij ,𝜋 = S, I,R,

represent the travel rate of humans from patch j to patch i, for i, j = 1,… , n, i ≠ j,
and m𝜋

ii = −
∑n
j=1,j≠i m

𝜋
ji , for 𝜋 = S, I,R and i = 1,… , n. Assume that the travel rate

matrices M𝜋 = (m𝜋
ij)n×n are irreducible for 𝜋 = S,R.

Let S = (SH,1, SV ,1,… , SH,n, SV ,n) and I = (IH,1,RH,1, IV ,1,… , IH,n,RH,n, IV ,n)
denote the susceptible and infected states, respectively. It is easy to check that system

(6.6) is well posed and has a unique disease-free equilibrium (S∗, 0) in Ω = {(S, I) ∈
ℝ5n
+ : SH,i > 0, SV ,i > 0, 1 ≤ i ≤ n}. Following the recipe of van den Driessche and

Watmough (2002), we define the basic reproduction number of system (6.6) as

0 = 𝜌(FV−1) = 𝜌(diag{F11,… ,Fnn}(Vij)n×n),

where submatrices

Fii =
⎡
⎢
⎢⎣

0 0 𝜕ΦH,i∕𝜕IV ,iS∗H,i
0 0 0

𝜕ΦV ,i∕𝜕IH,iS∗V ,i 𝜕ΦV ,i∕𝜕RH,iS∗V ,i 0

⎤
⎥
⎥⎦
,

Vij = diag{−mIij,−m
R
ij , 0}, i ≠ j,Vii =

⎡
⎢
⎢⎣

𝜖H,i − mIii 0 0

−𝛼H,i 𝛿H,i − mRii 0

0 0 𝜇V ,i

⎤
⎥
⎥⎦

for i, j = 1, 2,… , n.
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The basic reproduction number0 determines the local stability of the disease-free

equilibrium but not the global behavior of system (6.6) since a backward bifurcation

may occur at0 = 1 if the disease-related death rate is sufficiently high. Arino et al.

(2012) used type reproduction numbers (Roberts and Heesterbeek 2003) to identify

the reservoirs of infection where control measures would be most effective. The paper

ends with applications to the disease spread from endemic to non-endemic areas and

from rural to urban areas.

Zorom et al. (2012) introduced two control variables, prevention and treatment, to

the model (6.6). By using the optimal control theory to a three-patch submodel, they

numerically identified the best control strategy when the patch is a reservoir or not.

6.3.2.2 A Multi-patch Model with Logistic Growth
To explore the effects of population dispersal on the spatial spread of malaria, Gao

and Ruan (2012) formulated a multi-patch model based on that of Ngwa and Shu

(2000) with a SEIR structure for humans and a SEI structure for mosquitoes. Both

human and mosquito populations obey a logistic growth and migrate between n
patches, with humans having additional disease-induced death. The number of sus-

ceptible, exposed, infectious, and recovered humans in patch i at time t, is denoted
by Shi (t),E

h
i (t), I

h
i (t), and R

h
i (t), respectively. Let S

v
i (t),E

v
i (t), and I

v
i (t) denote, respec-

tively, the number of susceptible, exposed, and infectious mosquitoes in patch i at
time t. Nh

i (t) and N
v
i (t) represent the total human and mosquito populations in patch i

at time t, respectively. The interactions between hosts and vectors in patch i are given
by the following system of 7n ordinary differential equations with nonnegative initial
conditions satisfying Nh

i (0) > 0:

dShi
dt

= 𝜆hi N
h
i + 𝛽hi R

h
i + rhi I

h
i −

cvhi a
v
i I
v
i

Nhi
Shi − f hi

(
Nhi

)
Shi +

n∑

j=1
𝜑SijS

h
j ,

dEhi
dt

=
cvhi a

v
i I
v
i

Nhi
Shi −

(
𝜈hi + f hi

(
Nhi

))
Ehi +

n∑

j=1
𝜑EijE

h
j ,

dIhi
dt

= 𝜈hi E
h
i −

(
rhi + 𝛼hi + 𝛾hi + f hi

(
Nhi

))
Ihi +

n∑

j=1
𝜑IijI

h
j ,

dRhi
dt

= 𝛼hi I
h
i −

(
𝛽hi + f hi

(
Nhi

))
Rhi +

n∑

j=1
𝜑RijR

h
j , (6.7)

dSvi
dt

= 𝜆vi N
v
i −

chvi a
v
i I
h
i

Nhi
Svi −

dhvi a
v
i R

h
i

Nhi
Svi − f vi

(
Nvi

)
Svi +

n∑

j=1
𝜓S
ijS

v
j ,

dEvi
dt

=
chvi a

v
i I
h
i

Nhi
Svi +

dhvi a
v
i R

h
i

Nhi
Svi −

(
𝜈vi + f vi

(
Nvi

))
Evi +

n∑

j=1
𝜓E
ij E

v
j ,

dIvi
dt

= 𝜈vi E
v
i − f vi

(
Nvi

)
Ivi +

n∑

j=1
𝜓 I
ijI
v
j ,
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where 𝜆hi and 𝜆
v
i are the birth rates of humans and mosquitoes, respectively; f hi (N

