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Abstract. In this paper, a model composed of two Lotka-Volterra patches
is considered. The system consists of two competing species X, Y and only
species Y can diffuse between patches. It is proved that the system has at
most two positive equilibria and then that permanence implies global stability.
Furthermore, to answer the question whether the refuge is effective to protect
Y , the properties of positive equilibria and the dynamics of the system are
studied when X is a much stronger competitor.

1. Introduction. In the study of ecology, we know that all species live in certain
environments, where they spread out in space. Since the pioneering work of Skellam
[13], spatial ecology has developed rapidly. Different diffusion modes correspond
to different systems, that is, continuous diffusion corresponds to reaction-diffusion
equations, while discrete diffusion corresponds to discrete diffusion equations. For
the discrete systems with diffusion, many works considered the effect of diffusion on
realizing system persistence and permanence. Among these, we mention Levin [11],
Freedman and Waltman [5]. We point out especially that Takeuchi had many works
in this field. Actually, his works include [19-24], Takeuchi and Lu [26], Freedman
and Takeuchi [3, 4], Kuang and Takeuchi [10], and so forth. Also one can refer to
his monograph [25] where part of his works are collected.

To save or protect certain species, a natural idea is to set up some refuges so
that the protected species can enter or leave the refuges freely but its predators
and competitors are kept out. Several biologically related questions then arise. Are
such refuges effective to save certain species? Is there any better idea to protect the
species? These questions are considered in [2] via a predator-prey reaction-diffusion
model with two species and in [1] via a competitive reaction-diffusion model with
two species.

In this paper, we will consider the following discrete diffusion model containing
of two species with a refuge for one of them

dx1

dt
= r1x1(1 − x1 − a1y1),

dy1
dt

= y1(1 − y1 − µx1) + δ(y2 − y1),

(1.1)
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dy2
dt

= s2y2(1 − L−1
2 y2) + δ(y1 − y2),

where x1 ≥ 0 and y1 ≥ 0 are the densities of species X and Y in patch 1; y2 ≥ 0 is
the density of species Y in patch 2; a1 and µ represent the effects of species Y on
species X (and vice versa); δ is the diffusion rate for species Y . All coefficients are
positive.

This system describes an ecological model with two competing species, where Y
can diffuse between patches while X is confined to one of the patches. It is easy to
see that the system has exactly three boundary equilibria, i.e., Eo := (0, 0, 0), Ex :=
(1, 0, 0) and Ey := (0, ỹ1, ỹ2). This model has been discussed by Takeuchi [22] and
Takeuchi and Lu [26]. They gave some sufficient conditions for the permanence of
the system, where permanence means there is a compact set S in the interior of the
positive orthant such that the ω-limit set of any orbit with a positive initial value
is contained in S. By constructing appropriate Liapunov functions they proved
that (1.1) is globally stable if the competition in the two-species patch is weak
enough. Their proof is somewhat technical. Still in [26], the authors pointed out
”Unfortunately, we do not know in this case (qr > 1) if permanence implies global
stability in general”, where q and r describe the effects of competition in patch 1.

In this paper, we first prove that (1.1) has at most two positive equilibria. Then,
using the method of monotone dynamical systems, we can prove that the system
has a globally stable positive equilibrium if both Ex and Ey are linearly unstable.
In other words, permanence implies global stability. This gives a positive answer
to the question of [26]. To answer the biological questions whether the refuge is
effective and whether there is some simpler idea to protect Y , regarding the effect
of species X on species Y with µ as a parameter, we consider the properties of
positive equilibria and the dynamics of the system for sufficiently large µ. We show
that the stabilities of Ex and Ey are independent of sufficiently large µ and give the
following conclusions.
Case 1. Ex is linearly stable and Ey is linearly unstable. In this case, Ex is globally
stable.
Case 2. Both Ex and Ey are linearly stable. In this case, the attracting region of
Ex increases in µ. Moreover, for any positive initial value v, there is some µ(v) such
that v belongs to the attracting region of Ex for any µ > µ(v).

