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a b s t r a c t

We propose a simple two-disease epidemic model where one disease exhibits only a drug-sensitive strain,

while the other exhibits both drug-sensitive and drug-resistant strains. Treatment for the first disease may

select for resistance in the other. We model antibiotic use as a mathematical game through the study of

individual incentives and community welfare. The basic reproduction number is derived and the existence and

local stability of the model equilibria are analyzed. When the force of infection of each disease is unaffected by

the presence of the other, we find that there is a conflict of interest between individual and community, known

as a tragedy of the commons, under targeted treatment toward persons infected by the single strain disease,

but there is no conflict under mass treatment. However, we numerically show that individual and social

incentive to use antibiotics may show disaccord under mass treatment if the restriction on the transmission

ability of the dually infected people is removed, or drug resistant infection is worse than drug sensitive

infection, or the uninfected state has a comparative disutility over the infected states.

© 2015 The Authors. Published by Elsevier Inc.
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. Introduction

In recent years, the problem of bacterial antibiotic resistance has

ed to suggestions that antibiotics are overprescribed [8,27], and that

ecreasing the use of antibiotics could benefit society as a whole

y minimizing the emergence of drug-resistance [12,36]. It has been

rgued that antibiotic efficacy should be considered as a common

ood [7], and that collective action may be needed to preserve this

ommon good against overuse. Some authors believe that individual

ncentives may drive overuse of antibiotics, leading to a “tragedy of

he commons” [1]. The concept of the tragedy of the commons origi-

ated from an example on population control proposed by Lloyd [29]

n 1833 and later developed by Hardin [18] in the 1960s. One exam-

le of this is seen in simple mathematical models of drug resistance,

here increasing treatment of mild or early infection may benefit

he individual, despite the fact that such an outcome may lead to an

ncrease in drug-resistant bacteria and thus a decrease in the overall

fficacy of antibiotic treatment [38].
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An important example of how drug-resistance occurs is the use

f broad spectrum antibiotics [20]. In this case, treatment of one

nfection or disease may select for resistance in other organisms

hich are present [50]. This phenomenon has been observed during

he use of mass azithromycin to eliminate trachoma due to Chlamy-

ia trachomatis, a leading cause of infectious blindness in the world

52]. The World Health Organization promotes antibiotic treatment

or trachoma control, using mass administration of single-dose oral

zithromycin [44,52]. While Chlamydia trachomatis has never exhib-

ted epidemiologically important drug resistance [21,49], the emer-

ence of macrolide-resistant pneumococcus due to mass adminis-

ration of azithromycin has been observed [28,47], though such re-

istance has declined after cessation of treatment [19,47]. Fears of

ncreased mortality have proven unfounded, e.g. [17,24,25,39].

In this paper, based on the pattern seen for pneumococcus and

hlamydia trachomatis, we propose and analyze a simple model of

oinfection and cotransmission of two infectious agents in order to

etermine whether antibiotic resistance is a tragedy of the commons

n a two diseases setting. For one infectious agent, we assume that

oth sensitive and resistant strains are possible, while for the other,

nly drug sensitive strains are present. Both are modeled as simple

IS (susceptible-infectious-susceptible) processes [23]. Coinfection by

ultiple pathogens or diseases is a global challenge for public health.

t has attracted increasing attention in the field of mathematical epi-
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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demiology since the pioneering works by Dietz [14], Bremermann

and Thieme [5], and others. For example, a number of mathematical

models for HIV/TB coinfection [2,32,43,45], HIV/malaria coinfection

[34], HIV/gonorrhea coinfection [35], malaria and meningitis coinfec-

tion [26], and CA-MRSA/HA-MRSA co-colonization [11,40] have been

developed in recent years.

Our model assumes that treatment is targeted to the agent that

only has sensitive strains, but can select for resistance in the other

infectious agent (as a type of “collateral damage”). We will assume

that the population as a whole has a particular treatment rate, which

gives rise to an equilibrium prevalence of both infections. A single in-

dividual in the population who changes her or his treatment rate will

then experience either more or less infection. When increasing infec-

tion rate for an individual causes that individual to spend less time

infected, that individual has an incentive to increase treatment. How-

ever, if increasing the population rate of treatment causes a higher

population cost, a tragedy of the commons results. Previously we used

this method to analyze the tragedy of the commons resulting from

incentives to treat early or mild infection ([38]; see [42] for a general

exposition), and in this paper we will apply the same method to a

simple model of cotransmission.

2. The model

We recently analyzed a simple SIS model (susceptible-infective-

susceptible) of drug resistance [38] for one disease, denoted by P. The

state of a single individual may be completely susceptible, infected

with drug-susceptible organisms only, or infected with drug-resistant

organisms only. We consider a single individual in a large population,

subject to constant forces of infection. Let X(i), Y(i)
S , and Y(i)

R denote the

probability the individual is susceptible, infected with the sensitive

strain, or infected with the resistant strain, respectively. Treatment,

occurring at rate θ(i)
P , may lead to a new clinical appearance of drug

resistance with probability δ ∈ (0, 1). Let ρP denote the recovery rate.

Denoting the force of infection (only dependent on the number of

individuals infected, and independent of individual choice of treat-

ment) due to sensitive strains by λS and due to resistant strains by

λR, a single individual follows the Markov chain

dX(i)

dt
= −(λS + λR)X

(i) +
(
ρPY(i)

S + ρPY(i)
R

)
+ θ(i)

P (1 − δ)Y(i)
S ,

dY(i)
S

dt
= λSX(i) − ρPY(i)

S − θ(i)
P Y(i)

S ,

dY(i)
R

dt
= λRX(i) − ρPY(i)

R + θ(i)
P δY(i)

S ,

which is Model 1 in the previous paper ([38]).

We now extend this model to include a second disease, denoted

by C. Motivated by the example of Chlamydia, we again assume a sim-

ple SIS process for the second disease, and assume no drug resistance

is possible for this second disease. Nevertheless, treating individuals

with this disease may select for drug resistance in the first disease

(since this first disease might be present). We now denote the re-

covery rate for the second disease by ρC , and the force of infection

by λC . Let X(i) denote the probability that a single individual in a

large population is infected with no infectious agent, Y(i)
S the prob-

ability the individual is infected by the drug-sensitive strain of the

first agent (and not infected with the second agent), Y(i)
R the probabil-

ity the individual is infected by the drug-resistant strain of the first

agent (and not infected with the second agent), Y(i)
C the probability

the individual is infected by the second agent (and not infected with

either strain of the first agent), Y(i)
SC the probability the individual is

infected by the drug-sensitive strain of the first agent and also by the

second agent, and finally Y(i)
RC the probability the individual is infected

by the drug-resistant strain of the first agent and also by the sec-

ond agent. The treatment rate for individuals infected by the second
nfectious agent only is θ(i)
C ; the treatment rate for individuals infected

imultaneously by both agents is denoted θ(i)
PC . Here, a susceptible in-

ividual who contacts a dually infected person could become infected

nly with the first, the second or both agents as a result of the single

ontact; we thus have infection rates of λSC→S, λSC→C and λSC→SC (or

RC→R, λRC→C and λRC→RC), correspondingly. Then, we have

dX(i)

dt
= −(λS + λR + λC + λSC→S + λSC→SC + λSC→C

+ λRC→R + λRC→RC + λRC→C)X
(i)

+
(
ρPY(i)

S + ρPY(i)
R + ρCY(i)

C

)
+

(
θ(i)

C Y(i)
C + θ(i)

PC(1 − δ)Y(i)
SC + θ(i)

P (1 − δ)Y(i)
S

)
,

dY(i)
S

dt
= (λS + λSC→S)X

(i)

− (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)Y
(i)
S

+
(
ρCY(i)

SC − ρPY(i)
S

)
− θ(i)

P Y(i)
S ,

dY(i)
R

dt
= (λR + λRC→R)X

(i)