h
i ) =

𝜇hi + 𝜌hi N
h
i and f

v
i (N

v
i ) = 𝜇vi + 𝜌vi N

v
i are the density-dependent death rates for humans

and mosquitoes, respectively; 𝛾hi is the disease-induced death rate for humans; avi is
the mosquito biting rate; cvhi , chvi , and dhvi are the transmission probabilities from an

infectiousmosquito to a susceptible human, from an infectious human to a susceptible

mosquito, and from a recovered human to a susceptiblemosquito, respectively; 𝜈hi , 𝛼
h
i ,

and 𝛽hi are the progression rates that exposed humans become infectious, infectious

humans become recovered, and recovered humans become susceptible, respectively;

rhi is the rate of recovery from being infectious for humans; 𝜈vi is the progression

rate that exposed mosquitoes become infectious; 𝜑Kij ≥ 0 for K = S,E, I,R is the

immigration rate from patch j to patch i for i ≠ j of susceptible, exposed, infectious,
and recovered humans, respectively; 𝜓L

ij ≥ 0 for L = S,E, I is the immigration rate

from patch j to patch i for i ≠ j of susceptible, exposed, and infectious mosquitoes,

respectively;−𝜑Kii ≥ 0 forK = S,E, I,R is the emigration rate of susceptible, exposed,

infectious, and recovered humans away from patch i, respectively; and −𝜓L
ii ≥ 0 for

L = S,E, I, is the emigration rate of susceptible, exposed, and infectious mosquitoes

in patch i, respectively.
The travel rate matrices (𝜑Kij )n×n for K = S,E, I,R and (𝜓L

ij )n×n for L = S,E, I are
assumed to be irreducible. For convenience, suppose that individuals do not change

their disease status and there is no birth or death during travel. So we have

𝜑Kii = −
n∑

j=1
j≠i

𝜑Kji ,K = S,E, I,R, and 𝜓L
ii = −

n∑

j=1
j≠i

𝜓L
ji ,L = S,E, I, 1 ≤ i ≤ n.

To avoid extinction of either humans or mosquitoes in the patchy environment, we

further assume that

s
(((

𝜆hi − 𝜇hi

)
𝛿ij + 𝜑Sij

)
n×n

)
> 0 and s

(((
𝜆vi − 𝜇vi

)
𝛿ij + 𝜓S

ij

)
n×n

)
> 0,

where s denotes the spectral bound of a matrix, which is the largest real part of any

eigenvalue of the matrix.

For any t ≥ 0, denote the vector (Sh
1
(t),… , Shn(t)) by S

h(t), and Eh(t), Ih(t), Rh(t),
Sv(t), Ev(t) and Iv(t) can be introduced similarly. It is not difficult to show that system

(6.7) is mathematically well posed and epidemiologically reasonable. Applying the

theory of monotone dynamical systems (Smith 1995), we find that system (6.7)

has a disease-free equilibrium of the form (Sh∗, 0, 0, 0, Sv∗, 0, 0). It follows the next
generation method (Diekmann et al. 1990; van den Driessche and Watmough 2002)

that the basic reproduction number of system (6.7) is

0 =
√

𝜌(A64A
−1
44
A42A

−1
22
(A73 + A75A

−1
55
A53)A

−1
33
A31A

−1
11
),
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where

A11 =
(
𝛿ij
(
𝜈hi + f hi

(
Sh∗i

))
− 𝜑E

ij

)
n×n, A22 =

(
𝛿ij
(
𝜈vi + f vi

(
Sv∗i

))
− 𝜓E

ij

)
n×n,

A31 =
(
𝛿ij𝜈

h
i

)
n×n, A33 =

(
𝛿ij
(
rhi + 𝛼hi + 𝛾hi + f hi

(
Sh∗i

))
− 𝜑I

ij

)
n×n,

A42 =
(
𝛿ij𝜈

v
i

)
n×n, A44 =

(
𝛿ijf

v
i

(
Sv∗i

)
− 𝜓 I

ij

)
n×n, A53 =

(
𝛿ij𝛼

h
i

)
n×n,

A55 =
(
𝛿ij
(
𝛽hi + f hi

(
Sh∗i

))
− 𝜑R

ij

)
n×n, A64 =

(
𝛿ijc

vh
i avi

)
n×n,

A73 =
(
𝛿ijc

hv
i avi S

v∗
i ∕Sh∗i

)
n×n, A75 =

(
𝛿ijd

hv
i avi S

v∗
i ∕Sh∗i

)
n×n.

Immediately, we know the disease-free equilibrium is locally asymptotically stable

if0 < 1 and is unstable if0 > 1. Since system (6.7) is a high dimensional nonlinear

system, it is difficult to investigate the global dynamics of the system. However, under

suitable conditions, we can use the techniques of persistence theory (Zhao 2003;

Smith and Thieme 2011) to establish the uniform persistence of the disease in all

patches provided that 0 > 1.