Furthermore, we summarize an ecological conclusion, that is, the refuge is inef-
fective for Y in these two cases when species X is a much stronger competitor.
Case 3. Ex is linearly unstable and Ey is linearly stable. In this case, there are two
positive equilibria, one linearly stable and one linearly unstable. The stable one,
denoted by Eµ, converges to (1, 0, s2−δ

s2

L2) as µ → ∞. Moreover, the attracting

region of Eµ increases in µ; For any positive initial value v, there is some µ(v) such
that v belongs to the attracting region of Eµ for any µ > µ(v).
Case 4. Both Ex and Ey are linearly unstable. In this case, it is shown that there is

a globally stable positive equilibrium Eµ. Moreover, Eµ converges to (1, 0, s2−δ
s2

L2)
as µ→ ∞.

In addition, we conclude that in cases 3 and 4 the refuge is effective for Y , that
is, Y always can survive in the second patch. But it is interesting that in these two
cases, the density of Y in patch 2, y2 = s2−δ

s2

L2 at the stable coexistence, is less
than the carrying capacity of Y in patch 2. This means that X affects the density
of Y not only in patch 1 but also in patch 2. It is easy to see that to survive more
species Y (and more species X), a simpler idea is to restrict not only the living
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region of X but also the living region of Y . In other words, through restricting the
living region of X in patch 1 and the living region of Y in patch 2, both the density
of X in patch 1 and the density of Y in patch 2 can attain their carrying capacities.

2. Model description and preliminaries. We begin this section with some no-
tations and definitions which will be used throughout this paper. Define the set
R

n
+ = {x ∈ R

n : xi ≥ 0 for 1 ≥ i ≥ n} and IntRn
+ = {x ∈ R

n : xi > 0 for
1 ≥ i ≥ n}. Let K be an orthant of R

n. For any two points x, y ∈ R
n
+, we write

x ≤K y whenever y − x ∈ K, x <K y whenever x ≤K y and x 6= y, and x ≪K y
when y−x ∈IntK. If x, y ∈ R

n
+ and x ≤K (≪K)y, define [x, y]K = {z ∈ R

n
+ : x ≤K

z ≤K y}((x, y)K = {z ∈ R
n
+ : x≪K z ≪K y}).

Let s(A) = max{Rλ : λ ∈ σ(A)}, where A is a square matrix and σ(A) is the
set of eigenvalues of A. We denote the Jacobian matrix of a system of ordinary
differential equations evaluated at an equilibrium P by J(P ). A semiflow ψ is said
to be type-K monotone provided

ψt(x) ≤K ψt(y) whenever x ≤K y and t ≥ 0.

The semiflow ψ is said to be strongly type-K monotone if ψ is type-K monotone
and ψt(x) ≪K ψt(y) whenever x <K y and t > 0. An n × n A is called a coop-
erative matrix provided all off-diagonal entries of A are nonnegative, and a type-K
cooperative matrix provided A has the form

(

A1 −A2

−A3 A4

)

in which A1 is a k × k cooperative matrix, A2 is a k × (n− k) nonnegative matrix,
A3 is an (n − k) × k nonnegative matrix, A4 is an (n − k) × (n − k) cooperative
matrix. A is said to be competitive (type-K competitive) provided −A is coop-
erative (type-K cooperative). A system of differential equations ẋ = f(x) on R

n
+

is called a type-K monotone (competitive) system if the Jacobian Df(x) of f is
type-K cooperative (competitive) at any x ∈ R

n
+. Smith[17] showed that the flow

generated by a type-K monotone system is type-K monotone. Furthermore, if
Df(x) is irreducible in some open set Ω ⊂ R

n
+, then the flow is strongly type-K

monotone on Ω. Given any z ∈ R
n
+, an orbit ψt(z) is said to be K-monotonic

nondecreasing (or nonincreasing), if ψt1(z) ≥K ψt2(z) whenever t1 > (or <)t2.
For simplicity, we call ψt(z) increasing (decreasing) to an equilibrium, when ψt(z)
K-monotonic nondecreasingly (nonincreasingly) converges to it as t → ∞. Con-
textually, no confusion should result. In this paper, the important cones used are
R

3
+ and K = {(x1, y1, y2) ∈ R

3 : x1 ≥ 0, y1 ≤ 0, y2 ≤ 0}. We reserve the symbol
K for this latter one. If the cone is R

n
+, we drop theK and write ” ≤ ”, ” < ”, ” ≪ ”.