− (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)Y
(i)
R

+
(
ρCY(i)

RC − ρPY(i)
R )+ (θ (i)

PCY(i)
RC + θ(i)

PCδY(i)
SC + θ(i)

P δY(i)
S

)
,

dY(i)
C

dt
= (λC + λSC→C + λRC→C)X

(i)

− (λS + λR + λSC→S + λSC→SC + λRC→R + λRC→RC)Y
(i)
C

+
(
ρPY(i)

SC + ρPY(i)
RC − ρCY(i)

C

)
− θ(i)

C Y(i)
C ,

dY(i)
SC

dt
= λSC→SCX(i)

+ (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)Y
(i)
S

+ (λS + λSC→S + λSC→SC)Y
(i)
C − (ρP + ρC)Y

(i)
SC − θ(i)

PCY(i)
SC ,

dY(i)
RC

dt
= λRC→RCX(i)

+ (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)Y
(i)
R

+ (λR + λRC→R + λRC→RC)Y
(i)
C

− (ρP + ρC)Y
(i)
RC − θ(i)

PCY(i)
RC . (2.1)

We omit human migration, birth, natural and disease-induced

eath; the total probability satisfies X(i) + Y(i)
S + Y(i)

R + Y(i)
C + Y(i)

SC +
(i)
RC = 1. For any given set of forces of infection, these linear equa-

ions can be solved for the equilibrium values of the probabili-

ies of being in each state. We denote the equilibrium by Ē(i) =
X̄(i), Ȳ(i)

S , Ȳ(i)
R , Ȳ(i)

C , Ȳ(i)
SC , Ȳ(i)

RC).
As indicated above, we wish to consider a particular individual

ho chooses treatment rates θ(i)
P , θ (i)

C or θ(i)
PC , faced by a unanimous

hoice θP, θC or θPC made by all other individuals. The following

ystem of equations describing the corresponding community-level

ransmission dynamics:

dX

dt
= −(λS + λR + λC + λSC→S + λSC→SC + λSC→C

+ λRC→R + λRC→RC + λRC→C)X

+ (ρPYS + ρPYR + ρCYC)

+ (θCYC + θPC(1 − δ)YSC + θP(1 − δ)YS),

dYS

dt
= (λS + λSC→S)X

− (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)YS

+ (ρCYSC − ρPYS)− θPYS,
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(a) (b)

(c) (d)

(e)

Fig. 1. Flow diagram of the model. Infection process: (a) encounter YS, YR and YC , respectively, and get infected; (b) encounter YSC and get infected; (c) encounter YRC and get

infected. (d) Recovery process. (e) Treatment process.
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dYR

dt
= (λR + λRC→R)X

− (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)YR

+ (ρCYRC − ρPYR)+ (θPCYRC + θPCδYSC + θPδYS),

dYC

dt
= (λC + λSC→C + λRC→C)X

− (λS + λR + λSC→S + λSC→SC + λRC→R + λRC→RC)YC

+ (ρPYSC + ρPYRC − ρCYC)− θCYC,

dYSC

dt
= λSC→SCX

+ (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)YS

+ (λS + λSC→S + λSC→SC)YC − (ρP + ρC)YSC − θPCYSC,
dYRC

dt
= λRC→RCX

+ (λC + λSC→C + λSC→SC + λRC→C + λRC→RC)YR

+ (λR + λRC→R + λRC→RC)YC

− (ρP + ρC)YRC − θPCYRC, (2.2)

here X, YS, YR, YC , YSC , and YRC are the proportion of each disease state

n the whole population; X + YS + YR + YC + YSC + YRC = 1. A state

ransition diagram for the disease transmission is shown in Fig. 1.

e assume that the forces of infection are proportional to the preva-

ence fractions and the force of infection of one agent is not affected

y the presence of the other:

(A1) λS = βSYS, λR = βRYR where βR < βS; λC = βCYC;
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(A2) λSC→SC = β11YSC, λSC→S = β10YSC, λSC→C = β01YSC ,

λRC→RC = β ′
11YRC, λRC→R = β ′

10YRC, λRC→C = β ′
01YRC;

(A3) β11 + β10 = βS and β11 + β01 = βC , β ′
11 + β ′

10 = βR and β ′
11 +

β ′
01 = βC .

Here βS, βR, and βC are transmission coefficients of the drug-

sensitive strain of the first agent, drug-resistant strain of the first

agent, and the second agent, respectively. Note that an individual

in a large population is subject to constant exogenous forces of in-

fection (unaffected by the decision of that single individual), while

the forces of infection at the population level are determined by the

overall disease prevalence in the community. In many cases the emer-

gence of drug resistance is indeed associated with a fitness cost [31],

i.e., βR < βS, but a fitness cost of resistance may not be universally

exhibited (e.g. [13]). Also, we do not assume that both infections

in dually infected people are simply transmitted independently. Co-

transmission from dually infected people is assumed possible, as a

single infectious contact could contain a sufficient dose of both in-

fectious agents. It is assumed that all model parameters are positive,

with the exception of treatment rates θ(i)
P , θ(i)

C , θ(i)
PC , θP , θC, θPC and parts

of transmission coefficients β11, β10, β01, β ′
11, β ′

10, β ′
01 which can be

zero.

In general, we let DP and DC be an average health state disutility of

infection or colonization by the first or second agent, respectively; we

assume no difference in disutility between drug susceptible and drug

resistant strains. Rather, individuals who are infected with a drug re-

sistant strain are at a disadvantage because we assume treatment will

be less effective (leading to longer mean durations of infection). We

also assume no interaction between the agents, so that the disutility

of being infected by both agents is the sum of the separate disutilities.

Thus, for a single individual we wish to minimize

J(i) = DPJ(i)P + DCJ(i)C ,

where J(i)P = Ȳ(i)
S + Ȳ(i)

R + Ȳ(i)
SC + Ȳ(i)

RC and J(i)C = Ȳ(i)
C + Ȳ(i)

SC + Ȳ(i)
RC represent

the probabilities being infected by the first or second agent, respec-

tively, and Ē(i) = (X̄(i), Ȳ(i)
S , Ȳ(i)

R , Ȳ(i)
C , Ȳ(i)

SC , Ȳ(i)
RC) is the stable equilibrium

of the individual equations (2.1). Analogously, for a community we

can define its average disutility as

J = DPJP + DCJC,

where JP = ȲS + ȲR + ȲSC + ȲRC and JC = ȲC + ȲSC + ȲRC represent the

fractions being infected by the first or second agent, respectively, and

Ē = (X̄, ȲS, ȲR, ȲC, ȲSC, ȲRC) is the stable steady state of the community

equations (2.2).

We will examine these equations under two treatment strategies:

(a) mass treatment, and (b) treatment targeted toward persons in-

fected by disease C. In the first case, we assume θP = θC = θPC = θ , so

that all individuals are equally likely to be treated, regardless of their

infection status, as would be the case during mass administration of

azithromycin to eliminate trachoma. In the second case, we assume

θP = 0 and θC = θPC = θ . Here, targeting infectives with the second

agent may select for drug resistance in the first agent. Similarly, we

assume θ(i)
P = θ(i)

C = θ(i)
PC = θ(i), and θ(i)

P = 0 and θ(i)
C = θ(i)

PC = θ(i), re-

spectively, for an individual under the two treatment strategies.

The disutility to each individual is determined not only by that

individual’s choice of treatment, but also by all other individuals’ av-

erage choice. We followed standard methods ([38,42]) to calculate the

disutility of an individual, and determined whether individual incen-

tives always parallel to community outcomes. To analyze individual

incentives for treatment, we first determined the equilibrium dynam-

ics of infection. We then examined a single individual whose forces

of infection (for each agent that is circulating) are determined by the

overall treatment rate in the entire population, and determined the

expected amount of time that would be spent infected in each dis-

ease if this individual chose a different treatment rate rather than the

population as a whole.
. Main results

In this section, we derive the basic reproduction number for the

opulation-level model, and then study the existence and local stabil-

ty of feasible equilibria. The possibility of the occurrence of a tragedy

f the commons under mass treatment or targeted treatment is ana-

ytically investigated.

