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Abstract. A susceptible-infectious-susceptible (SIS) epidemic model that describes the coin-
fection and cotransmission of two infectious diseases spreading through a single population
is studied. The host population consists of two subclasses: susceptible and infectious, and
the infectious individuals are further divided into three subgroups: those infected by the
first agent/pathogen, the second agent/pathogen, and both. The basic reproduction num-
bers for all cases are derived which completely determine the global stability of the system
if the presence of one agent/pathogen does not affect the transmission of the other. When
the constraint on the transmissibility of the dually infected hosts is removed, we introduce
the invasion reproduction number, compare it with two other types of reproduction num-
ber and show the uniform persistence of both diseases under certain conditions. Numerical
simulations suggest that the system can display much richer dynamics such as backward
bifurcation, bistability and Hopf bifurcation.
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1 Introduction

Different infectious agents may infect or colonize a host at the same time [21]. Many examples
can be found, these involving HIV [30, 37] (for example, HIV and TB [19], HIV and Hepatitis
B [12, 26], HIV and Hepatitis C [23], and HIV and malaria [2]), as well as some not involving
HIV (for example, Hepatitis B and C coinfection [11], gonorrhea and Chlamydia [13], and
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San Francisco, CA 94143-0412. Email: travis.porco@ucsf.edu.
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herpes simplex viruses 1 and 2 [41, 59]) Moreover, simultaneous infection may occur with
multiple strains or serotypes of the same organism, as is the case for influenza [20, 49],
human papilloma virus [9], and HIV [55, 63, 22], for just three of many examples. However,
simultaneous colonization or infection may occur even when there appears to be little or no
interaction between the two agents, as in the case of infection by ocular strains of chlamydia
and nasopharyngeal colonization by pneumococcus [24]. The dynamics of coinfection is
important in this case, because antimicrobials used to treat one infection may affect the
other (e.g., [51, 24]).

A variety of mathematical models for coinfections with multiple specific diseases, such
as HIV/TB [43, 48, 6, 47], HIV/gonorrhea [40], HIV/malaria [1, 39], malaria and meningitis
[29], general diseases [5, 7, 35, 28], and microparasites (viruses, bacteria, protozoa, fungi)
[54, 10, 3, 4, 61], have been developed and analyzed in the past few years. Ferguson et
al. [16] and Kawaguchi et al. [27] presented models to describe the coinfection of two
serotypes of dengue virus in a human community. With respect to the interaction between
nonspecific agents or pathogens, Blyuss and Kyrychko [7] studied a two-disease SIS model
with equal transmission efficiency for both susceptible and singly infected individuals; Allen
et al. [5] studied an SI model for a single host population with two viral infections, in
which one is vertically transmitted and the other is horizontally transmitted; Zhang et
al. [60] proposed an ODEs coinfection model with two strains of parasites and two host
types to study the influence of heterogeneities in parasite virulence and host life history
on the persistence and spread of parasite strains; Martcheva and Pilyugin [35] considered
an epidemic model of two diseases: a primary disease and a secondary disease, structured
by time since infection structure (for the primary disease); in the monograph of Keeling
and Rohani [28], the interaction of two pathogens spreading through a host population was
discussed in four cases: complete cross-immunity, no cross-immunity, enhanced susceptibility
and partial cross-immunity. Among these models either the uninfected hosts cannot become
infected with both diseases/strains directly [38, 35, 28, 10], or there is no recovery and an
infection is lifelong [54, 5, 4], or both [60, 3].

In this paper, we develop and analyze a simple model of multiple infections; this model
includes the possibility that the two agents are simultaneously transmitted with aspects
of Chlamydia trachomatis and pneumococcus, though we do not restrict the analysis to
this setting (see [31, 46] for examples of cotransmission in vector-borne disease ecology and
human case report, respectively), thereby inaugurating a dual infection. Our model will
also include the possibility that an individual who is currently infected with one agent will
become dually infected as a result of an exposure to the second agent. In this paper, the
condition of being simultaneously infected by multiple agents will be referred to simply
as coinfection. Our model is similar to the model of Blyuss and Kyrychko [7] where the
disease induced mortality is included, the doubly infected hosts recover from both diseases
simultaneously and strong restrictions on transmission parameters are required, and to the
models for coinfection by different species in Tanaka and Feldman [54] and Alizon [4] where
disease-induced mortality may occur, but no recovery is possible (and the forces of infection
follow a different rule).

We will assess a two-disease SIS model with no immunity or cross-immunity. For simplic-
ity, we will refer to the first and second disease, recognizing that the model applies equally
well to colonization or to subclinical infections. In Section 3, we carry out a complete global
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stability analysis of the model for the case where the force of infection of one disease is not
affected by the presence of the other (i.e., no interaction between two infections). In Section
4, when the two infections interact with each other, we calculate the invasion reproduction
numbers and obtain their epidemiologically meaningful lower and upper bounds, and show
that the interaction outcome could be extinction of one or both diseases or persistence of
both diseases. In Section 5, four numerical examples are provided to support the existence of
competitive exclusion, backward bifurcation, bistability and Hopf bifurcation, respectively.

2 The model

We propose a simple SIS epidemic model with two infectious agents (or strains of the same
agent) spreading through one host species. Let S(t), I1(t), I2(t) and I12(t) be the fractions
of the population infected with no infectious agent, the first agent, the second agent and
both agents at time t, respectively. A susceptible individual who contacts coinfected persons
can be infected with either one or both disease agents as a result of a single contact. Using
ocular strains of Chlamydia trachomatis and nasopharyngeal pneumococcus as an example,
transmission of either or both organisms could occur as a result of a single contact. This
process is illustrated in Figure 1. The model is then described by a system of four ordinary
differential equations as follows:

dS

dt
=µ− (λ1 + λ2 + λ12→1 + λ12→12 + λ12→2)S + (ρ1I1 + ρ2I2)− µS,

dI1
dt

=(λ1 + λ12→1)S − (λ2 + λ12→2 + λ12→12)I1 + (ρ2I12 − ρ1I1)− µI1,

dI2
dt

=(λ2 + λ12→2)S − (λ1 + λ12→1 + λ12→12)I2 + (ρ1I12 − ρ2I2)− µI2,

dI12
dt

=λ12→12S + (λ2 + λ12→2 + λ12→12)I1 + (λ1 + λ12→1 + λ12→12)I2

− (ρ1 + ρ2)I12 − µI12, 1 = S + I1 + I2 + I12,

(2.1)

where the forces of infection are proportional to disease prevalence, i.e.,

λ1 = β1I1, λ2 = β2I2, λ12→12 = β12I12, λ12→1 = β10I12, λ12→2 = β02I12.