In the spatial ecology, the following system:

dX1

dτ
= ξ1X1(1 − X1

M1
−A1

Y1

M1
),

dY1

dτ
= η1Y1(1 − Y1

N1
−B1

X1

N1
) + d(Y2 − Y1),

dY2

dτ
= η2Y2(1 − Y2

N2
) + d(Y1 − Y2),

(2.1)
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describes a model of competition-diffusion with a refuge for one species, where
X1 ≥ 0, Y1 ≥ 0 are the population densities of competitors X and Y in patch 1;
Y2 ≥ 0 is the population density of species Y in patch 2; A1, B1 describe the effects
of competition in patch 1; Ni, i = 1, 2, (or M1) are the carrying capacities for
species Y (or X) in patch i (or 1); ηi, i = 1, 2, (or ξ1) are the per capita growth
rates for species Y (or X) in patch i (or 1); d is the per capita diffusion rate between
two patches for species Y . Since species X is confined in patch 1 and only species
Y can diffuse between the patches, patch 2 can be regarded as a refuge for species
Y . Suppose all coefficients are positive.

We nondimensionalize equation (2.1) in order to describe the system in terms of
a minimal set of parameters [12]. The following transformations:

x1 =
X1

M1
, y1 =

Y1

N1
, y2 =

Y2

N1
, t = η1τ, r1 =

ξ1
η1
,

s2 =
η2
η1
, δ =

d

η1
, L2 =

N2

N1
, a1 = A1

N1

M1
, µ = B1

M1

N1
,

yield the nondimensional system

dx1

dt
= r1x1(1 − x1 − a1y1),

dy1
dt

= y1(1 − y1 − µx1) + δ(y2 − y1),

dy2
dt

= s2y2(1 − L−1
2 y2) + δ(y1 − y2).

(2.2)

The quantities x1 ≥ 0 and y1 ≥ 0 represent the densities of species X and Y in
patch 1 scaled by their respective carrying capacities; y2 ≥ 0 represents the density
of species Y in patch 2 scaled by the carrying capacity of Y in patch 1; a1 and µ
represent the per capita effect of species Y on species X (and vice versa) scaled
by the ratio of respective carrying capacities; δ is the species specific diffusion rate
scaled by the growth rate of species Y in patch 1; r1 is the ratio of per capita
growth rates of the two species in patch 1; a quantity L2 represents the ratio of
carrying capacities in the two patches for species Y ; s2 represents the ratio of per
capita growth rates of species Y in the two patches; and t is a time metric that is
a composite of τ and η1. Here all coefficients are positive.

In order to obtain conditions for permanence, it is necessary to discuss the fol-
lowing subsystem:

ẏ1 = y1(1 − y1) + δ(y2 − y1),

ẏ2 = s2y2(1 − L−1
2 y2) + δ(y1 − y2).

(2.3)

The following lemma has been proved many times: see for example [5] and [17].

Lemma 2.1. For system (2.3), there is a unique non-zero equilibrium, denoted by
ỹ = (ỹ1, ỹ2). ỹ ≫ 0 and it is globally stable with respect to R

2
+\{(0, 0)}.

Remark 2.1. If J̃ denotes the Jacobian matrix of (2.3) at y = ỹ, then s(J̃) < 0.
It is based on the equality

J̃ =

(

−δ + 1 − 2ỹ1 δ
δ −δ + s2 − 2s2L

−1
2 ỹ2

)

=

(

−ỹ1 − δ ỹ2

ỹ1

δ

δ −s2L−1
2 ỹ2 − δ ỹ1

ỹ2

)

.
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Obviously, J̃ is a negative definite quadratic form. Hence s(J̃) < 0.

It is easy to see that (2.2) has exactly three boundary equilibria, i.e., (0, 0, 0), (1, 0,
0) and (0, ỹ1, ỹ2), denoted by Eo, Ex and Ey, respectively. Hereafter we consider
only the generic case where the Jacobian matrices evaluated at Eo, Ex and Ey are
hyperbolic; that is, no eigenvalue of the matrices has its real part equals to zero.
By the Butler-McGehee lemma in [6], Takeuchi[22] gave the following lemma.