Theorem 6.7 (Theorem 3.7 in Gao and Ruan 2012). Let 11 denote the disease-
free equilibrium of system (6.7), Ws(11) be the stable manifold of 11, and X0

be ℝn
+ × Intℝ3n

+ ×ℝn
+ × Intℝ2n

+ . Suppose that 0 > 1, then Ws(11) ∩ X0 = ∅. If, in
addition, we assume that

(i) 𝜆hi − 𝜇h
i − 𝛾hi > 0 for i = 1, 2,… , n;

(ii) 𝜑K
ij > 0 for K = S,E, I,R, i, j = 1, 2,… , n, i ≠ j;

(iii) 𝜆vi − 𝜇v
i > 0 for i = 1, 2,… , n (or 𝜓S

ij = 𝜓E
ij = 𝜓 I

ij for i, j = 1, 2,… , n);

then the disease is uniformly persistent among patches, that is, there is a constant
𝜅 > 0 such that each solution Φt(x0) ≡ (Sh(t),Eh(t), Ih(t),Rh(t), Sv(t),Ev(t), Iv(t)) of
system (6.7) with x0 ≡ (Sh(0),Eh(0), Ih(0), Rh(0), Sv(0),Ev(0), Iv(0)) ∈ X0 satisfies

lim inf
t→∞

(Eh(t), Ih(t),Rh(t),Ev(t), Iv(t)) > (𝜅, 𝜅,… , 𝜅)1×5n,

and system (6.7) admits at least one endemic equilibrium.

Therefore,0 gives a sharp threshold below which the disease-free equilibrium is

locally stable and above which the disease persists in all patches. In order to eliminate

the disease, we should seek away to reduce0 to be less than unity. A natural question

about disease control in a discrete space is how the reproduction number depends on

the travel rate matrices. This leads to a complicated eigenvalue problem. For the two-

patch case, the basic reproduction number 0 varies monotonically with the travel

rates of exposed, infectious, and recovered humans, which depend on the disease

status. When the travel rate is independent of the disease status, but may or may

not be independent of residence, the relationship between 0 and the travel rates
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Figure 6.4 The basic reproduction number 0 in terms of k = 𝜑E
12 = 𝜑I

12 = 𝜑R
12 = 𝜑E

21 =
𝜑I
21 = 𝜑R

21. Here all other parameters are fixed. The disease dies out when the exposed, infec-
tious, and recovered human travel rate is small or large, it persists otherwise. Copyright ©2012,
Society for Industrial Mathematics. Reprinted with permission. All rights reserved

of exposed, infectious, and recovered humans becomes even more complicated and
non-monotone dependence can occur.

Finally, for the two-patch submodel, three numerical examples were given to illus-
trate the impact of population dispersal for the disease spread. The first example is
used to compare the importance of different disease states in the disease propagation.
The optimal control strategy varies with the parameter setting. The second one indi-
cates that suitable human movement can both promote and halt the disease spread
even for two identical patcheswith the same initial conditions. In the last example, two
patches that only differ in infectivity of humans and mosquitoes are concerned. Non-
monotonicity of0 in the exposed, infectious, and recovered human travel rate, which
is independent of the residence and disease state is observed (see Figure 6.4). These
results suggest that humanmovement plays a vital role in the spatial spread of malaria
around the world. Since the travel of exposed humans can also spread the disease geo-
graphically and screening at borders usually can only help to identify those infected
with symptom, inappropriate border control may make the disease spread even worse
and to control or eliminate malaria we need strategies from regional to global.

6.3.3 Multi-patch and Multi-strain Malaria Models

Most existing vector-borne disease models with population dispersal focus on the
effect of spatial heterogeneity on the distribution and maintenance of infectious
diseases. Few studies have addressed the impact of spatial heterogeneities on the
evolution of pathogens to more resilient drug-resistant strains.
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In a recent paper, Qiu et al. (2013) proposed a Ross–Macdonald type model with

l competing strains on n discrete patches connected by human movement. In the

ith patch, the host population is divided into l + 1 subclasses: susceptible, Si(t), and
infected with strain j, Hj

i(t), j = 1, 2,… , l, while the vector population is classified

as susceptible,Mi(t), and infected with strain j, V
j
i (t), j = 1, 2,… , l. The interactions

between hosts and vectors in patch i (i = 1, 2,… , n) are described by the following

differential equations:

dSi(t)

dt
= 𝜈iNi − bi

(
l∑

j=1
𝛼jV

j
i

)
Si
Ni

+
l∑

j=1
𝛾
j
iH

j
i +

n∑

k=1
mikSk − 𝜈iSi,

dHj
i(t)

dt
= bi𝛼jV

j
i
Si
Ni

− 𝛾
j
iH

j
i +

n∑

k=1
mikH

j
k − 𝜈iH

j
i , j = 1, 2,… , l,

dMi(t)