Parameters ρ1 and ρ2 represent the recovery rate of the first and second diseases, respec-
tively. The disease induced death rate is ignored. We assume that the natural birth and
death rates are balanced and equal to µ, so that the total population size is constant. All
parameters are assumed to be positive, except that β12 ≥ 0. As stated earlier, the possibility
of simultaneous transmission from a single contact with a dually infected individual, which
we model according to the assumption β12 > 0. An underlying assumption in the model
is that individuals in all disease states have the same contact rate; we do not assume that
individuals have fewer contacts if they are infected. The rates/probabilities of transmission
of the model in Blyuss and Kyrychko [7] satisfy β12 + β10 = β1, β12 + β02 = β2, β12 = β1β2,
which is a special case of ours.
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Figure 1: Flowchart of a two-disease coinfection model. S, I1, I2 and I12 represent the frac-
tions of population infected with no infectious agent, the first agent, the second agent and
both agents, respectively.

Following the method and notations of van den Driessche and Watmough [58] and Diek-
mann et al. [14, 15], we have

F =

β1 0 β10

0 β2 β02

0 0 β12

 and V =

ρ1 + µ 0 −ρ2
0 ρ2 + µ −ρ1
0 0 ρ1 + ρ2 + µ

 .

The basic reproduction number associated with the model (2.1) is defined as the spectral
radius of the next generation matrix FV −1, i.e., R0 = max{R10,R20,R30}, where

R10 =
β1

ρ1 + µ
, R20 =

β2

ρ2 + µ
, R30 =

β12

ρ1 + ρ2 + µ
.

Let Ω = {(S, I1, I2, I12) ∈ R4
+ : S+I1+I2+I12 = 1}. Clearly, the set Ω is positively invariant

for system (2.1), so we will always set initial values within Ω. It is immediate that system
(2.1) has up to three boundary equilibria as follows.

Proposition 2.1. For system (2.1), we have

(i) the disease-free equilibrium E0 = (1, 0, 0, 0) always exists;

(ii) the equilibrium with the presence of only the first disease E1 = (1/R10, 1− 1/R10, 0, 0)
exists if and only if R10 > 1;

(iii) the equilibrium with the presence of only the second disease E2 = (1/R20, 0, 1−1/R20, 0)
exists if and only if R20 > 1.
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3 Noninteracting transmission

We begin with the simpler case where the presence of each disease does not affect the trans-
mission of the other; throughout this section, we assume that a doubly infected individual
has the same total infectivity as a singly infected person, which translates to

β12 + β10 = β1 and β12 + β02 = β2. (H)

Under the assumption (H), the persistence and extinction of one disease, and the total
fraction of people infected by that disease are not affected by the presence of the other
disease. The ability of a disease to invade an uninfected population is completely determined
by its own basic reproduction number.

Theorem 3.1. Let Ω0 = {E0}, Ω1 = {(S, I1, 0, 0) ∈ Ω : I1 > 0} and Ω2 = {(S, 0, I2, 0) ∈ Ω :
I2 > 0}. For system (2.1) under assumption (H), we have

(1) if R0 ≤ 1 then the disease-free equilibrium E0 is globally asymptotically stable in Ω;

(2) if R10 > 1 ≥ R20 (or R20 > 1 ≥ R10), then E1 (or E2) is globally asymptotically stable
in Ω\(Ω0 ∪ Ω2) (or Ω\(Ω0 ∪ Ω1)) where Ω0 ∪ Ω2 (or (Ω0 ∪ Ω1)) is the attractor of E0;

(3) if R10 > 1 and R20 > 1, then there exists a unique coexistence equilibrium, denoted by
E12 = (S∗, I∗1 , I

∗
2 , I

∗
12), which is globally asymptotically stable in

Ω\(Ω0 ∪ Ω1 ∪ Ω2) = {(S, I1, I2, I12) ∈ Ω : I12 > 0 or I1I2 > 0}.

Here Ω0,Ω1 and Ω2 are the attractor of E0, E1 and E2, respectively.

Proof. The summations of the second and fourth equations of (2.1) and the third and fourth
equations of (2.1) give

d(I1 + I12)

dt
= −(ρ1 + µ− β1(S + I2))(I1 + I12)

and
d(I2 + I12)

dt
= −(ρ2 + µ− β2(S + I1))(I2 + I12),

respectively. It follows from S+I1+I2+I12 = 1 that the above two logistic equations satisfy

I1(t) + I12(t) → max

{
0, 1− 1

R10

}
and I2(t) + I12(t) → max

{
0, 1− 1

R20

}
as t → ∞,

respectively, if both diseases present initially. If, for example, R10 ≤ 1, then I1(t)+I12(t) → 0
which implies lim

t→∞
I1(t) = lim

t→∞
I12(t) = 0. Thus, the first two arguments are established.

Now we assume that R10 ≥ R20 > 1 and the symmetric case R20 ≥ R10 > 1 can be
proved similarly. If E12 = (S∗, I∗1 , I

∗
2 , I

∗
12) exists, then it must satisfy

I∗1 =
1

R20

− S∗, I∗2 =
1

R10

− S∗ and I∗12 = S∗ + 1− 1

R10

− 1

R20
(3.1)
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and substituting them into the first equation of (2.1) yields

dS∗

dt
= β12(S

∗)2 −
(( 1

R10

+
1

R20

− 1
)
β12 + (β1 + β2)− µ

)
S∗ +

ρ1
R20

+
ρ2
R10

+ µ = 0. (3.2)

Meanwhile, solving I∗12 in terms of S∗ from the first equation of (2.1) gives

I∗12 =
β1(

1
R10

− S∗)I∗1 + β2(
1

R20
− S∗)I∗2

(β10 + β02 + β12)S∗ − µ
=

(β1 + β2)(
1

R10
− S∗)( 1

R20
− S∗)

(β1 + β2 − β12)S∗ − µ
≥ I∗1I

∗
2

S∗ .