.1. The basic reproduction number

We consider the community equations (2.2) in which the forces

f infection are not exogenous, but determined by the disease preva-

ence. It is clear that E0 = (1, 0, 0, 0, 0, 0) is the unique disease free

quilibrium of system (2.2). Following the method and notations of

an den Driessche and Watmough [51], we find

=

⎛
⎜⎜⎜⎜⎜⎜⎝

βS 0 0 βS − β11 0

0 βR 0 0 βR − β ′
11

0 0 βC βC − β11 βC − β ′
11

0 0 0 β11 0

0 0 0 0 β ′
11

⎞
⎟⎟⎟⎟⎟⎟⎠

nd

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ρP + θP 0 0 −ρC 0

−θPδ ρP 0 −θPCδ −ρC − θPC

0 0 ρC + θC −ρP −ρP

0 0 0 ρP + ρC + θPC 0

0 0 0 0 ρP + ρC + θPC

⎞
⎟⎟⎟⎟⎟⎟⎠

.

he basic reproduction number R0 of model (2.2) is defined as

he spectral radius of the next generation matrix F · V−1, i.e., R0 =
max
≤i≤5

Ri0 where

10 = βS

ρP + θP
, R20 = βR

ρP
, R30 = βC

ρC + θC
,

40 = β11

ρP + ρC + θPC
and R50 = β ′

11

ρP + ρC + θPC
.

or i = 1, . . . , 5, Ri0 is the reproduction number corresponding to

pidemiological classes YS, YR, YC , YSC , and YRC , respectively. In

ase of mass treatment or targeted treatment, we know R40 <

in{R10,R30}, R50 < min{R20,R30}, and hence R0 = max
1≤i≤3

Ri0.

oreover, E0 is locally asymptotically stable if R0 < 1 and unstable if

therwise.

.2. The equilibria

For an individual subject to constant exogenous forces of infection

unaffected by the treatment strategy that person chooses), the

oefficient matrix of its individual equations (2.1), denoted by

= (aij)6×6, is (or can be reduced to) a constant irreducible matrix (or

ubmatrix) with nonnegative off-diagonal entries and zero column

ums. It follows from Corollary 4.3.2 in Smith [48] or Lemma 1

n Cosner et al. [10] that (2.1) has a unique nonnegative equilibrium
¯(i) = (X̄(i), Ȳ(i)

S , Ȳ(i)
R , Ȳ(i)

C , Ȳ(i)
SC , Ȳ(i)

RC) which is globally stable in the

yperplane

(X(i), Y(i)
S , Y(i)

R , Y(i)
C , Y(i)

SC , Y(i)
RC) ∈ R

6
+ :

(i) + Y(i)
S + Y(i)

R + Y(i)
C + Y(i)

SC + Y(i)
RC = 1}.

Direct computations find that the community model equations

2.2) can have up to four types of steady states as follows. The detailed

erivation and stability analysis appear in Appendix A.

heorem 3.1. Let �(z)be the real part of a complex number z. For system

2.2) under mass treatment or targeted treatment, we have
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(i) The no-disease or disease free equilibrium E0 = (1, 0, 0, 0, 0, 0) al-

ways exists and it is stable if R0 < 1 and unstable otherwise.

(ii) One-strain equilibrium:

(a) E1 = ( 1
R10

, 1 − 1
R10

, 0, 0, 0, 0) exists if and only if R10 > 1 and

θP = 0 (targeted treatment). E1 is stable if and only if R10 >

max{1,R20,R50} and R30 < 1.

(b) E2 = ( 1
R20

, 0, 1 − 1
R20

, 0, 0, 0) exists if and only if R20 > 1. E2

is stable if and only if R20 > max{1,R10,R40} and R30 < 1.

(c) E3 = ( 1
R30

, 0, 0, 1 − 1
R30

, 0, 0)exists if and only if R30 > 1. Tar-

geted treatment: E3 is stable if and only if R30 > 1, R20 < 1,

�λ+
3 < 0 and �λ−

3 < 0. Mass treatment: E3 is stable if and only

if R10 < 1, R20 < 1, and R30 > 1. Here λ±
3 denote the roots of

λ2 + M1λ + M0 = 0 with

M1 = (1 − R10)ρP +
(

1 − R40

R30

)

× (ρP + ρC + θ)+ βC

(
1 − 1

R30

)
,

M0 = (1 − R10)ρP

((
1 − R40

R30

)

× (ρP + ρC + θ)+ βC

(
1 − 1

R30

))

+θ(βC + βS)

(
1 − 1

R30

)
.

iii) Two-strain equilibrium:

(a) E12 = ( 1
R10

, Y12, 1 − 1
R10

− Y12, 0, 0, 0) exists if and only if

R10 > R20,R10 > 1, and θP > 0. E12 is stable if and only if

R30 < 1. Here

Y12 = (1/R20 − 1/R10)(1 − 1/R10)

1/R20 − 1/R10 + δθP/βR
∈

(
0,

1

R10

)
.

(b) E13=(X13, 1
R30

−X13, 0, 1
R10

−X13,
(βS+βC)( 1

R10
−X13)( 1

R30
−X13)

(βS+βC−β11)X13
, 0

exists if and only R10 > 1, R30 > 1 and θP = θC = θPC = 0

(no treatment). E13 is stable if and only if βS > βR. Here

X13 ∈ [1/(R10R30), min{1/R10, 1/R30}) is the smaller root to

β11X2 −
((

1

R10
+ 1

R30
− 1

)
β11 + (βS + βC)

)
X

+(βS + βC)
1

R10R30
= 0

if β11 > 0 and equals 1/(R10R30) if β11 = 0.

(c) E23 = (X23, 0, 1
R30

−X23, 1
R20

−X23, 0,
(βR+βC)( 1

R20
−X23)( 1

R30
−X23)

(βR+βC−β ′
11

)X23

exists if and only if R20 > 1 and R30 > 1. Mass treatment:

E23 is stable if and only if R10 < R20. Targeted treatment:

E23 is stable if and only if �λ+
23 < 0 and �λ−

23 < 0. Here

X23 ∈ [1/(R20R30), min{1/R20, 1/R30}) is the smaller root to

β ′
11X2 −

((
1

R20
+ 1

R30
− 1

)
β ′

11 + (βR + βC)

)
X

+(βR + βC)
1

R20R30
= 0

if β ′
11 > 0 and equals 1/(R20R30) if β ′

11 = 0. Here λ±
23 are solu-

tions to λ2 + H1λ + H0 = 0 with

H1 =
(

1 − R10

R20

)
ρP + (βC + ρP − β11X23),

H0 =
(

1 − R10

R20

)
ρP(βC + ρP − β11X23)+ θ

(
(βC − ρC − θ)

+ βS

(
1

R20
− X23

))
.

iv) Coexistence equilibrium of the form Ẽ = (X̃, ỸS, ỸR, ỸC, ỸSC, ỸRC) in

which all the components are positive. Ẽ exists only if R10 >

1,R > 1,R > R and θ > 0.
30 10 20 C
emark 3.2. Note that if R10 < 1 and R30 > 1 then M1 > 0 and

0 > 0. Thus E3 is stable if R30 > 1,R20 < 1 and R10 < 1. In par-

icular, when θ = 0, E3 is stable if and only if R30 > 1,R20 < 1 and

10 < 1. However, for a non-zero targeted treatment rate θ , E3 can

emain stable even if R10 > 1. For example, given βS = 1.1, βR =
.5, βC = 3, ρP = 1, ρC = 0.5, θ = 1, β11 = 0.5, we have R30 = 2 >

,R20 = 0.5 < 1,R10 = 1.1 > 1, but M1 = 3.65 and M0 = 1.675. In

ddition, if β11 = 0 then M0 > 0 implies M1 > 0.

emark 3.3. Under targeted treatment, E23 is stable if R10 < R20.

owever, it is possible that E23 remains stable even if R10 > R20. For

xample, given βS = 2, βR = 1.5, βC = 3, ρP = 1, ρC = 1, θ = 1, β11 =
, β ′

11 = 0, we have R10 = 2 > R20 = 1.5 > 1 and R30 = 1.5 > 1, but

1 = 11/3 and H0 = 1/9. In addition, if β11 = β ′
11 = 0 then H0 > 0

mplies H1 > 0.

emark 3.4. By comparing the existence and stability condition of

quilibria, we find that there exists at most one stable equilibrium

nder mass treatment, or under targeted treatment if R10 < 1 or

10 < R20. In particular, when the coexistence equilibrium exists

nder mass treatment, it is the only possibly stable equilibrium.