dt
= Λi − bi

(
l∑

j=1
𝛽jH

j
i

)
Mi

Ni
− 𝜇iMi,

dVj
i (t)

dt
= bi𝛽jMi

Hj
i

Ni
− 𝜇iV

j
i , j = 1, 2,… , l,

Ni = Si +
l∑

j=1
Hj
i , Ti = Mi +

l∑

j=1
Vj
i ,

(6.8)

where 𝜈i is the birth and death rate of the hosts, bi is the biting rate of vectors on

hosts, 𝛼j and 𝛽j are the transmission efficiencies from infected vectors with strain

j to susceptible hosts and from infected hosts with strain j to susceptible vectors,

respectively, 𝛾
j
i is the recovery rate of infected hosts with strain j, Λi is the vector

recruitment into the susceptible class, and 𝜇i is the mortality rate of the vectors. In

addition, mik represents the migration rate from patch k to patch i for susceptible and
infected hosts, 1 ≤ i, k ≤ n, and i ≠ k. We assume that the travel rate matrix (mik)n×n
is irreducible with mii = −

∑n
k=1,k≠i mki, otherwise the n patches can be separated

into two independent groups.

Since the total host and vector populations in patch i satisfy

dNi(t)

dt
=

n∑

k=1
mikNk, 1 ≤ i ≤ n, and

dTi(t)

dt
= Λi − 𝜇iTi, 1 ≤ i ≤ n, (6.9)

respectively, it follows from Cosner et al. (2009) and Auger et al. (2008) that the

subsystem composed of the first n equations of system (6.9) has a unique positive

equilibrium, labeled by N̄ = (N̄1, N̄2,… , N̄n)
T , which is globally asymptotically sta-

ble, and the subsystem composed of the last n equations of system (6.9) also admits a

unique positive equilibrium, labeled by T̄ = (W̄1, W̄2,… , W̄n)
T = (

Λ1

𝜇1
,
Λ2

𝜇2
,… ,

Λn

𝜇n
)T ,
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which is also globally asymptotically stable. System (6.8) is then qualitatively equiv-

alent to the following 2ln-dimensional system

dHj
i(t)

dt
= bi𝛼jV

j
i

N̄i −
l∑

j=1
Hj
i

N̄i

− 𝛾
j
iH

j
i +

n∑

k=1
mikH

j
k − 𝜈iH

j
i ,

dVj
i (t)

dt
= bi𝛽j

(
W̄i −

l∑

j=1
Vj
i

)
Hj
i

N̄i

− 𝜇iV
j
i ,

(6.10)

where i = 1, 2,… , n, j = 1, 2,… , l. Set

Ω =
{
(I1, I2,… , Il) ∈ ℝ2ln

+ :

l∑

j=1
Hj
i ≤ N̄i,

l∑

j=1
Vj
i ≤ W̄i, i = 1, 2,… , n

}
,

where Ij = (Hj
1
,Hj

2
,… ,Hj

n,V
j
1
,Vj

2
,… ,Vj

n). Thus Ω is positively invariant for model

(6.10).

In the context of no host migration, model (6.10) becomes a simple multi-strain

model

dHj
i(t)

dt
= bi𝛼jV

j
i

N0
i −

l∑
j=1

Hj
i

N0
i

− 𝛾
j
iH

j
i − 𝜈iH

j
i , 1 ≤ j ≤ n,

dVj
i (t)

dt
= bi𝛽j

(
W̄i −

l∑

j=1
Vj
i

)
Hj
i

N0
i

− 𝜇iV
j
i , 1 ≤ j ≤ n,

(6.11)

and the respective basic reproduction number for strain j in patch i is

Rj
i =

√√√√ b2i 𝛼j𝛽jW̄i

(𝛾
j
i + 𝜈i)𝜇iN0

i

,

where N0
i = Ni(0), 1, 2,… , n. Qiu et al. (2013) proved the following theorem, which

implies that competitive exclusion of the strains is the only outcome on a single patch.

Theorem 6.8 (Theorem 3.1 in Qiu et al. 2013). For a given i ∈ {1, 2,… , n}, system
(6.11) has the following:

1. if Rj
i < 1 for all 1 ≤ j ≤ l, then the disease for all strains will eventually die out,

that is, the disease-free equilibrium of system (6.11) is globally asymptotically
stable;
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2. if Rj
i > 1 for some 1 ≤ j ≤ l and assume that there exists j∗ ∈ {1, 2,… , l} such

that Rj∗
i > Rj

i for all j = 1, 2,… , l, j ≠ j∗, then

lim
t→+∞

Hj∗
i (t) =

[
b2i 𝛼j∗𝛽j∗

W̄i

N0
i
− 𝜇i

(
𝛾
j∗
i + 𝜈i

)]
N0
i

bi𝛽j∗
(
𝛾
j∗
i + 𝜈i + bi𝛼j∗

W̄i

N0
i

) ,

lim
t→+∞

Vj∗
i (t) =

[
b2i 𝛼j∗𝛽j∗

W̄i

N0
i
− 𝜇i

(
𝛾
j∗
i + 𝜈i

)]
N0
i

bi𝛼j∗ (bi𝛽j∗ + 𝜇i)
,

and

lim
t→+∞

Hj
i(t) = 0, lim

t→+∞
Vj
i (t) = 0

for all j = 1, 2,… , l, j ≠ j∗.