Claim 1: If β12 = 0, then S∗ =
( ρ1
R20

+
ρ2
R10

+µ
)
/(β1+β2−µ) and there exists a unique

endemic equilibrium

E12 =
1

β1 + β2 − µ

(
ρ1
R20

+
ρ2
R10

+ µ,
(
1− 1

R10

)(β1 + β2

R20

− µ
)
,(

1− 1

R20

)(β1 + β2

R10

− µ
)
,
(
1− 1

R10

)(
1− 1

R20

)
(β1 + β2)

)
.

If β12 > 0, then (3.2) has two roots, labeled by S∗
1 and S∗

2 , satisfying 0 < ℜS∗
1 ≤ ℜS∗

2 .
Here ℜ(z) is the real part of a complex number z. Dividing both sides of (3.2) by β12 yields

F (S∗) ≡ (S∗)2 − (v1 + v2 − 1 + g − h)S∗ + gv1v2 + (1− v1 − v2)h = 0,

where v1 =
1

R10

, v2 =
1

R20

, g =
β1 + β2

β12

and h =
µ

β12

. Clearly, v1 ≤ v2 < 1, g > 2 and

g > 2h.
Claim 2: 0 < S∗

1 < v1 ≤ v2 < 1 < S∗
2 . It follows from F (0) = S∗

1S
∗
2 > 0 and

F (v1) = v21 − (v1 + v2 − 1 + g − h)v1 + gv1v2 + (1− v1 − v2)h

= −(v2 − 1 + g − gv2)v1 + (1− v2)h = (1− v2)(h− v1(g − 1))

= (1− v2)
( µ

β12

− ρ1 + µ

β1

(β1 + β2

β12

− 1
))

= (1− v2)
( µ

β12

− ρ1 + µ

β12

− ρ1 + µ

β1

( β2

β12

− 1
))

< 0

that both S∗
1 and S∗

2 are positive real numbers and S∗
1 < v1. In addition,

S∗
2 = v1 + v2 − 1 + g − h− S∗

1 > v2 − 1 + g − h

=
ρ2 + µ

β2

− 1 +
β1 + β2

β12

− µ

β12

≥
( µ

β2

− 1 +
β2

β12

− µ

β12

)
+

β1

β12

=
( β2

β12

− 1
)(

1− µ

β2

)
+

β1

β12

>
β1

β12

> 1.

When S∗ = S∗
1 , the positivities of I∗1 and I∗2 follow from S∗

1 < v1 ≤ v2 and I∗12 > 0 is
equivalent to S∗

1 > µ/(β1 + β2 − β12) = h/(g − 1) ∈ (0, 1), which is guaranteed by

F

(
h

g − 1

)
=

g(h− (g − 1)v1)(h− (g − 1)v2)

(g − 1)2
> 0 = F (S∗

1) and h < (g − 1)v1 ≤ (g − 1)v2.
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Consequently, if R10 > 1 and R20 > 1, then (2.1) has a unique endemic equilibrium

E12 = (S∗, I∗1 , I
∗
2 , I

∗
12) =

(
S∗,

1

R20

− S∗,
1

R10

− S∗, S∗ + 1− 1

R10

− 1

R20

)
,

where S∗ ∈ (0, 1) is the unique feasible solution to (3.2).
The spectrum of the Jacobian matrix of system (2.1) at E12 is

{−µ,−β1 + ρ1 + µ,−β2 + ρ2 + µ,−β1 − β2 + µ+ β12 − β12(I
∗
1 + I∗2 )}.

which means the endemic equilibrium is locally asymptotically stable. It follows from the
result on asymptotically autonomous differential equations [56] that E12 is globally attractive.
Hence the endemic equilibrium is globally asymptotically stable when it exists.

Remark 3.2. When coinfection is impossible, the competitive exclusion principle holds and
the disease with a larger reproduction number must exclude the other [8]. Thus coinfection
is a mechanism for the coexistence of multiple agents or pathogens [35].

Remark 3.3. It follows from S∗+(v1−S∗)+(v2−S∗)+(v1−S∗)(v2−S∗)/S∗ ≤ 1 and (3.1)
that min{v1, v2} > S∗ ≥ v1v2, I

∗
1 ≤ (1−v1)v2, I

∗
2 ≤ (1−v2)v1, and I∗12 ≥ (1−v1)(1−v2). Both

the uninfected population and the coinfected population are increasing in the cotransmission
rate. Indeed, differentiating F (S∗) = 0 with respect to β12 gives

∂S∗

∂β12

=
gv1v2 + (1− v1 − v2)h− (g − h)S∗

(2S∗ − (v1 + v2 + g − 1− h))β12

=
(S∗)2 − (v1 + v2 − 1)S∗

((v1 − S∗) + (v2 − S∗) + (g − 1− h))β12

>
(v1v2 − (v1 + v2 − 1))S∗β−1

12

(v1 − S∗) + (v2 − S∗) + (g − 1− h)
=

(1− v1)(1− v2)S
∗β−1

12

(v1 − S∗) + (v2 − S∗) + (g − 1− h)
> 0.

and I∗12 = S∗ + 1− v1 − v2 implies that
∂I∗12
∂β12

= ∂S∗

∂β12
> 0.

In the setting of multiple diseases, we may treat the entire population (mass treatment,
ρi → ρi + θ for any i), or only a fraction of people infected by a specific disease (targeted
treatment, ρi → ρi + θi for some i). Under both treatment strategies, it is shown that
for model (2.1) with the restriction (H) the uninfected population is always increased by
choosing a higher treatment rate; this differs from the two-disease model we studied in [17].

Corollary 3.4. For system (2.1) under assumption (H), the fraction of susceptible, S∗, is
always increasing in the mass treatment rate θ (or targeted treatment rate θi).