Moreover, numerical calculations suggest that there exists exactly

ne stable equilibrium for any parameter setting and the coexistence

quilibrium is stable whenever it exists.

.3. The tragedy of the commons

Given a set of parameter values, we first solve for the stationary

olutions of (2.2) and substitute the stable solution into the exogenous

orces of infection of the individual model (2.1), and then find the

roportion in each infected state. From these proportions, we can

hen compute the disutility of an individual. An individual has an

ncentive to increase antibiotic treatment if the individual disutility
(i) is decreasing in terms of θ(i), i.e., more treatment produces less

isutility. A community benefits from treatment if the community

isutility J is decreasing in θ . Locally, a tragedy of the commons occurs

hen the goal of the individual conflicts with that of the community.

athematically, this means that for a fixed parameter set, we have

∂ J(i)

∂θ (i)
· ∂ J

∂θ

) ∣∣∣∣
θ(i)=θ=θ0

< 0 for some θ0 > 0.

Let λ∗
S = λS + λSC→S + λSC→SC = βS(ȲS + ȲSC), λ

∗
R = λR + λRC→R +

RC→RC = βR(ȲR + ȲRC) and λ∗
C = λRC→RC + λRC→C + λSC→SC +

SC→C + λC = βC(ȲC + ȲSC + ȲRC). Recall that under mass treat-

ent, we assume all infected people are treated at the same

ate (θP = θPC = θC = θ and θ(i)
P = θ(i)

PC = θ(i)
C = θ(i)), while under

argeted treatment, that individuals with C are treated, whether

r not they exhibit the other infection (θP = 0, θPC = θC = θ and
(i)
P = 0, θ(i)

PC = θ(i)
C = θ(i)). The proof of the following is postponed to

ppendix B.

heorem 3.5. Modeling a single individual according to (2.1) implies

(i)
P = λ∗

R(ρP + θ(i))+ λ∗
S(ρP + δθ(i))

λ∗
R(ρP + θ(i))+ λ∗

S(ρP + δθ(i))+ ρP(ρP + θ(i))

nder mass treatment, and

(i)
C = λ∗

C

λ∗
C + ρC + θ(i)

nder mass treatment or targeted treatment, respectively.

The community model (2.2) implies that

P = max

{
1 − ρP + θ

βS
, 0

}
= max

{
1 − 1

R10
, 0

}
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a

under mass treatment, and

JC = max

{
1 − ρC + θ

βC
, 0

}
= max

{
1 − 1

R30
, 0

}

under mass treatment or targeted treatment, respectively.

In addition, under targeted treatment, there exist some parameter

sets such that J(i)P (or JP) is increasing in θ(i) (or θ ).

Thus, under mass treatment, both J(i) = DPJ(i)P + DCJ(i)C and J =
DPJP + DCJC are decreasing in θ(i) and θ , respectively, for any DP > 0

and DC > 0. This indicates that increasing mass treatment increases

the utility of both the individual and community, and there is no

tragedy of the commons in two diseases setting under mass treat-

ment.

However, J = DPJP + DCJC can increase in θ for some DP > 0 and

DC > 0 (e.g. DP � DC) under targeted treatment. For this reason, the

incentives for the individual and community do not always coincide,

and a tragedy of the commons may occur provided that only infectives

with the second agent receive treatment.

Theorem 3.6. For system (2.2) under targeted treatment, assume that

there always exists a globally stable equilibrium. If R10 > 1,R10 > R20

and R30 > 1 at θ = 0, then JP < 1 − 1/R10 for θ ∈ (0, βC − ρC), and

JP = 1 − 1/R10 for θ ∈ {0} ∪ [βC − ρC, ∞).

Proof. No treatment (θ = 0): E13 is the unique stable equilibrium and

JP = 1 − 1/R10.

Small treatment (0 < θ < βC − ρC): one of E3, E23 and Ẽ is stable.

If E3 is stable, then JP = 0; else if E23 is stable, then JP = 1 − (X23 +
1/R20 − X23) = 1 − 1/R20 < 1 − 1/R10; else if Ẽ is stable then, JP <

1 − 1/R10 due to (ρP − βS(X̃ + ỸC))(ỸS + ỸSC) = −θ ỸSC < 0.

High values for the treatment rate (θ ≥ βC − ρC): disease C disap-

pears. E1 is stable and JP = 1 − 1/R10.

Remark 3.7. Under targeted treatment, we define Q(θ) = θ ȲSC/(ȲS +
ȲSC) as the treatment rate for the sensitive strain of disease P at a

stable equilibrium Ē(θ). Assume that there always exists a globally

stable equilibrium, it follows from the proof of Theorem 3.6 that

dQ

dθ
= −βS

dJP

dθ

which implies that maxθ≥0 Q(θ) = minθ≥0 JP , namely, the fraction of

population being infected with the first agent is minimized (or max-

imized) whenever the treatment rate for the first infectious agent

reaches its maximum (or minimum).

However, if there is no cotransmission from YRC , i.e., β ′
11 = 0, then

J(i)P is decreasing in θ(i), which implies that J(i) is decreasing in θ(i) for

any DP > 0 and DC > 0 (see Appendix B). In addition, if disease C has

higher disutility than disease P, i.e., DC ≥ DP , then J(i) is constantly

decreasing in θ(i). We omit the straightforward but tedious proof.

4. Numerical simulations

The above analysis shows that a tragedy of the commons does not

exist under mass treatment. However, as defined above, a tragedy

of the commons can appear for the case of targeted treatment. In

this case, individuals who choose treatment rates which are larger

than those adopted by the community achieve lower disutility, even

though the entire community will experience more disease if ev-

eryone increases their treatment rates in the same way. But in this

case—targeted treatment—the treatment rates apply only to dual in-

fection; as the treatment rate increases, eventually the second disease

is completely eliminated, and with it, all opportunity to treat the first

infection. In a sense, this is not a classical tragedy of the commons,

because it is removable after a change of treatment strategy from tar-

geted treatment to mass treatment. However, the same two-disease

model can exhibit a conflict of interest between individual and society
nder mass treatment if (i) assumption (A3) is not required, namely,

he force of infection of dually infected hosts is different from singly

nfected hosts, or (ii) drug sensitive and drug resistant strains of the

rst disease have different disutility, or (iii) the uninfected has signif-

cant disutility.