Next, for the case when the patches are connected, define

Γc = {(I1, I2,… , Il) ∈ Ω : Ij = 0, j ≠ c}

for c ∈ {1, 2,… , l}. Then Γc is positively invariant for system (6.10) and system
(6.10) in Γc becomes

dHc
i (t)

dt
= bi𝛼cV

c
i

N̄i − Hc
i

N̄i

− 𝛾ci H
c
i +

n∑

k=1
mikH

c
k − 𝜈iH

c
i ,

dVc
i (t)

dt
= bi𝛽c(W̄i − Vc

i )
Hc
i

N̄i

− 𝜇iV
c
i , i = 1, 2,… , n.

(6.12)

Note that system (6.12) is a special case of the migration model (6.5). Themulti-patch
basic reproduction number of subsystem (6.12) is given by


c
0 =

√
𝜌(ℱ c

12(𝒱
c
22)

−1ℱ c
21(𝒱

c
11)

−1)

for strain c, where

ℱ c
12 = diag{b1𝛼c, b2𝛼c,… , bn𝛼c},

ℱ c
21 = diag

{
b1𝛽c

W̄1

N̄1
, b2𝛽c

W̄2

N̄2
,… , bn𝛽c

W̄n

N̄n

}
,

𝒱 c
11 =

((
𝛾ci + 𝜈i

)
𝛿ik − mik

)
n×n, 𝒱

c
22 = diag{𝜇1,𝜇2,… ,𝜇n}.

The dynamics of system (6.10) in Γc are completely determined by the respective
basic reproduction number c

0.
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Theorem 6.9 (Theorem 3.2 in Qiu et al. 2013). If c
0
≤ 1, then the disease-free

equilibrium E0 of system (6.10) is globally asymptotically stable in Γc.
Ifc

0
> 1, then system (6.10) has a unique equilibrium EIc (I

c = Īc > 0, Ij = 0, j ≠
c), which is globally asymptotically stable in Γc∖{O}.

By the comparison principle and the result on asymptotically autonomous systems,

we find that a strain cannot invade the patchy environment and dies out over the whole

system if the multi-patch basic reproduction number for that strain is less than one,

and it can if it is the only strain whose reproduction number is greater than one.

Theorem 6.10 (Theorem 3.3 in Qiu et al. 2013). 1. Ifj
0
≤ 1 for all 1 ≤ j ≤ l, then

the disease-free equilibrium E0 of system (6.10) is globally asymptotically stable
in Ω.

2. If there exists c ∈ {1, 2,… , l} such thatc
0
> 1 andj

0
≤ 1 for 1 ≤ j ≤ l, j ≠ c,

then the boundary equilibrium EIc (I
c = Īc > 0, Ij = 0, j ≠ c) is globally asymptoti-

cally stable in Ω∖{(I1, I2,… , Il) : Ic = 0}.

When two or more strains have their multi-patch basic reproduction numbers

greater than one, they compete for the same limiting resource, the susceptible hosts

and vectors. For simplicity, we consider the two-strain multi-patch model

dHj
i(t)

dt
= bi𝛼jV

j
i

N̄i − H1
i − H2

i

N̄i

− 𝛾
j
iH

j
i +

n∑

k=1
mikH

j
k − 𝜈iH

j
i ,

dVj
i (t)

dt
= bi𝛽j

(
W̄i − V1

i − V2
i

)Hj
i

N̄i

− 𝜇iV
j
i ,

(6.13)

where i = 1, 2,… , n, j = 1, 2.

We are interested in the case when both 
1
0
> 1 and 

2
0
> 1, since otherwise by

Theorem 6.9 one or both strains will die out. By Theorem 6.9, the system (6.13) has

a disease-free equilibrium E0(0, 0) and two boundary equilibria EI1 (Ī
1, 0),EI2 (0, Ī

2).

Define the invasion reproduction number for strain j as

ℛi
j =

(
𝜌
(
ℳi

j

)) 1

2 ,

where

ℳi
j = diag

{
b1𝛽i

W̄1 − V̄j
1

N̄1

, b2𝛽i
W̄2 − V̄j

2

N̄2

,… , bn𝛽i
W̄n − V̄j

n

N̄n

}

×
(
𝒱 i

11

)−1
diag

{
b1𝛼i

N̄1 − H̄j
1

N̄1𝜇1
, b2𝛼i

N̄2 − H̄j
2

N̄2𝜇2
,… , bn𝛼i

N̄n − H̄j
n

N̄n𝜇n

}

for 1 ≤ i, j ≤ 2 and i ≠ j. Here𝒱 i
11
, i = 1, 2 are defined ini

0
. Obviously,ℛi

j < 
i
0
.
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Using some results from the theory of M-matrices, we can prove that the Jacobian

matrix of system (6.13) at EIj is unstable (stable) if ℛi
j > 1 (ℛi

j < 1). So is the

equilibrium EIj . Moreover, it is proved that both strains are uniformly persistent

among patches whenℛ1
2
> 1 and ℛ2

1
> 1.