Proof. If β12 = 0, then under the mass treatment and targeted treatment we have

∂S∗

∂θ
=

(β1 + β2)(ρ1 + ρ2 + 2θ + µ)

β1β2(β1 + β2 − µ)
and

∂S∗

∂θi
=

βi(ρj + µ) + βjρj
β1β2(β1 + β2 − µ)

, i ̸= j, i, j = 1, 2,

respectively. Now assume that β12 > 0 and v1 ≥ v2, it follows from the differentiation of
F (S∗) = 0 with respect to targeted treatment rate θi or mass treatment rate θ that

∂S∗

∂θi
=

(S∗ − gvj + h)β−1
i

2S∗ − (v1 + v2 + g − 1− h)
=

((vj − S∗) + (vj(g − 1)− h))β−1
i

(v1 − S∗) + (v2 − S∗) + (g − 1− h)
> 0
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and
∂S∗

∂θ
=

S∗ − g(ρ1 + θ + µ+ ρ2 + θ + µ)/(β1 + β2) + h

2S∗ − (v1 + v2 + g − 1− h)
·
( 1

β1

+
1

β2

)
>

S∗ − gv1 + h

2S∗ − (v1 + v2 + g − 1− h)
·
( 1

β1

+
1

β2

)
> 0.

The last inequality holds because of S∗−gv1+h < 0 and 2S∗− (v1+v2+g−1−h) < 0.

4 Interacting transmission

In the rest of the paper, we remove the requirement (H), namely, β12+β10 ̸= β1 or β12+β02 ̸=
β2. Biologically, this means that a dually-infected individual may transmit each agent either
more or less efficiently than a person infected with each agent singly. Three possible scenarios
are listed as follows:

(1) Mutual enhancement: β12 + β10 > β1 and β12 + β02 > β2;

(2) Enhancement and inhibition: β12 + β10 > β1 and β12 + β02 < β2, or β12 + β10 < β1 and
β12 + β02 > β2;

(3) Mutual inhibition: β12 + β10 < β1 and β12 + β02 < β2.

The dynamics are simple equilibrium if the double infection has mild impact on the
transmission of one of the two infections. The following proof utilizes the theory of monotone
dynamical systems [52], simplfying the proof of Theorem 3.1.

Proposition 4.1. Assume that dual infection has no impact on the transmission of the first
disease, i.e., β12 + β10 = β1. For system (2.1), every orbit with initial value in Ω converges
to an equilibrium.

Proof. The assumption β12 + β10 = β1 implies that I1(t) + I12(t) → max{0, 1 − 1/R10} as
t → ∞ for I1(0)+ I12(0) > 0. If R10 ≤ 1, then either E0 or E2 is globally stable. If R10 > 1,
then I1(t)+I12(t) → 1−1/R10 and S(t)+I2(t) → 1/R10 as t → ∞. Thus, the 4-dimensional
system (2.1) can be reduced to a 2-dimensional system in I1 and I2. Denote the Jacobian
matrix of this two-dimensional system by J2 = (aij)2×2, where

a12 = −(β1 − β12)(1− 1/R10)− (β2 + β12)I1 < 0 and a21 = −ρ1 − (1/R10 − I2)β02 < 0.

Thus, the reduced 2-dimensional system is competitive. By Theorem 3.2.2 in Smith [52],
every orbit converges to an equilibrium.

The stability analysis for system (2.1) now becomes more complicated, and we need to
introduce a new threshold parameter—the invasion reproduction number, which is used to
measure the ability of one disease to invade an equilibrium of the other disease [42, 35, 60].
We now assume that the equilibrium E1 exists, or equivalently, R10 > 1. Using the next
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generation matrix method [14, 15, 58], the vectors for the rate of the appearance of new
infections by disease two and the rate of transfer of individuals are, respectively,

F2(I2, I12) =

(
(λ2 + λ12→2)S̄

λ12→12S̄ + λ2Ī1 + (λ12→2 + λ12→12)Ī1

)
,

V2(I2, I12) =

(
(λ1 + λ12→1 + λ12→12)Ī2 − (ρ1Ī12 − ρ2Ī2) + µĪ2

−λ1Ī2 − (λ12→1 + λ12→12)Ī2 + (ρ1 + ρ2)Ī12 + µĪ12

)
,

where (S̄, Ī1) = (1/R10, 1− 1/R10). The derivatives of F2 and V2 at (I2, I12) = (0, 0) are,
respectively,

F2 = DF2(0, 0) =

(
β2S̄ β02S̄
β2Ī1 β12S̄ + (β12 + β02)Ī1

)
,

V2 = DV2(0, 0) =

(
β1Ī1 + ρ2 + µ −ρ1

−β1Ī1 ρ1 + ρ2 + µ

)
.

The characteristic polynomial of the matrix F2V
−1
2 is A2λ

2 + A1λ+ A0 = 0, where

A2 = (β1 + ρ2)(ρ2 + µ), A0 = β2β12(ρ1 + µ)/β1,

A1 = −(β2S̄(ρ1 + ρ2 + µ) + β02S̄β1Ī1 + β2Ī1ρ1 + (β12S̄ + (β12 + β02)Ī1)(β1Ī1 + ρ2 + µ))

= −(β12 + β02)β1 + ((β12 + β02)(ρ1 − ρ2)− β2ρ1) + (β02 − β2)(ρ1 + µ)(ρ2 + µ)/β1 < 0.

The invasion reproduction number of disease 2, denoted by R1
2, is given by the spectral

radius of the non-negative matrix F2V
−1
2 , i.e.,

R1
2 = ρ(F2V

−1
2 ) =

−A1 +
√

A2
1 − 4A0A2

2A2

> 0.

It follows from A0 > 0 that the characteristic equation has two positive roots as β12 > 0. If
β12 = 0 then A0 = 0 and R1

2 = −A1/A2.
Similarly, we can derive a formula for the invasion reproduction number of disease 1,

denoted by R2
1. By Theorem 2 in van den Driessche and Watmough [58], disease 1 can

invade disease 2 if R2
1 > 1 and disease 2 can invade disease 1 if R1

2 > 1 (see Appendix A for
a direct proof).