In general, the relationship between antimicrobial resistance and

irulence is not straightforward (e.g. [6]). While in some cases, a clear

tness cost of resistance is believed to apply, it cannot be assumed

hat drug resistant strains are less virulent (e.g. [13], but see [15]).

n some cases, drug resistance genes are present on a plasmid which

lso includes virulence factors (e.g. [33]), but in other cases evolution

f drug resistance may simply alter expression of virulence factors

22]. To explore this possibility in our model, we assume the resistant

nfection could have higher disutility than the sensitive infection. One

isadvantage of the use of broad-spectrum antibiotics in general, in-

luding azithromycin, is the disruptive effect such treatments have on

he normal microbiome, which may permit the overgrowth of other

armful organisms [3]. This is particularly true in the case of Clostrid-

um difficile in the gastrointestinal tract for example (e.g. [37]). Could

olonization (though of course not infection) by pneumococcus have

enefits in preventing the growth of other organisms? While some

iterature supports the notion that pneumococcal colonization is not

eneficial [46], we explore the consequences of assuming that indi-

iduals in the susceptible state for pneumococcus have a comparative

isutility over the colonized (infectious) states. In these two cases, we

an define the individual and community disutility as

(i) = DUX(i) + DS

(
Ȳ(i)

S + Ȳ(i)
SC

)
+ DR

(
Ȳ(i)

R + Ȳ(i)
RC

)
+DC

(
Ȳ(i)

C + Ȳ(i)
SC + Ȳ(i)

RC

)
nd

= DUX + DS(ȲS + ȲSC)+ DR(ȲR + ȲRC)

+DC(ȲC + ȲSC + ȲRC),

espectively, where DU, DS, DR and DC are, respectively, the average

isutility of the uninfected, the sensitive and resistant infections of

he first disease, and the infections of the second disease. In what

ollows, we will give numerical examples to consolidate our analytical

rguments.

xample 4.1. The tragedy of the commons under targeted treat-

ent. Consider community model (2.2) with βS = 3, βR = 1.2,

C = 1.8, β11 = 1, β ′
11 = 1, δ = 0.3, ρP = 1, ρC = 1, and θ ∈ [0, 1].

10, β01, β ′
10, β ′

01 can be determined accordingly by (A3). Fig. 2a

hows the probability of an individual being infected by agent P and

ig. 2b represents the individual disutility under targeted treatment

ith DP = 1 and DC = 0.05. Here an individual gets better if s/he

eparts from the community strategy and treats more, but things

re worse if everyone does that. For the same parameter values, the

ragedy of the commons under targeted treatment remains even if

here is no cotransmission, i.e., β11 = β ′
11 = 0. However, the tragedy

f the commons disappears when the ratio DP : DC decreases below a

ertain threshold value.

xample 4.2. The tragedy of the commons under mass treatment

ithout (A3). The values of parameters are βS = 2.1, βR = 2,

C = 1.2, β11 = 0.6, β10 = 1.4, β01 = 0.6, β ′
11 = 0.1, β ′

10 = 0.1, β ′
01 =

.1, δ = 0.5, ρP = 1, ρC = 0.4, and θ ∈ [0, 1]. Fig. 3a shows the

robability of an individual being infected by agent P and Fig. 3b

epresents the individual disutility under mass treatment with

P = 1 and DC = 0.25. Here disease C is assumed to differentially

uppress the resistant strain of disease P, namely, the transmission

f the resistant strain of disease P from YRC is much lower than

he transmission of the sensitive strain of disease P from YSC

βR/βS > (β ′
11 + β ′

10)/(β11 + β10)). Note that the formulae for J(i)C

nd J(i) are the same as the case of mass treatment with assumption
P
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Fig. 2. The tragedy of the commons under targeted treatment. (a) The probability of an individual being infected by agent P – J(i)P , (b) the individual disutility due to both

diseases—J(i) = DPJ(i)P + DCJ(i)C . The parameter values are as in the text. The horizontal axis is the community level of targeted treatment rate and the vertical axis is the level of

targeted treatment rate chosen by an individual within the community.
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Fig. 3. The tragedy of the commons under mass treatment without assumption (A3). (a) The probability of an individual being infected by agent P – J(i)P , (b) the individual disutility

due to both diseases—J(i) = DPJ(i)P + DCJ(i)C . Parameters are as in the text. The horizontal axis is community level of mass treatment rate and the vertical axis is the level of mass

treatment rate chosen by an individual within the community.
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A3) (see Theorem 3.5). As θ > 0.43, the sensitive strain of disease

goes extinct in the community which leads to λ∗
S = 0. Thus

(i)
P = λ∗

R/(λ∗
R + ρP) and it is independent of personal choice of

reatment when θ > 0.43. In this scenario, a higher treatment rate

or the sensitive strain of the first infectious agent, Q(θ) = θ , could

ause a larger proportion of people being infected with the first

gent, JP .

xample 4.3. The tragedy of the commons under mass treatment

ith DS �= DR or DU > 0. Choose the same parameter as in Example 4.1

xcept that βR = 1.5, δ = 0.1, and the average disutility of infec-

ion/noninfection are different. Fig. 4a and b represent the individual

isutility under mass treatment with DU = 0, DS = 1 < DR = 2 and

C = 0.05, and DU = 0.7, DS = DR = 1 and DC = 0.05, respectively. In

oth cases there is a conflict of interest between individual and soci-

ty: good for individual but bad for community.

It is worth noting that under certain circumstance individual

ncentives may favor undertreatment while increasing treatment

ill benefit community. Again choose the same parameter as in
xample 4.1 except the average disutility of infection/noninfection.

ig. 5a and b represent the individual disutility under mass treatment

ith DU = 0, DS = 1 < DR = 2.5 and DC = 0.05, and DU = 1.2, DS =
R = 1 and DC = 0.5, respectively. In both cases an increasing in treat-

ent rate could be bad for individual but good for community.

. Discussion

Rational antibiotic policy must consider the possibility that indi-

idual incentives to use antibiotics may drive overtreatment. Such

vertreatment may lead to increasing drug resistance in other organ-

sms, yielding a tragedy of the commons [1]. In a previous paper [38],

e studied two single disease models of drug resistance: a simple

IS model and a two-stage (mild and severe) model, and found that a

onflict of interest between individual and society does not occur for

he former but is possible for the later under certain circumstances—

ndividual incentives can favor overtreatment of mild infection lead-

ng to a worse outcome for society. However, mass administra-

ion of azithromycin during trachoma control provides a possible
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Fig. 4. The tragedy of the commons under mass treatment with DS �= DR or DU > 0. (a) The individual disutility J(i) when resistant infection has higher disutility than sensitive

infection, (b) the individual disutility J(i) when the uninfected has significant disutility. Parameters are as in the text. The horizontal axis is community level of mass treatment rate

and the vertical axis is the level of mass treatment rate chosen by an individual within the community.
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Fig. 5. Individual incentives which may favor undertreatment in case of mass treatment with DS �= DR or DU > 0. (a) The individual disutility J(i) when resistant infection has higher

disutility than sensitive infection, (b) the individual disutility J(i) when the uninfected state has a lower utility than the infected states. Parameters are as in the text. The horizontal

axis is community level of mass treatment rate and the vertical axis is the level of mass treatment rate chosen by an individual within the community.
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example of second mechanism for a conflict of interest between in-

dividual and society: treatment of one disease can lead to drug resis-

tance in another organism.

In this paper, we extend previous game theory models of antibiotic

policy to a setting of two infectious diseases which are cocirculating.

In this model, treatment of one disease selects for resistance in the

other, mimicking the behavior of induced resistance in pneumococ-

cus caused by treatment of chlamydia. Mass antibiotic distributions

for trachoma elimination are known to select for macrolide resistance

in pneumococcus [47], although the prevalence of such resistance has

been seen to rapidly decline after cessation of mass distribution [19].

Our model was designed to reflect specific features of chlamydia and

pneumococcus in this setting, but we did not restrict the analysis

to parameters reflecting the biology of pneumococcus and chlamy-

dia. In this specific setting, for a base case scenario, we assumed that

the two infections do not interact competitively (the presence of one

organism does not reduce transmission of the other). In our model,

treatment induces drug resistance in one organism (pneumococcus)

but not in the other. We examined two scenarios: mass treatment, in
hich individual treatment is not based on knowledge of chlamydial

nfection status, and targeted treatment, in which individuals without

hlamydia are not treated. The occurrence of a tragedy of the com-

ons resulting from individual incentives to be treated is strongly

nfluenced by the choice of mass versus targeted treatment, as well

s by the health state utility of the various epidemiological states of

ndividuals.