Theorem 6.11 (Theorem 4.2 in Qiu et al. 2013). Ifℛ1
2
> 1 andℛ2

1
> 1, then there

exists an 𝜀 > 0 such that for every (I1(0), I2(0)) ∈ Intℝ4n
+ the solution (I1(t), I2(t)) of

system (6.13) satisfies that

lim inf
t→+∞

Hj
i(t) ≥ 𝜀, lim inf

t→+∞
Vj
i (t) ≥ 𝜀

for all i = 1, 2,… , n, j = 1, 2. Moreover, system (6.13) admits at least one
(component-wise) positive equilibrium.

A combination of Theorem 6.8 and 6.11 suggests that host migration among

patches, that is, the spatial heterogeneity, is a possible mechanism that can lead to the

coexistence of multiple competing strains in a common area. In addition, by applying

the theory of type-K monotone dynamical systems (Smith 1995), Qiu et al. (2013)

investigated the global dynamics of system (6.13) with two patches under certain

restraints.

6.4 MALARIA MODELS WITH CONTINUOUS DIFFUSION

Reaction-diffusion type models have been developed to describe the motion of indi-

viduals in a continuous space (Wu 2008; Ruan andWu 2009). The population density

now becomes a function of two variables: time and location. When malaria is con-

cerned, the simplest model of this kind is the standard Ross–Macdonald model with

a diffusion term. Lou and Zhao (2010) extended it to a reaction-diffusion-advection

malaria model with seasonality

𝜕h(t, x)
𝜕t

= a(t)b
H − h(t, x)

H
v(t, x) − dhh(t, x) + Dh

𝜕2h(t, x)

𝜕x2
,

𝜕v(t, x)
𝜕t

= a(t)c
h(t, x)
H

(M(t) − v(t, x)) − dv(t)v(t, x)

+ Dv
𝜕2v(t, x)

𝜕x2
− g

𝜕

𝜕x
v(t, x).

(6.14)

The density of humans and mosquitoes at location x and time t areH andM(t), h(t, x)
and v(t, x) of whom are infected, respectively. Let a(t) be the mosquito biting rate

at time t; 1∕dh and 1∕dv(t) be the human infectious period and the life expectancy

of mosquitoes, respectively; b and c be the transmission efficiencies from infectious

vectors to humans and from infectious humans to vectors, respectively; Dh and Dv
be the diffusion rates for humans and mosquitoes, respectively; g be the constant
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velocity flux. The time-dependent parameters, a(t), dv(t), and M(t), are 𝜔-periodic

functions while b, c,H, dh, g,Dh, and Dv are positive constants.
In the case of an unbounded domain, the spreading speeds and traveling waves for

system (6.14) are studied. With respect to a bounded domain, the model exhibits a

threshold behavior on the global attractivity of either the disease-free equilibrium or

the positive periodic solution.

Consideration of certain practical factors in the study of malaria is sometimes

necessary and even critical. In another paper, Lou and Zhao (2011) derived a reaction-

diffusion malaria model with incubation period in the vector population

𝜕u1(t, x)

𝜕t
= DhΔu1(t, x) +

c𝛽(x)
H(x)

(H(x) − u1(t, x))u3(t, x) − (dh + 𝜌)u1(t, x),

𝜕u2(t, x)

𝜕t
= DmΔu2(t, x) + 𝜇(x) − b𝛽(x)

H(x)
u2(t, x)u1(t, x) − dmu2(t, x),

𝜕u3(t, x)

𝜕t
= e−dm𝜏

∫Ω
Γ(Dm𝜏, x, y)

b𝛽(y)

H(y)
u2(t − 𝜏, y)u1(t − 𝜏, y)dy

+ DmΔu3(t, x) − dmu3(t, x), x ∈ Ω, t > 0,

𝜕ui
𝜕n

= 0,∀x ∈ 𝜕Ω, t > 0, i = 1, 2, 3,

(6.15)

where u1(t, x), u2(t, x), and u3(t, x) are the population densities of infected humans,

susceptible, and infectious mosquitoes, respectively; Dh and Dm are the diffusion

coefficients of humans and mosquitoes, respectively; b and c are the transmission

probabilities from infectious humans to susceptible mosquitoes and from infectious

mosquitoes to susceptible humans, respectively; 𝛽(x) is the habitat-dependent biting
rate; H(x) is the total human density at point x; dh and dm are the human and

mosquito death rates, respectively; 𝜌 is the human recovery rate; 𝜇(x) is the habitat-
dependent mosquito recruitment rate; 𝜏 is the incubation period in mosquitoes; Γ
is the Green function associated with the Laplacian operator Δ and the Neumann