Proposition 4.2. For system (2.1), when the equilibrium E1 exists (i.e., R10 > 1), it is
locally asymptotically stable if R1

2 < 1 and unstable if R1
2 > 1. Symmetrically, the equilibrium

E2 is locally asymptotically stable if R2
1 < 1 and unstable if R2

1 > 1.

Define R̃20 = (β12+β02)/(ρ2+µ); this quantity, analogous to a basic reproduction number,
is the number of cases of disease 2 resulting from the introduction of a dually infected person
into a wholly susceptible population. We can establish the lower and upper bounds for the
invasion reproduction number R1

2.

Proposition 4.3. Assume that E1 exists, or equivalently, R10 > 1. Then the following
statements are valid:

(i) R̃20 < R1
2 < R20 if and only if β2 > β12 + β02;
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(ii) R̃20 > R1
2 > R20 if and only if β2 < β12 + β02;

(iii) R̃20 = R1
2 = R20 if and only if β2 = β12 + β02.

Proof. R20 −R1
2 has the same sign as β2 − β12 − β02. In fact, we can rewrite R20 < R1

2 as

β2

ρ2 + µ
<

−A1 +
√
A2

1 − 4A0A2

2A2

⇔ 2β2A2 + (ρ2 + µ)A1 < (ρ2 + µ)
√
A2

1 − 4A0A2.

If G ≡ 2β2A2 + (ρ2 + µ)A1 ≥ 0, then R20 < R1
2 is equivalent to

4β2
2A

2
2 + 4β2(ρ2 + µ)A1A2 + (ρ2 + µ)2A2

1 < (ρ2 + µ)2A2
1 − 4(ρ2 + µ)2A0A2

⇔4A2(A2β
2
2 + A1β2(ρ2 + µ) + A0(ρ2 + µ)2) < 0

⇔β2(β2 − β12 − β02)(β1 − ρ1 − µ)(ρ2 + µ)(β1 + ρ2 + µ) < 0 ⇔ β2 < β12 + β02.

If G < 0, then G = (ρ2 + µ)(G0 + (β2 − β12 − β02)G1) where

G0 = [β1β02(β1 + ρ2) + β12(β1(β1 + ρ2)− (ρ1 + µ)(ρ2 + µ))]/β1,

G1 = 2(β1 + ρ2)− ρ1 − (ρ1 + µ)(ρ2 + µ)/β1.

Note that G0 > 0 and G1 > 0 when R10 > 1. If β2 ≥ β12 + β02 then G > 0, a contradiction.
On the other hand, R̃20 < R1

2 is equivalent to

A2(β12 + β02)
2 + A1(β12 + β02)(ρ2 + µ) + A0(ρ2 + µ)2 < 0

⇔(β12 + β02 − β2)(ρ2 + µ)(µ2β02 + µβ02(ρ1 + ρ2) + ρ1(β1(β12 + β02) + β02ρ2)) < 0

⇔β12 + β02 < β2.

This completes the proof.

Therefore, it is possible that R20 < 1 < R1
2 as β2 < β12 + β02. Moreover, we will show

that the second disease may be able to invade in the presence of the first disease even if it
cannot persist alone. That is, the presence of the first disease promotes persistence of the
second disease. Similar to the model in Martcheva and Pilyugin [35], we can obtain the
following result about the consequence of competition.

Proposition 4.4. For system (2.1), if R̃10 ≤ 1 or R̃20 ≤ 1 and R10 ≤ 1,R20 ≤ 1, then both
diseases go extinct and the disease-free equilibrium is globally stable; if max{R10, R̃10} ≤
1 (or max{R20, R̃20} ≤ 1) then disease 1 (or 2) goes extinct; if min{R10, R̃10} > 1 (or
min{R20, R̃20} > 1) then disease 1 (or 2) persists.

Proof. It follows from the second and fourth equations of system (2.1) that

d(I1 + I12)

dt
= −(ρ1 + µ)(I1 + I12) + (β12I12 + β10I12 + β1I1)(S + I2)

and hence

d(I1 + I12)

dt
≤ (max{β12 + β10, β1} − (ρ1 + µ))(I1 + I12)−max{β12 + β10, β1}(I1 + I12)

2,

d(I1 + I12)

dt
≥ (min{β12 + β10, β1} − (ρ1 + µ))(I1 + I12)−min{β12 + β10, β1}(I1 + I12)

2.
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By a simple comparison principle [53], we get

lim sup
t→∞

(I1 + I12) ≤ max

{
1− ρ1 + µ

max{β1, β12 + β10}
, 0

}
,

lim inf
t→∞

(I1 + I12) ≥ max

{
1− ρ1 + µ

min{β1, β12 + β10}
, 0

}
if I1(0) + I12(0) > 0.

Remark 4.5. A necessary condition for the existence of a coexistence equilibrium E∗ =
(S∗, I∗1 , I

∗
2 , I

∗
12) is that max{Ri0, R̃i0} > 1 for i = 1, 2. When E∗ exists, it satisfies

1− ρ1 + µ

min{β1, β12 + β10}
≤ I∗1 + I∗12 ≤ 1− ρ1 + µ

max{β1, β12 + β10}
,

1− ρ2 + µ

min{β2, β12 + β02}
≤ I∗2 + I∗12 ≤ 1− ρ2 + µ

max{β2, β12 + β02}
.

The above result indicates that the two diseases coexist whenever min{Ri0, R̃i0} > 1, i =
1, 2. By a similar argument to that of Theorem 2.5 in Gao and Ruan [18], we will show that
it remains true under a weaker condition: min{Ri0,Rj

i} > 1, i ̸= j, i, j = 1, 2.

Theorem 4.6. For model (2.1), if

R10 > 1,R20 > 1,R2
1 > 1 and R1

2 > 1, (4.1)

then (2.1) admits at least one coexistence equilibrium and both diseases are uniformly persis-
tent, i.e., there is a constant κ > 0 such that each solution ϕt(x0) ≡ (S(t), I1(t), I2(t), I12(t))
of system (2.1) with x0 ≡ (S(0), I1(0), I2(0), I12(0)) ∈ Ω0 ≡ {(S, I1, I2, I12) ∈ Ω : I1I2 >
0 or I12 > 0} satisfies

lim inf
t→∞

I1(t) > κ, lim inf
t→∞

I2(t) > κ and lim inf
t→∞

I12(t) > κ.