More specifically, we find that the model can imply conflicting

ndividual and social incentives to use antibiotics. Such discord arises

or a given population rate of treatment when individuals who diverge

rom it do better (or worse), while if all individuals make the same

hoice, all do worse (or better). Moreover, for a given parameter set,

uch discord may arise for some treatment values but not others.

lso, individual incentives can favor underuse as well as overuse. We

dentified four different examples of discord between the individual

nd the community in our model.

First, suppose that infection or colonization by drug resistant

neumococcus is worse than infection or colonization by drug sensi-

ive pneumococcus (the health state utility is lower for drug resistant
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wise.
nfection or colonization). For specific parameter values, it is possible

hat individuals who choose rates higher than the population lower

heir health state utility because of the acquisition of drug resistance

uring treatment. Yet if the entire population chooses this new, higher

reatment rate, the overall prevalence of infection is lower and the

opulation benefits.

However, this example is far from the only way that individual in-

entives can lead to socially undesirable outcomes. Suppose now that

he uninfected state has a lower utility than the infected states, be-

ause pneumococcal colonization is protecting the individual against

nfection by a third organism (whose presence is not explicitly mod-

led). Numerical scenarios reveal that for low treatment rates, the

ndividual and community incentives can favor increased treatment,

ue to the benefits of curing chlamydia. But for higher treatment

ates, individuals who choose higher rates than the community begin

o experience worse outcomes, because the assumed disadvantage of

uring pneumococcal colonization outweighs the benefits of clearing

hlamydial infection. It is possible for individual incentives to favor

ower treatment rates despite the fact that the population as a whole

ould continue to benefit from higher treatment, leading to another

xample of individual incentives leading to underuse of antibiotics.

These examples aside, in our model, a true tragedy of the commons

an arise in which individual incentives can drive overuse of antibi-

tics. In our base case scenario, we assumed that for pneumococcus,

rug susceptible and drug resistant infection (or colonization) have

he same health state utility, and that it is better to be uninfected or

ncolonized. While pneumococcus and chlamydia themselves are un-

ikely to interact competitively—each is unlikely to reduce the trans-

ission of the other—infectious agents of course can be in compe-

ition, and we considered the following example in which the drug

esistant strain of pneumococcus is less fit in the presence of chlamy-

ia than the drug sensitive strain of pneumococcus. In other words,

fitness cost of drug resistance in pneumococcus is manifested by

educed ability to spread in the presence of chlamydia. Under these

ssumptions, under mass treatment, a tragedy of the commons may

rise. Population level treatment rates can be found for which indi-

iduals do better if they exceed the population treatment rate. If the

ntire population, however, chooses a higher rate of treatment, the

esulting reduction in chlamydia leads to an overcompensating de-

ree of drug resistant pneumococcus, because (in this hypothetical

cenario) chlamydia is no longer inhibiting drug resistant pneumo-

occus to the same degree. We found that for mass treatment, such

tragedy of the commons is impossible if the two organisms do not

nteract competitively.

If we depart from the assumption of mass treatment and allow

argeted treatment, individual incentives can again drive socially dis-

dvantageous treatment rates, but for a different reason. Under this

ssumption, individuals are only treated if they show signs of chlamy-

ia (unlike in a mass administration campaign). Pneumococcus is

nly treated for individuals who are coinfected with chlamydia, so

hat the effective rate of pneumococcal treatment becomes smaller

s the prevalence of chlamydia drops. Even when we assume identical

ealth utility of drug sensitive and drug resistant pneumococcal col-

nization and infection, that either is worse than being uncolonized

r uninfected, and that chlamydia and pneumococcus do not interact

ompetitively, a kind of tragedy of the commons arises. Here, indi-

idual incentives favor increased treatment, but if the population as a

hole chooses a larger rate of treatment, the declining prevalence of

hlamydia reduces opportunities to treat pneumococcus. Individual

ncentives drive overuse, but this mathematical tragedy of the com-

ons is unrelated to drug resistance and can be avoided by a different

hoice of antibiotic policy.

Our model does not reflect all features of trachoma mass drug ad-

inistration in practice. Specifically, we did not include cocirculation

f multiple pneumococcal strains, the role of strain-specific immunity

n pneumococcus [9], the presence of pneumococcal vaccination, or
he timing of mass drug administration. We only included a single or-

anism for which resistance can be induced, and we have ignored age

tructure, demography, latency, multiple chlamydial strains, chlamy-

ial cross immunity, and network effects. We also observe that the

athematical analysis of the current model has not revealed explicit

riteria for the existence, uniqueness, and stability of the coexistence

quilibrium. Numerical simulations suggest that under the base sce-

ario there always exists exactly one (globally) stable equilibrium and

he coexistence equilibrium is (globally) stable whenever it exists. Fi-

ally, the relationship between antibiotic use and drug resistance may

e more complex than simple selection models would imply [30]. We

annot conclude that a tragedy of the commons is impossible in a

ore general setting.

Recent recommendations to improve antibiotic stewardship in-

lude efforts to avoid overuse of broad spectrum antibiotics (e.g. [4]),

n part because of a belief that broad spectrum antibiotic use promotes

rug resistance [41]. Simple game theory models as we present here

an be our first step in understanding the forces which shape the

pidemiology of drug resistance. If antibiotic use exceeds the socially

ptimal level, it is important to understand whether such excessive

ntibiotic use really benefits the individuals who use them. Overuse

f antibiotics based on a mistaken belief that they are helpful does not

eflect a true conflict of interest between the individual and society,

ut a true conflict of interest does arise if individuals have genuine

ealth incentives to use antibiotics at a level exceeding the socially

ptimal value. This work suggests that a tragedy of the commons

oes not arise in simple models of trachoma control through the use

f mass treatment. More realistic models of the population biology

f drug resistant strains may provide examples of the tragedy of the

ommons due to treatment of unrelated organisms.
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ppendix A. Proof of Theorem 3.1

The calculation of boundary equilibria for the community equa-

ions (2.2) is straightforward and simple except that of E13 and E23

hich can be found in Gao et al. [16]. So we will only focus on the

tability analysis. By substituting X = 1 − (YS + YR + YC + YSC + YRC)
nto the last five equations of (2.2), we obtain a qualitatively equiv-

lent five-dimensional ODEs system, denoted by (2.2)
′
, with re-

pect to YS, YR, YC, YSC , and YRC . We represent the equilibria corre-

ponding to the reduced system by E′
0, E′

1, E′
2, E′

3, E′
12, E′

13, E′
23, and Ẽ′,

here the first component of E0, E1, E2, E3, E12, E13, E23, and Ẽ is re-

oved, respectively. The Jacobian matrix of (2.2)
′

at an equilibrium
′ ∈ {E′

0, E′
1, E′

2, E′
3, E′

12, E′
13, E′

23, Ẽ′} and that of (2.2) at the correspond-

ng equilibrium E ∈ {E0, E1, E2, E3, E12, E13, E23, Ẽ} have the same set

f nonzero eigenvalues.

ocal stability of E0

The Jacobian matrix of (2.2)
′
at E′

0 is J(E′
0) = F − V and the set of its

igenvalues is

βS − ρP − θP, βR − ρP, βC − ρC − θC, β11 − ρP − ρC − θPC,

′
11 − ρP − ρC − θPC}.
he no-disease equilibrium E0 is stable if R0 < 1 and unstable other-
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Local stability of E1

The Jacobian matrix of system (2.2)′ at E′
1 is J(E′

1) and the set of its

eigenvalues is{
(1 − R10)ρP,

(
R20

R10
− 1

)
ρP, (R30 − 1)(ρC + θ),(

R40

R10
− 1

)
(ρP + ρC + θ)+ βS

(
1

R10
− 1

)
,(

R50

R10
− 1

)
(ρP + ρC + θ)

}
.

under targeted treatment. Recall that E′
1 (or E1) exists if and only if

R10 > 1 and θP = 0 which means that E′
1 (or E1) does not exist under

mass treatment.