Lemma 2.2. For system (2.2), we have the following properties:

(i) Eo is linearly unstable and W s(Eo) ∩ (R3
+\{Eo}) = ∅;

(ii) If Ex is linearly unstable, then W s(Ex) ∩ R
3
+ = {(x1, y1, y2) ∈ R

3
+ : x1 >

0, y1 = 0, y2 = 0};
(iii) If Ey is linearly unstable, then W s(Ey) ∩ R

3
+ = {(x1, y1, y2) ∈ R

3
+ : x1 =

0, y1 ≥ 0, y2 ≥ 0, y1 + y2 > 0}.
Here W s(P ) denote the strong stable manifold of an equilibrium P .

The Jacobian matrix of the right-hand side of (2.2) is:




r1 − 2r1x1 − r1a1y1 −r1a1x1 0
−µy1 1 − 2y1 − µx1 − δ δ

0 δ s2 − 2s2L
−1
2 y2 − δ



 .

It is apparent that (2.2) is cooperative with respect to K where

K = {(x1, y1, y2) ∈ R
3 : x1 ≥ 0, y1 ≤ 0, y2 ≤ 0}.

Furthermore, the Jacobian matrix is irreducible in IntR3
+. Let F denote the vector

field described by (2.2), ψt the corresponding flow. Therefore, the flow ψt of (2.2)
is type-K monotone in R

3
+ and strongly type-K monotone in IntR3

+.

Lemma 2.1 and monotonicity imply that (2.2) is dissipative. In fact, if z =
(x, y) ∈ R

3
+ and x = x1 > 0, y = (y1, y2) > 0, then (0, y) ≤K z ≤K (x, 0) and

therefore,
ψt((0, y)) ≤K ψt(z) ≤K ψt((x, 0)), t > 0.

Since ψt((0, y)) → Ey and ψt((x, 0)) → Ex as t → ∞, it follows that all positive
orbits are attracted to the set [Ey, Ex]K . If z = (x, y) satisfies x, y > 0, then
ψt(z) ≫ 0 for t > 0. Define E and E+ to be the sets of all nonnegative equilibria
and all positive equilibria for ψt, respectively. Obviously, [Ey, Ex]K contains E and
E∗ ∈ (Ey , Ex)K for any E∗ ∈ E+. We can find the following results in [26], [15]
and [18], respectively.

Lemma 2.3. If Ex and Ey are both linearly unstable, then system (2.2) is perma-
nent, or more precisely, there exist positive equilibria E∗ and E∗∗ with E∗ ≤K E∗∗

such that the ω-limit set of any solution initiating in {z = (x, y) : x, y > 0} is
contained in [E∗, E∗∗]K . Furthermore, if E∗ = E∗∗, then E∗ is globally stable.

Lemma 2.4. Let ż = G(z) be type-K monotone system on R
n
+ and suppose G(z) ≥K

(≤K) 0 for some z ∈ R
n
+. If Ψt(z) is defined for all t ≥ 0, then Ψt(z) is K-

monotonic nondecreasing(nonincreasing) for t > 0, where Ψt is the flow corre-
sponding to ż = G(z). If, in addition, O(z) has compact closure in R

n
+, then ω(z)

is precisely one equilibrium, where O(z) = {Ψt(z) : t ≥ 0}.
Lemma 2.5. Let ż = Gi(z), i = 1, 2 be type-K monotone systems on R

n
+ and satisfy

G1(z) ≥K G2(z), ∀z ∈ R
n
+.
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Let Ψi
t be the flow corresponding to ż = Gi(z), i = 1, 2. If z1, z2 ∈ R

n
+ and z1 ≥K z2,

t > 0 and Ψi
t(zi), i = 1, 2 are defined, then Ψ1

t (z1) ≥K Ψ2
t (z2).

Note that the Jacobian of (2.2) is a tridiagonal matrix. By the theory of
Smillie[14], we have the following result.

Theorem 2.1. For system (2.2), ω(z) is a singleton for any z ∈ R
3
+.