Proof. Denote ∂Ω0 = Ω\Ω0 = {(S, I1, I2, I12) ∈ Ω : I1 = 0 or I2 = 0, I12 = 0}. It is sufficient
to show that system (2.1) is uniformly persistent with respect to (Ω0, ∂Ω0). Obviously, ∂Ω0

is relatively closed in Ω. It is clear that Ω and Ω0 are positively invariant and system (2.1)
is point dissipative.

Let M∂ = {x0 ∈ ∂Ω0 : ϕt(x0) ∈ ∂Ω0 for t ≥ 0}. Therefore, M∂ = ∂Ω0. The boundary
equilibria E0, E1 and E2 are in M∂. Let W

s(Ei) be the stable manifold of Ei for i = 0, 1, 2.
We will show that W s(Ei) ∩ Ω0 = ∅ whenever (4.1) holds.

Define

Rε
1 =

(1− ε)β1

(β2 + β12 + β02)ε+ ρ1 + µ
.

It follows from R10 > 1 that there is an ε0 > 0 such that Rε
1 > 1 for ε ∈ [0, ε0]. Select η0

small enough such that
S(0) ≥ 1− ε0 for ∥x0 − E0∥ ≤ η0.
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We claim that lim sup
t→∞

∥ϕt(x0)−E0∥ > η0 for x0 ∈ Ω0, where ∥ · ∥ is the Euclidean norm.

Supposing not, then by translation, we have ∥ϕt(x0)− E0∥ ≤ η0 for all t ≥ 0 and hence

dI1
dt

≥ β1(1− ε0)I1 − (β2 + β12 + β02)ε0I1 − ρ1I1 − µI1

= (β1(1− ε0)− (β2 + β12 + β02)ε0 − ρ1 − µ)I1.

By a comparison theorem, I1(t) → ∞ as t → ∞; the contradiction establishes the result.
To show W s(E1) ∩ Ω0 = ∅, we define

∆ =

(
β2 + β1 + 2β12 + 2β10 β02

β1 + β2 2β12 + β02

)
and Mε = F2 − V2 − ε∆.

Since s(F2 − V2) > 0 if and only if R1
2 > 1, there is an ε1 > 0 such that s(Mε) > 0 for

ε ∈ [0, ε1]. Recall that (S̄, Ī1) = (1/R10, 1− 1/R10). Choose η1 small enough such that

S̄ − ε1 ≤ S(0) ≤ S̄ + ε1 and Ī1 − ε1 ≤ I1(0) ≤ Ī1 + ε1 for ∥x0 − E1∥ ≤ η1.

We claim that lim sup
t→∞

∥ϕt(x0) − E1∥ > η1 for x0 ∈ Ω0. Supposing not, then again by

translation, we have ∥ϕt(x0)− E1∥ ≤ η1 for all t ≥ 0 and hence

dI2
dt

≥(β2I2 + β02I12)(S̄ − ε1)− (β1(Ī1 + ε1) + (β12 + β10)2ε1)I2 + (ρ1I12 − ρ2I2)− µI2,

dI12
dt

≥β12I12(S̄ − ε1) + (β1 + β2)(Ī1 − ε1)I2 + (β12 + β02)I12(Ī1 − ε1)− (ρ1 + ρ2 + µ)I12.

Notice that Mε1 has a positive eigenvalue s(Mε1) associated to a positive eigenvector. It fol-
lows from a comparison theorem that I2(t) → ∞ and I12(t) → ∞ as t → ∞, a contradiction.

Since W s(E0) = {E0}, W s(E1) = {(S, I1, I2, I12) ∈ Ω : I1 > 0, I2 = I12 = 0}, W s(E2) =
{(S, I1, I2, I12) ∈ Ω : I2 > 0, I1 = I12 = 0} and M∂ = W s(E0)∪W s(E1)∪W s(E2), {E0}, {E1}
and {E2} are isolated invariant sets and acyclic in M∂. By Theorem 4.6 in Thieme [57],
system (2.1) is uniformly persistent with respect to (Ω0, ∂Ω0). Moreover, by Theorem 2.4 in
Zhao [62], we know that system (2.1) has an equilibrium E∗ = (S∗, I∗1 , I

∗
2 , I

∗
12) ∈ Ω0. It is

easy to check that E∗ is a positive equilibrium of system (2.1).

Remark 4.7. Similarly, we can show the uniform persistence of both diseases and the
existence of a coexistence equilibrium under the assumption R10 > 1 and R20 < 1 < R1

2, or
R20 > 1 and R10 < 1 < R1

1. In this case, one disease goes extinct in the absence of the other
and the presence of the other disease mediates the coexistence. Control strategies toward a
reduction of both infections are favored.

A more detailed classification for the transmission dynamics of the coinfection model (2.1)
based on its basic reproduction numbers and invasion reproduction numbers [35] is beyond
the scope of current paper. For example, we are particularly interested in the local/global
stability of the coexistence equilibrium under conditions in Theorem 4.6, but numerical
examples in the next section show that an unstable coexistence equilibrium could present
in case of backward bifurcation, bistability or a Hopf bifurcation. This suggests that it is
hard to use the well-known Routh-Hurwitz criterion to determine the local stability of the
coexistence equilibrium.
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5 Numerical Simulations

In this section, we illustrate, by numerical examples, possible phenomena the model of
coinfection may exhibit.

Example 5.1. Competitive exclusion. Two diseases cannot coexist even if each one
can persist independently. Parameter values: β1 = 1.05, β2 = 2.5, ρ1 = 1, ρ2 = 0.8, µ =
0.02, β12 = 0.05, β10 = 0.2, β02 = 2. The respective basic reproduction numbers are R10 =
1.0294 > 1 and R20 = 3.0488 > 1. Figure 2 shows that the first disease goes extinct while the
second persists. It provides a theoretically plausible treatment strategy for some pathogens:
suppose that 1 < R10 < R20, β12 + β10 < β1 and β12 + β02 < β2; there is an effective way to
treat pathogen 2, but not for pathogen 1. Here, one could in principle introduce pathogen 2
to eradicate pathogen 1.