Targeted treatment: since R10 > 1 and R10 > R40, the first and

fourth eigenvalues of J(E′
1) are negative. E1 is stable if and only if

R10 > max{1,R20,R50} and R30 < 1.

Local stability of E2

The Jacobian matrix of system (2.2)′ at E′
2 is J(E′

2) and the set of its

eigenvalues is{(
1

R20
− 1

R10

)
βS, (1 − R20)ρP, (R30 − 1)(ρC + θ),(

R40

R20
− 1

)
(ρP + ρC + θ),

(
R50

R20
− 1

)

(ρP + ρC + θ)+ (1 − R20)ρP

}
.

under either targeted treatment or mass treatment.

Since R20 > 1 and R20 > R50, the second and last eigenvalues of

J(E′
2) are negative. E2 is stable if and only if R20 > max{1,R10,R40}

and R30 < 1.

Local stability of E3

The Jacobian matrix of system (2.2)
′

at E′
3 is J(E3) and the set of its

eigenvalues is{
λ+

3 , (R20 − 1)ρP, (1 − R30)(ρC + θ), λ−
3 ,(

R50

R30
− 1

)
(ρP + ρC + θ)+ βC

(
1

R30
− 1

)}

under targeted treatment, where λ+
3 and λ−

3 denote the roots of λ2 +
M1λ + M0 = 0, or{
(R10 − 1)(ρP + θ), (R20 − 1)ρP, (1 − R30)(ρC + θ),(

R40

R30
− 1

)
(ρP + ρC + θ)+ βC

(
1

R30
− 1

)
,(

R50

R30
− 1

)
(ρP + ρC + θ)+ βC

(
1

R30
− 1

)}

under mass treatment.

Targeted treatment: E3 is stable if and only if R30 > 1, R20 < 1,

�λ+
3 < 0 and �λ−

3 < 0.

Mass treatment: E3 is stable if and only if R10 < 1, R20 < 1, and

R30 > 1.

Local stability of E12

Recall that E12 exists if and only if R10 > R20,R10 > 1, and θP > 0

(mass treatment). The Jacobian matrix of system (2.2)
′

at E′
12 is J(E′

12)
and the set of its eigenvalues is

{(R30 − 1)(ρC + θ), λ+
12, λ−

12, λ̃+
12, λ̃−

12},
where λ±

12 and λ̃±
12 are solutions to

λ2 + K1λ + K0 = 0 and λ2 + L1λ + L0 = 0,
espectively. Here

1 = βR(ρP + θ)(R10 − 1)+ ρP(ρP + θ)(R10 − R20)

βS

+ (βS − βR)Y12 > 0,

K0 = (ρP(ρP + θ)(R10 − R20)+ βSδθ)Y12 > 0,

L1 = (ρP + ρC + θ)((R10 − R40)+ (R10 − R50))/R10

+ βR(R10 − 1)/R10 + (βS − βR)Y12 > 0,

L0 = βR(ρP + ρC + θ)(R10 − R40)(1 − 1/R10 − Y12)/R10

+ (ρP + ρC + θ)(R10 − R50)((ρP + ρC + θ)(R10 − R40)/R2
10

+ (ρP + θ)Y12) > 0,

hich imply that E12 is stable if and only if R30 < 1.

ocal stability of E13

Recall that E13 exists if and only if R10 > 1,R30 > 1 and θ = 0 (no

reatment). The Jacobian matrix of system (2.2)
′

at E′
13 is J(E′

13) and

he set of its eigenvalues is

−βS + ρP, (βR − βS)ρP/βS,−βC + ρC,−(βC − β ′
11X13)− ρP, )

−(βS + βC − β11)− β11(ρP/βS + ρC/βC − 2X13).}
t follows from X13 < min{ρP/βS, ρC/βC}andβS > βR that E13 is stable

hen it exists.

ocal stability of E23

Recall that E23 exists if and only if R20 > 1 and R30 > 1. The Jaco-

ian matrix of system (2.2)
′
at E′

23 is J(E′
23)and the set of its eigenvalues

s

(R10/R20 − 1)(ρP + θ),−βR + ρP,−βC + ρC + θ,−(βC − β11X23)

−ρP,−(βR + βC − β ′
11)− β ′

11(ρP/βR + (ρC + θ)/βC − 2X23)}
nder mass treatment or

λ+
23,−βR + ρP,−βC + ρC + θ, λ−

23,−(βR + βC − β ′
11)

−β ′
11(ρP/βR + (ρC + θ)/βC − 2X23)}

nder targeted treatment where λ±
23 are solutions to λ2 + H1λ +

0 = 0.

Mass treatment: E23 is stable if and only if R10 < R20.

Targeted treatment: E23 is stable if and only if �λ±
23 < 0.

xistence of Ẽ

It follows from (2.2) that the equilibrium Ẽ satisfies

ρC + θ − βC(X̃ + ỸS + ỸR))(ỸC + ỸSC + ỸRC) = 0,

ρP + θ − βS(X̃ + ỸC))(ỸS + ỸSC) = 0,

ρP − βR(X̃ + ỸC))(ỸR + ỸRC) = δθ(ỸS + ỸSC) > 0

nder mass treatment or

ρC + θ − βC(X̃ + ỸS + ỸR))(ỸC + ỸSC + ỸRC) = 0,

ρP − βS(X̃ + ỸC))(ỸS + ỸSC) = −θ ỸSC < 0,

ρP − βR(X̃ + ỸC))(ỸR + ỸRC) = δθ ỸSC > 0.

nder targeted treatment. Hence, in both cases, a necessary condition

or the existence of Ẽ is that: R10 > 1,R30 > 1,R10 > R20 and θ > 0.

or a simple case: β11 = β ′
11 = 0 under mass treatment, we can solve

he equilibrium equations by substitution and rigorously prove that

here exists at most one positive equilibrium. In addition, ρC + θ − βC

s an eigenvalue of the Jacobian J(Ẽ′) (or J(Ẽ)).

ppendix B. Proof of Theorem 3.5

Denote the kth equilibrium equation of the individual equa-

ions (2.1) and community equations (2.2) as eqk and EQk,

espectively. Let λ∗
S = λS + λSC→S + λSC→SC = βS(ȲS + ȲSC), λ∗

R =
R + λRC→R + λRC→RC = βR(ȲR + ȲRC) and λ∗

C = λRC→RC + λRC→C +
SC→SC + λSC→C + λC = βC(ȲC + ȲSC + ȲRC).
ommunity model under mass treatment (θP = θPC = θC = θ ):
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The sum of EQ4, EQ5 and EQ6 gives

(ρC + θ − βC(X̄ + ȲS + ȲR))(ȲC + ȲSC + ȲRC) = 0

ince X̄ + ȲS + ȲR + ȲC + ȲSC + ȲRC = 1, we have

JC = ȲC + ȲSC + ȲRC = 1 − (ρC + θ)/βC = 1 − 1/R30 if

30 > 1 or 0 if R30 ≤ 1.

he sums of EQ2 and EQ5, and, EQ3 and EQ6 give

(ȲS + ȲSC)(ρP + θ − βS(X̄ + ȲC)) = 0,

ρP(ȲR + ȲRC)+ δθ(ȲS + ȲSC)+ βR(X̄ + ȲC)(ȲR + ȲRC) = 0.

irect calculations yield

X̄ + ȲC = ρP + θ

βS
= 1

R10
,

ȲS + ȲSC = (βS − ρP − θ)(βSρP − βR(ρP + θ))