boundary condition; and Ω is a spatial habitat with smooth boundary 𝜕Ω.
This nonlocal and time-delayed reaction-diffusion model admits a basic reproduc-

tion number 0 that serves as a threshold between the extinction and persistence of

the disease whenΩ is a bounded region. Wu and Xiao (2012) studied the correspond-

ing Cauchy problem in an unbound domain and showed that there exist traveling

wave solutions connecting the disease-free steady state and the endemic steady state

if0 > 1 (i.e., malaria can invade the domain), and there is no traveling wave solution

connecting the disease-free steady state itself if0 < 1. By assuming that infectious

humans are more attractive to mosquitoes than susceptible humans, Xu and Zhao

(2012) modified the model of Lou and Zhao (2010) with a vector-bias term, that is,

change the terms (H(x) − u1(t, x))∕H(x) and u1(t, x)∕H(x) in system (6.15) to

l[H(x) − u1(t, x)]

pu1(t, x) + l[H(x) − u1(t, x)]
and

pu1(t, x)

pu1(t, x) + l[H(x) − u1(t, x)]
,
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respectively. Here p (l) is the probability that a mosquito bites a human if that human

is infectious (susceptible) and p > l. They obtained some similar results as before.

Additionally, Bacaër and Sokhna (2005) developed a reaction-diffusion type model

describing the geographical spread of drug resistant strain due to the mobility of

mosquitoes.

6.5 DISCUSSION

Human and mosquito movement plays an important role in the spread and persistence

of malaria around the world. It brings a big challenge to the prevention and control of

malaria. Mathematical modeling of malaria with population dispersal could provide

insights into the link of disease transmission between different places, identify key

patches or populations, and therefore help us design more effective antimalarial

strategies.

In the case of discrete spaces, multi-patch models with migration or commuting

have been used by many researchers. The transmission dynamics are much simpler

if human population dynamics are ignored (Dye and Hasibeder 1986; Hasibeder and

Dye 1988; Torres-Sorando andRodrı́guez 1997; Rodrı́guez and Torres-Sorando 2001;

Cosner et al. 2009; Auger et al. 2008). This is probably okay for short-term prediction

and control. However, we have to add demographic effects into the model for studies

with a longer timescale. Models with variable human and mosquito populations

become more complicated with richer dynamics (Arino et al. 2012; Gao and Ruan

2012). Little is known about the global stability, the multiplicity or uniqueness of

the endemic steady states. In many cases, fortunately, it is possible to define the

basic reproduction number 0 based on the procedure of van den Driessche and

Watmough (2002) and show the existence of an endemic equilibrium as well as the

uniform persistence of the disease when0 > 1.

With respect to continuous spaces, reaction-diffusion equations models have been

developed to study the spatial spread of malaria, but so far only a very limited

number of works are available. Using the theory of next generation operators we can

still define a basic reproduction number0, and prove that there exist traveling wave

solutions connecting the disease-free state and the endemic state if 0 > 1 or show

the global attractivity of the disease-free steady state or the endemic steady state

under special conditions.

In Table 6.1 we give a summary of the malaria models we mentioned in this

survey. The study of malaria transmission with spatial heterogeneity is far from well

established. In general, questions such as the global dynamics of multi-patch model

with demographic structure, the dependence of 0 on the diffusion rate, and the

validity of spatial models are still unanswered. There are some interesting future

research directions that we would like to mention as follows.

1. Multi-patch models with time-varying parameters. The mosquito ecology

and behavior are strongly driven by climate factors such as rainfall, temperature,

and humidity. An obvious fact is that mosquito densities are usually higher during

the rainy season than in the dry season. To reflect these features, we might use
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Table 6.1 Overview of Some Malaria Models with Spatial Heterogeneity. Equations:
type of model equations (ordinary differential equations (ODE), delay differential
equations (DDE), or reaction-diffusion equations (RDE)); Host: model structure in
host; Vector: model structure in vector; Mobility: who has mobility (vector, host, or
both)?; Approach: modeling approach (migration model or visitation model); Rate: is
travel rate independent of disease status?; Vital: does the model consider vital dynamics
in humans? The articles are ordered first by the type of model equations, then by the
publication year with an exception of the model in the last article, which is a single
patch model with constant immigration of infectives.