I1

I2

I12

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Time

Figure 2: Numerical solution of system (2.1) with initial condition (S(0), I1(0), I2(0), I12(0))
= (0.3, 0.4, 0.2, 0.1). Red dotted line-I1, black dashed line-I2 and solid blue line-I12. Two
infections cannot coexist even if each one can survive independently.

Moreover, consider a scenario in which β1 = 2.9, β2 = 3, ρ1 = ρ2 = µ = 1, β12 = 0.5, β10 =
2, β02 = 0.1; we have R10 = 1.45,R20 = 1.5, R2

1 = 1.3612 and R1
2 = 0.9860. Thus, E1

is locally stable but E2 is unstable and there is no coexistence equilibrium. Interestingly,
in this case the competitive exclusion principle still holds, but the disease with a higher
reproduction number dies out while the other one persists (in contrast with [8]).

Example 5.2. Backward bifurcation. Assume that R10 < 1 and R20 < 1. If β12 + β10 >
β1 and β12 + β02 > β2, then it is possible that both diseases become persistent. Parameter
values: β1 = 0.9, β2 = 0.7, ρ1 = 1, ρ2 = 0.8, µ = 0.02, β10 = β02 = 0.6. A bifurcation
diagram for model (2.1) shows that the endemic equilibrium value of I12 with respect to
β12 is presented in Figure 3. In this setting, there is one stable coexistence equilibrium and
one unstable coexistence equilibrium for β12 ∈ (1.256, 1.82). Biologically, this means that a
small perturbation in model parameters or initial conditions may lead to a large difference in
the dynamic behavior of the disease. The occurrence of backward bifurcation precludes, in
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general, the global stability of the disease-free equilibrium as R0 < 1. Note that backward
bifurcation still exists even if there is no cotransmission (β12 = 0).

1.2 1.4 1.6 1.8 2.0
Β12

0.05

0.10

0.15

0.20

0.25

0.30

I12

Figure 3: Backward bifurcation arising from the change of β12. Blue solid line-stable, red
dashed line-unstable. Two diseases can coexist even if each one dies out independently.

Example 5.3. Bistability (R10 > 1,R20 > 1,R2
1 < 1 and R1

2 < 1). The two boundary
equilibria E1 and E2 are locally stable, while the coexistence equilibrium E∗ is unstable.
Parameter setting: β1 = 2.9, β2 = 3, ρ1 = ρ2 = µ = 1, β12 = 0.5, β10 = 0.3, β02 = 0.05. Direct
calculations yield the basic reproduction numbers R10 = 1.45,R20 = 1.5 and the invasion
reproduction numbers R2

1 = 0.9714,R1
2 = 0.9747. A bistability phenomenon is observed

in Figure 4. The disease outcome depends on initial conditions and there exists a smooth
surface separating the feasible region into two domains.

The occurrence of bistability also implies that the infection with a higher reproduction
number is not necessarily the winner, so to speak, of the competition. In addition, there is
no bistability phenomenon when the mortality rate µ is small enough (see Appendix B for a
proof). Namely, if R20 > max{R10, 1}, then the second disease always persists as µ → 0.

Example 5.4. Hopf bifurcation. The model can exhibit non-equilibrium dynamical
behavior—periodic oscillations under certain conditions. Set β1 = 5, β2 = 0.2, ρ1 = ρ2 =
0, µ = 1, β12 = 0.805, β10 = 0 and β02 ∈ [70, 100]. It follows from R10 = 5 > 1 > R20 = 0.2
and R1

2 ≫ 1 that both diseases are uniformly persistent and there is a coexistence equilib-
rium (see Remark 4.7). The Jacobian matrix at the coexistence equilibrium has a pair of
complex eigenvalues with negative real parts as β02 ∈ [70, 84.74), a pair of purely imaginary
eigenvalues as β02 ≈ 84.74, and a pair of complex eigenvalues with positive real parts as
β02 ∈ (84.74, 100]. Therefore, the coexistence equilibrium loses its stability and a Hopf bifur-
cation appears (see Figure 5). For sufficiently small but nonzero ρ1, ρ2 and β10, the system
still has a Hopf bifurcation.
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Figure 4: Numerical solutions of system (2.1) with initial conditions: (0.62, 0.25, 0.1, 0.03)
and (0.62, 0.1, 0.25, 0.03) (black dots). Bistability: the two boundary equilibria E1 =
(20/29, 9/29, 0, 0) and E2 = (2/3, 0, 1/3, 0) (blue dots) are locally stable, and the coexis-
tence equilibrium E∗ ≈ (0.701, 0.165, 0.096, 0.038) (red dot) is unstable.
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Figure 5: Hopf bifurcation-two diseases coexist in an oscillatory mode.
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6 Discussion

In this paper, we proposed a simple two-disease SIS coinfection model featuring simulta-
neous transmission of infection due to contacts with dually infected individuals, as well as
superinfection leading to dual infection. In our model, there are four epidemiological classes:
susceptible to both diseases, susceptible to disease 2 but infectious for disease 1, susceptible
to disease 1 but infectious for disease 2, and infectious for both diseases. It is a simplified
version of the two-disease three-strain model in Gao et al. [17] in which the first disease ex-
hibits both drug sensitive and resistant strains. The cotransmission dynamics of two diseases
modeled as a SIS process is of interest as a simplified model of, for instance, ocular chlamy-
dia [33, 32, 34] and respiratory pneumococcal colonization [36]. In hyperendemic trachoma
regions, both organisms are common and both are affected by trachoma control programs
[24].