Corollary 2.1. Suppose (2.2) has no positive equilibrium. Then either Ex or Ey

is globally stable.

Note that system (2.2) is also type-K competitive when we consider the cone
K1 = {(x1, y1, y2) ∈ R

3 : x1 ≥ 0, y1 ≥ 0, y2 ≤ 0}. The dynamics of both the
type-K monotone systems and the type-K competitive systems is 1-codimensional.
Thus we prove the dynamics of 2-species competition-diffusion system with a refuge
is 1-dimensional (see [9]) and give a different proof of Theorem 2.1.

3. Main results. Let Eµ0
= (x1(µ0), y1(µ0), y2(µ0)) be a positive equilibrium of

system (2.2) when it has at least one at µ = µ0. Let Fµ0 denote the vector field of
F at µ = µ0, ψ

µ0

t the corresponding flow. If the field is at µ, we drop the µ and
write F and ψt. First, let us calculate the Jacobian matrices at the three boundary
equilibria.

J(Eo) =

(

r1 0
0 Jo(E

2
o)

)

, where Jo(E
2
o ) =

(

1 − δ δ
δ s2 − δ

)

.

J(Ex) =

(

−r1 ∗1

0 Jx(E2
x)

)

, where ∗1 = (−r1a1, 0), Jx(E2
x) =

(

1 − µ− δ δ
δ s2 − δ

)

.

J(Ey) =

(

r1 − r1a1ỹ1 0
∗2 Jy(E2

y)

)

, where ∗2 =

(

−µỹ1
0

)

,

Jy(E2
y) =

(

1 − 2ỹ1 − δ δ
δ s2 − 2s2L

−1
2 ỹ2 − δ

)

.

Remark 3.1. Since Jo(E
2
o ) is a symmetric matrix, its eigenvalues are both real

numbers. It is easy to check that s(Jo(E
2
o)) > 0. Therefore Eo has at least two

positive eigenvalues and it is linearly unstable. According to Remark 2.1, we know
that s(Jy(E2

y)) < 0.

Remark 3.2. Note that J(Eµ) is a tridiagonal, quasi-symmetric matrix (i.e., all
nonzero off-diagonal entries ai,i+1 and ai+1,i have the same sign). Hence all eigen-
values of J(Eµ) are real (see [27]).

Remark 3.3. E+ is totally strongly ordered with respect to ≪K , that is, E(1) ≪K

E(2) or E(1) ≫K E(2) for any pair of points E(i) = (x
(i)
1 , y

(i)
1 , y

(i)
2 ) ∈ E+, i = 1, 2

with E(1) 6= E(2). Without loss of generality, we suppose that x
(1)
1 > x

(2)
1 . Since

1 − x
(i)
1 = a1y

(i)
1 , i = 1, 2, y

(1)
1 < y

(2)
1 . Assume to the contrary, y

(1)
2 > y

(2)
2 . Then

s2 − s2L
−1
2 y2 − δ < 0 for any y2 ≥ y

(2)
2 . Define g(y2) = s2y2(1 − L−1

2 y2) − δy2.
Therefore,

g(y
(2)
2 ) − g(y

(1)
2 ) = δy

(1)
1 − δy

(2)
1 < 0,

which contradicts to the fact that g′(y2) = s2 − 2s2L
−1
2 y2 − δ < 0 for any y2 ≥ y

(2)
2 .

Proposition 3.1. Let µ∗ = 1 + s2δ
δ−s2

when s2 < δ. We have

(i) Ex is linearly unstable if µ > 0 and s2 ≥ δ, or µ < µ∗ and s2 < δ; moreover,
Ex is linearly stable if s2 < δ and µ > µ∗.
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(ii) Ey is linearly unstable (linearly stable) if 1 − a1ỹ1 > 0 (< 0).

Proof. Since (ii) is obvious, we only prove (i). Let ̺ = 1−µ. Ex is linearly unstable
if and only if s(Jx(E2

x)) > 0. If ̺ ≥ 0, then clearly s(Jx(E2
x)) > 0;

If ̺ < 0 and s2 − δ ≥ 0, then detJx(E2
x) < 0, therefore s(Jx(E2

x)) > 0;
If ̺ < 0 and s2 − δ < 0, then trJx(E2

x) < 0. Hence, s(Jx(E2
x)) > 0 implies

detJx(E2
x) = ρs2 − ρδ − s2δ < 0. Thus ̺ > s2δ

s2−δ
. Substituting ̺ = 1 − µ into it

yields the result.