Publication Equations Host Vector Mobility Approach Rate Vital

Dye and Hasibeder
(1986)

ODE SIS SI Vector Visitation Yes No

Hasibeder and Dye
(1988)

ODE SIS SI Vector Visitation Yes No

Torres-Sorando and
Rodrı́guez (1997)

ODE SIS SI Host Both Yes No

Rodrı́guez and
Torres-Sorando
(2001)

ODE SIS SI Host Visitation Yes No

Smith et al. (2004) ODE SIS SE1EkI Vector Migration Yes No
Menach et al. (2005) ODE SIS SEI Vector Migration Yes No
Auger et al. (2008) ODE SIS SI Host Migration Yes No
Cosner et al. (2009) ODE SIS SI Both Both Yes No
Auger et al. (2010) ODE SIS SI Host Migration No No
Arino et al. (2012) ODE SIRS SI Host Migration No Yes
Prosper et al. (2012) ODE SIS SI Host Migration Yes No
Gao and Ruan (2012) ODE SEIRS SEI Both Migration No Yes
Zorom et al. (2012) ODE SIRS SI Host Migration No Yes
Qiu et al. (2013) ODE SIS SI Host Migration Yes No
Gao et al. (2014) ODE SIS SI Host Migration Yes No

Xiao and Zou (2013) DDE SEIS SEI Host Migration No Yes

Bacaër and Sokhna
(2005)

RDE SI1(I2)R(J)S SI1(I2) Vector N/A Yes Yes

Lou and Zhao (2010) RDE SIS SI Both N/A Yes No
Lou and Zhao (2011) RDE SIS SEI Both N/A Yes Yes
Xu and Zhao (2012) RDE SIS SEI Both N/A Yes Yes
Wu and Xiao (2012) RDE SIS SEI Both N/A Yes Yes

Tumwiine et al.
(2010)

ODE SIRS SI Host N/A N/A Yes

time-varying model parameters instead of constant parameters. Gao et al. (2014)
proposed a periodic malaria model in a fragmented habitat, which is a generaliza-
tion of the multi-patch Ross–Macdonald model studied by Auger et al. (2008) and
Cosner et al. (2009). Each mosquito is confined to one of the n patches while humans
can seasonally migrate from one patch to another. At time t, there are Hi(t) humans
with hi(t) being infected and Vi(t) mosquitoes with vi(t) being infected in patch i.
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The human feeding rate ai(t), mosquito recruitment rate 𝜖i(t), mosquito death rate

di(t), and human migration rate mij(t), are assumed to be periodic and continuous

functions with the same period 𝜔 = 365 days. The transmission probabilities from

infectious mosquitoes to susceptible humans, bi, from infectious humans to suscep-

tible mosquitoes, ci, and the human recovery rate, ri, are positive constants. The

periodic malaria model then has the form

dHi(t)

dt
=

p∑

j=1
mij(t)Hj(t), 1 ≤ i ≤ p,

dVi(t)

dt
= 𝜖i(t) − di(t)Vi(t), 1 ≤ i ≤ p,

dhi(t)

dt
= biai(t)

Hi(t) − hi(t)

Hi(t)
vi(t) − rihi(t) +

p∑

j=1
mij(t)hj(t), 1 ≤ i ≤ p,

dvi(t)

dt
= ciai(t)

hi(t)

Hi(t)
(Vi(t) − vi(t)) − di(t)vi(t), 1 ≤ i ≤ p,

(6.16)

where the emigration rate of humans in patch i, −mii(t) ≥ 0, satisfies
∑p
j=1 mji(t) =

0 for i = 1,… , p and t ∈ [0,𝜔] and the matrix (∫
𝜔

0
mij(t)dt)p×p is irreducible.

According to the framework presented in Wang and Zhao (2008), we define the

basic reproduction number 0 for system (6.16) and show that either the disease

disappears or becomes established at a unique positive periodic solution, depending

on0. It provides a possible explanation to the fact that the number of malaria cases

shows seasonal variations in most endemic areas.

2. Time delays in humans and mosquitoes. Another interesting extension is to

introduce delays to account for the latencies in humans and/or mosquitoes. This leads

to nonlocal infections, meaning an infection that is caused by an infectious individual

from another location who was exposed before arriving at the current site. Xiao

and Zou (2013) derived a system of delay differential equations to depict malaria

transmission in a large-scale patchy environment in which the latent periods within

both hosts and vectors are explicitly included. Sincemosquitoes have limitedmobility,

only host migration is concerned. Within a single patch, the disease progression in

humans and mosquitoes are modeled by a SEIS model and a SEI model, respectively.

It follows the theory of the next generation operator for structured disease models

that the basic reproduction number is defined and shown to be a threshold for the

dynamics of the model.

3. More realistic spatial models. Models of malaria in heterogeneous environ-

ments have been developed rapidly in recent years. Researchers incorporate acquired

immunity, vital dynamics, time delays, and environmental factor into the multi-patch

Ross–Macdonald model and obtain conditions for disease persistence and extinction.

However, these models still lack of reality and practicality. Models with increasing

reality become less mathematically tractable, but they are still useful as long as we

can solve them in a numerical way. For example, Smith et al. (2004) proposed a
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multi-patch malaria model with seasonally varying mosquito birth rate, multi-stage

incubation in humans and the movement of mosquitoes. The emigration rate of

mosquitoes in one patch is not a constant, but a decreasing function of the number

of humans in that patch. They performed simulations for a linear array of 17 patches

and found that the two risk factors of human infection, the human biting rate, and

the proportion of mosquitoes that are infectious, may be negatively correlated in a

heterogeneous environment. Their model was modified by Menach et al. (2005) by

incorporating a more detailed description of mosquito oviposition behavior.
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