We considered the case for which the transmission of the first disease is completely
unaffected by the presence of the second; that is, when coinfected people transmit infection
to the same degree as singly infected people, disease dynamics are completely determined
by the basic reproduction numbers of each. The two diseases coexist at an endemic level
as long as they can persist independently. However, if the assumption does not hold, then
we calculated the invasion reproduction number to measure the ability of one disease to
invade the other at its steady state. The relation between the basic reproduction number
and the invasion reproduction number was investigated, and sufficient conditions for the
persistence of both diseases were obtained. Using numerical methods, more complicated
dynamics including backward bifurcation, bistability and Hopf bifurcation were found. The
disease with smaller reproduction number may be able to invade and competitively exclude
the other disease even if there is no coexistence steady state. It is noteworthy that some of
these dynamical behaviors have been observed in previous studies based on different models
[7, 35, 60, 61]. Our study provides some more advanced theoretical results on the stability
and persistence of a reasonable coinfected model. The results throughout this paper for one
disease also holds for the other due to the symmetry of the model. Note that some of our
analytical results are applicable to models of coinfection by different parasites (e.g. [54, 4, 3])
where there is no recovery (ρ1 = ρ2 = 0).

It is well known that, for a simple SIS epidemic model, the disease goes extinct if the
basic reproduction number is less than unity and persists at a unique endemic equilibrium
otherwise. Our analysis shows that the disease dynamics become more complicated in the
presence of a second disease. For instance, the presence of coinfection could mediate coexis-
tence despite that fact that one or both diseases could not survive independently. Different
types of interaction in dually infected hosts can yield different outcomes. These findings em-
phasize the importance of understanding the interactions among pathogens and developing
a multi-disease approach in the treatment of coinfected patients.

A complete classification of the model studied here is not yet available. For example, we
would like to know how to rigorously prove the existence of Hopf bifurcations and whether a
Hopf bifurcation is impossible for small death rate. It will be interesting to analyze our model
from the perspective of evolutionary epidemiology [45, 10, 3, 4]. The current model may be
extended to other natural history models, such as the SEIR assumption, or include three or
more agents/strains [61]. There may be partial cross-immunity or enhanced susceptibility to
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either of the two infections [28]. Coinfected patients may have more serious illness and take
a longer time to recover. In general, treatment of one infection in a doubly infected person
may affect the other infection directly or indirectly (e.g. [50, 25, 44, 51]). We will leave these
for future consideration.
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Appendix:

A. The equivalence between s(F2 − V2) < 0 and R1
2 < 1.

As we know, the boundary equilibrium E1 is locally asymptotically stable if and only if all
eigenvalues of the Jacobian matrix F2 − V2 have negative real parts. This is also equivalent
to R1

2 < 1 by Theorem 2 in van den Driessche and Watmough [58]. Here we provide a direct
proof. For simplicity, we consider two matrices

F2 =

(
a b
c d

)
and V2 =

(
h −i
−j k

)
satisfying a, b, c, d, h, i, j, k ≥ 0 and hk− ij > 0. The characteristic polynomial of the matrix
F2 − V2 is

λ2 + (h− a+ k − d)λ+ (h− a)(k − d)− (b+ i)(c+ j) = 0.

By the Routh-Hurwitz criterion, the spectral bound s(F2 − V2) < 0 if and only if

h− a+ k − d > 0, (6.1a)

(h− a)(k − d)− (b+ i)(c+ j) > 0. (6.1b)

Meanwhile, the characteristic polynomial of the matrix F2V
−1
2 is A2λ

2+A1λ+A0 = 0, where

A2 = hk − ij > 0, A1 = −(ak + bj + ci+ dh), A0 = ad− bc.

Then R1
2 = ρ(F2V

−1
2 ) < 1 if and only if

2A2 + A1 = 2(hk − ij)− (ak + bj + ci+ dh) > 0, (6.2a)

A2 + A1 + A0 = (hk − ij) + (ad− bc)− (ak + bj + ci+ dh) > 0. (6.2b)

Note that (6.1b) is the same as (6.2b). It suffices to show that (6.1) implies (6.2a) and (6.2)
implies (6.1a), respectively.
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It follows from (6.1) that h > a and k > d. Thus

2A2 + A1 = hk + (h− a+ a)(k − d+ d)− 2ij − (ak + bj + ci+ dh)

=hk + (h− a)(k − d) + (h− a)d+ a(k − d) + ad− 2ij − (ak + bj + ci+ dh)

>hk + (b+ i)(c+ j) + (h− a)d+ a(k − d) + ad− 2ij − (hk − ij)− (ad− bc)

=bj + ci+ (h− a)d+ a(k − d) ≥ 0.

On the other hand, suppose that h− a+ k− d ≤ 0, then (6.1b) or (6.2b) implies that h < a
and k < d. We obtain

2A2 + A1 < 2(hk − ij)− (hk + bj + ci+ kh) = −2ij − bj − ci ≤ 0,

a contradiction. The proof is complete.

B. The nonexistence of bistability for small µ.

If R20 > max{R10, 1}, then the second disease always persists for sufficiently small µ. We
only need to show the instability of the equilibrium E1 when it exists. In fact, E1 is locally
asymptotically stable if and only if s(F2 − V2) < 0. The characteristic equation of F2 − V2 is
β1λ

2 + C1(β1)λ+ C0(β1) = 0, where

C1(β1) = β2
1 + β1(2ρ2 + µ− β12 − β02)− (β2 − β02)(ρ1 + µ) and C0(β1) = a2β

2
1 + a1β1 + a0.

Here a2 = ρ2 + µ − β12 − β02, a1 = −β2ρ1 + (β12 + β02)(ρ1 − ρ2) + µρ2 + ρ22, and a0 =
−(ρ1 + µ)(β2(ρ2 + µ− β12)− β02(ρ2 + µ)).

Thus, by the Routh-Hurwitz stability criterion, E1 is locally stable if C1 > 0 and C0 > 0.
In particular, if β12 = 0 then E1 is locally stable if C0 > 0 (by Appendix A). For the
instability of the equilibrium E1, It suffices to show that C0 < 0 in case of R10 > 1 and
β12 + β02 < ρ2 + µ by Remark 4.5. This follows from a2 > 0, a0 < 0, β1 < (ρ1 + µ)R20 and

C0((ρ1 + µ)R20) =(ρ2 + µ)−2(ρ1 + µ)(β2 − ρ2 − µ)×
(β2µ(ρ2 + µ− β12 − β02)− β2ρ1(β12 + β02)− β02(ρ2 + µ)2) < 0

for small enough µ > 0.
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