Theorem 3.1. For any µ > 0, (2.2) has at most two positive equilibria.

To prove this theorem, we first prove the following three weaker propositions.

Proposition 3.2. For any µ > 0, system (2.2) has at most three positive equilibria.

Proof. Let (x1, y1, y2) be a positive equilibrium of (2.2). Then it satisfies

1 − x1 − a1y1 = 0,

y1(1 − y1 − µx1) + δ(y2 − y1) = 0,

s2y2(1 − L−1
2 y2) + δ(y1 − y2) = 0.

(3.1)

Solve x1, y2 in terms of y1, i.e., x1 = 1−a1y1, y2 = (δy1−y1(1−y1−µ(1−a1y1)))/δ,
and substitute these into the third equation. After some algebraic manipulations it
can be reduced to

0 = δ(y1 − y2) + s2y2(1 − y2L
−1
2 ) = δ−1(−Ay4

1 + 2By3
1 + Cy2

1 +Dy1), (3.2)

where

A =
(−1 + µa1)

2s2
δL2

, B =
(−1 + µa1)(δ − 1 + µ)s2

δL2
,

C =
δ(−1 + µa1)(δ − s2)L2 − (δ − 1 + µ)2s2

δL2
, D = −(−1 + µ)(δ − s2) + δs2.

For the sake of contradiction, assume (2.2) has more than three positive equilibria.
Then all coefficients of (3.2) must equal zero. From the coefficients of y4

1 and y2
1 , we

have µ = 1/a1 = 1− δ > 0. However, the constant term equals (s2−δ)(1−δ−1)+δs2

δ
=

δ 6= 0, giving a contradiction.

Proposition 3.3. For any µ > µ∗∗, system (2.2) has at most two positive equilibria,
where µ∗∗ = 1/a1.

Proof. Deduce by contradiction, we assume that (2.2) has three positive equilibria.
From (3.1), we have

(1 − µ)y1 − (1 − µa1)y
2
1 + δ(y2 − y1) = 0,

s2y2 − s2L
−1
2 y2

2 + δ(y1 − y2) = 0.

Direct calculations yield

(µa1 − 1)y1 = −(1 − µ) − δ(u−1 − 1) > 0,

s2L
−1
2 y2 = s2 + δ(u − 1) > 0,

(3.3)

where u = y1/y2 and u satisfies

(µa1 − 1)δu3 − (µa1 − 1)(δ − s2)u
2 + s2L

−1
2 (1 − δ − µ)u− (−s2L−1

2 δ) = 0. (3.4)
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Any positive equilibrium of (2.2) corresponds a positive root of (3.4). If ui, i = 1, 2, 3
denote the roots of (3.4), then

u1u2u3 =
−s2L−1

2 δ

(µa1 − 1)δ
.

From the third equation of (3.1), if (x1, y1, y2) is a positive equilibrium of (2.2),
then (1−a1ky1, ky1, ky2), k > 0 is a positive equilibrium of (2.2) if and only if k = 1.
Therefore different positive equilibria of (2.2) correspond to different positive roots
of (3.4). Hence (3.4) must have three different positive roots, this contradicts to
u1u2u3 < 0. Thus the proposition is proved.

Proposition 3.4. Let µ ≤ µ∗∗ = 1/a1. If system (2.2) has a positive equilibrium
Eµ, then it is linearly stable.

Proof. Let Eµ be a positive equilibrium of (2.2). The Jacobian matrix of the vector
field at Eµ is given by J(Eµ), that is,




r1 − 2r1x1(µ) − r1a1y1(µ) −r1a1x1(µ) 0
−µy1(µ) 1 − 2y1(µ) − µx1(µ) − δ δ

0 δ s2 − 2s2L
−1
2 y2(µ) − δ





=







−r1x1(µ) −r1a1x1(µ) 0

−µy1(µ) −y1(µ) − δ y2(µ)
y1(µ) δ

0 δ −s2L−1
2 y2(µ) − δ y1(µ)

y2(µ)






.