βS(βS(ρP + δθ)− βR(ρP + θ))

= (1 − 1/R10)(1 − R20/R10)ρP

δθ + ρP(1 − R20/R10)
,

¯R + ȲRC = δθ(βS − ρP − θ)

βS(ρP + δθ)− βR(ρP + θ)

= δθ(1 − 1/R10)

δθ + ρP(1 − R20/R10)
, (B.1)

nd hence

P = 1 − (ρP + θ)/βS = 1 − 1/R10 if R10 > 1 or 0 if R10 ≤ 1.

ommunity model under targeted treatment (θP = 0, θPC =
C = θ ):

The derivation of JC for community model under targeted treat-

ent is exactly the same as that for community model under

ass treatment. JP is not always a decreasing function of commu-

ity treatment rate θ . For example, given a parameter set under

argeted treatment: βS = 3, βR = 1.2, βC = 1.8, β11 = 1, β ′
11 = 1, δ =

.3, ρP = 1, ρC = 1, we have ∂ JP/∂θ ≈ 0.121952 > 0 at θ = 0.7. For

he same parameter values except that β11 = β ′
11 = 0, we still have

JP/∂θ ≈ 0.113367 > 0 at θ = 0.7.

ndividual model under mass treatment (θ(i)
P = θ(i)

PC = θ(i)
C = θ(i)) :

The sum of eq4, eq5 and eq6 gives

∗
C

(
X̄(i) + Ȳ(i)

S + Ȳ(i)
R

)
− (ρC + θ(i))

(
Ȳ(i)

C + Ȳ(i)
SC + Ȳ(i)

RC

)
= 0.

ince X̄(i) + Ȳ(i)
S + Ȳ(i)

R + Ȳ(i)
C + Ȳ(i)

SC + Ȳ(i)
RC = 1, we have

(i)
C = Ȳ(i)

C + Ȳ(i)
SC + Ȳ(i)

RC = λ∗
C/(λ∗

C + ρC + θ(i)).

The sums of eq2 and eq5, and, eq3 and eq6 give(
ρP + θ(i)

) (
Ȳ(i)

S + Ȳ(i)
SC

)
+ λ∗

S

(
X̄(i) + Ȳ(i)

C

)
= 0,

ρP

(
Ȳ(i)

R + Ȳ(i)
RC

)
+ δθ(i)

(
Ȳ(i)

S + Ȳ(i)
SC

)
+ λ∗

R

(
X̄(i) + Ȳ(i)

C

)
= 0.

gain since X̄(i) + Ȳ(i)
S + Ȳ(i)

R + Ȳ(i)
C + Ȳ(i)

SC + Ȳ(i)
RC = 1, we get three linear

quations with respect to X̄(i) + Ȳ(i)
C , Ȳ(i)

S + ȲSC and Ȳ(i)
R + Ȳ(i)

RC . Direct

alculations yield

¯ (i) + Ȳ(i)
C = ρP(ρP + θ(i))

λ∗
R(ρP + θ(i))+ λ∗

S(ρP + δθ(i))+ ρP(ρP + θ(i))
,

¯ (i)
S + ȲSC = ρPλ∗

S

λ∗
R(ρP + θ(i))+ λ∗

S(ρP + δθ(i))+ ρP(ρP + θ(i))
,

¯ (i)
R + Ȳ(i)

RC = (ρP + θ(i))λ∗
R + δθ(i)λ∗

S

λ∗
R(ρP + θ(i))+ λ∗

S(ρP + δθ(i))+ ρP(ρP + θ(i))
,

nd hence

(i)
P = λ∗

R(ρP + θ(i))+ λ∗
S(ρP + δθ(i))

λ∗
R(ρP + θ(i))+ λ∗

S(ρP + δθ(i))+ ρP(ρP + θ(i))
.

Moreover, it follows (B.1) that J(i)C and J(i)P can be explicitly written in

erms of model parameters and we can study an individual’s disutility

n community treatment rate.

ndividual model under targeted treatment (θ(i)
P = 0, θ (i)

PC =
(i)
C = θ(i)):

The derivation of J(i)C for individual model under targeted treatment

s exactly the same as that for individual model under mass treatment.

Now we give an outline of the proof to the statement: J(i)P is not

ecessarily decreasing in θ(i). First, we solve the individual equations

nd simplify the derivative of J(i)P with respect to θ(i). We find that the

ign of ∂ J(i)P /∂θ(i) is the same as a polynomial in θ(i) of the form

(θ (i)) = −(c4 ∗ (θ (i))4 + c3 ∗ (θ (i))3 + c2 ∗ (θ (i))2 + c1 ∗ (θ (i))+ c0),

here

4 = c4(λSC→SC, λSC→C, λSC→S, λRC→RC, λRC→C, λS, λC, ρP, ρC),

3 = c30(λSC→SC, λSC→C, λSC→S, λRC→RC, λRC→C,

λRC→R, λS, λR, λC, ρP, ρC)

−c31(λSC→SC, λSC→C, λSC→S, λRC→RC, λRC→C, λS, λC, ρP)δ,

2 = c20(λSC→SC, λSC→C, λSC→S, λRC→RC, λRC→C,

λRC→R, λS, λR, λC, ρP, ρC)

−c′
20(λSC→S, λRC→RC, λRC→R, λS, λR, ρP)

−c21(λSC→SC, λSC→C, λSC→S, λRC→RC, λRC→C,

λRC→R, λS, λR, λC, ρP, ρC)δ,

1 = c1(λSC→SC, λSC→C, λSC→S, λRC→RC, λRC→C,

λRC→R, λS, λR, λC, ρP, ρC),

0 = c0(λSC→SC, λSC→C, λSC→S, λRC→RC, λRC→C,

λRC→R, λS, λR, λC, ρP, ρC),

nd c′
20 = λRC→RC(λSC→S + λS)ρ

2
P (λSC→S + λRC→R + λS + λR + ρP).

ere c0, c1, c20, c21, c30, c31 and c4 are the addition of some positive

erms. Furthermore, we find that c20 > c21 and c30 > c31 which imply

hat c2 > −c′
20 and c3 > 0. In particular, if cotransmission of R and C

s rare, i.e., β ′
11 = 0, then c′

20 = 0 and h(θ(i)) < 0 for any θ(i).

Nevertheless, it is possible that h(θ(i)) > 0 for some θ(i) when
′
11 > 0. To construct such a counterexample, we observe that

SC→SC, λSC→C, λRC→C, λC, ρC do not appear in c′
20 but in other coef-

cients. Let λSC→SC = λSC→C = λRC→C = λC = ρC = 0 and then h(θ(i))
akes the form

ˆ(θ (i)) = −λ2
SC→SC(ĉ4 ∗ (θ (i))4 + ĉ3 ∗ (θ (i))3

+ĉ2 ∗ (θ (i))2 + ĉ1 ∗ (θ (i))+ ĉ0),

here

ˆ2 = ĉ20 − c′
20/λRC→RC and

ˆ4 = λSC→S + λS + ρP(λSC→S + λS)/λRC→RC .

ere ĉ0, ĉ1, ĉ20, ĉ3 are polynomials. Thus, c′
20 can dominate the sign

f ĥ(θ(i)) as λRC→RC → 0. For example, given a parameter set under

argeted treatment: λSC→SC = 0.0001, λSC→C = 0.0001, λSC→S =
, λRC→RC = 0.001, λRC→C = 0.0001, λRC→R = 1, λS = 1, λR = 1, λC =
.0001, ρP = 1, ρC = 0.0001, δ = 0.5, we have∂ J(i)P /∂θ(i) = 6.55516 ×
0−7 > 0 at θ(i) = 1.

However, if DC ≥ DP , then we find that ∂ J(i)/∂θ(i) is constantly

egative and hence an individual always benefits from increasing

is/her treatment.
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