By Theorem 2.7 in [16], for a type-K matrix J(Eµ), s(J(Eµ)) < 0 if and only if the
following three inequalities are satisfied, that is,

(−1)
∣

∣−r1x1(µ)
∣

∣ > 0,

(−1)2

∣

∣

∣

∣

∣

−r1x1(µ) r1a1x1(µ)

µy1(µ) −y1(µ) − δ y2(µ)
y1(µ)

∣

∣

∣

∣

∣

> 0, i.e., µ− 1

a1
<

δy2(µ)

a1y2
1(µ)

,

(−1)3

∣

∣

∣

∣

∣

∣

∣

−r1x1(µ) r1a1x1(µ) 0

µy1(µ) −y1(µ) − δ y2(µ)
y1(µ) δ

0 δ −s2L−1
2 y2(µ) − δ y1(µ)

y2(µ)

∣

∣

∣

∣

∣

∣

∣

> 0,

i.e., µ− 1

a1
<

δy2(µ)

a1y2
1(µ)

− δ2y2(µ)

a1y1(µ)(s2L
−1
2 y2

2(µ) + δy1(µ))
:= K(µ).

Obviously, we have K(µ) > 0. It follows that Eµ is linearly stable if and only if
µ < 1/a1 +K(µ). In particular, Eµ is linearly stable provided µ ≤ 1/a1.

By Theorem 2.1, together with Theorem 3.7 in [15], (2.2) has no more than one
positive equilibrium when µ ≤ µ∗∗. Combining with Proposition 3.3, we complete
the proof of Theorem 3.1.

Remark 3.4. Proposition 3.4 provides us a criterion to determine whether a pos-
itive equilibrium is linearly stable or not, i.e., Eµ is linearly stable if and only if
1
µ
(1/a1 +K(µ)) > 1, which will be frequently used throughout this paper.

From Proposition 3.4, we can obtain the following three corollaries about the
global dynamics of the system for small µ which were given in [22].
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Corollary 3.1. Suppose 1−a1ỹ1 < 0. Then for sufficiently small µ > 0, especially,
for µ ≤ µ∗∗ = 1/a1, Ey is globally stable with respect to {(x1, y1, y2) ∈ R

3
+ : y1+y2 >

0}.

Remark 3.5. It is worth noting that, Ex is linearly unstable under the condition
µ ≤ µ∗∗ and 1− a1ỹ1 < 0. In fact, by Proposition 3.1, if s2 ≥ δ, then Ex is linearly
unstable; else if s2 < δ, then to show that Ex is linearly unstable it suffices to
prove µ∗∗ < µ∗, or, equivalently, 1

a1

< 1 + s2δ
δ−s2

. Since ỹ1 >
1
a1

, it suffices to prove

ỹ1 < 1 + s2δ
δ−s2

.

ỹ1 − 1 =
δ(ỹ2 − ỹ1)

ỹ1
<

s2δ

δ − s2
implies δ(ỹ2 − ỹ1) < s2ỹ2

Since δ(ỹ2 − ỹ1) − s2ỹ2 = −s2L−1
2 ỹ2

2 < 0, we prove the linear instability of Ex.

Corollary 3.2. Suppose s2 < δ and µ∗ < µ ≤ µ∗∗. Then Ex is globally stable with
respect to {(x1, y1, y2) ∈ R

3
+ : x1 > 0, y1 ≥ 0, y2 ≥ 0}.

Remark 3.6. Similar to Remark 3.5, we can prove the linear instability of Ey

under the condition s2 < δ and µ∗ < µ ≤ µ∗∗.

Corollary 3.3. Let 1− a1ỹ1 > 0. Then system (2.2) has a unique positive equilib-
rium for sufficiently small µ > 0. In particular, permanence implies global stability
if µ < min{µ∗, µ∗∗}.

More general than Corollary 3.3, we have the following theorem:

Theorem 3.2. Suppose Ex and Ey are both linearly unstable. Then system (2.2)
has a unique positive equilibrium for any µ > 0. In other words, permanence implies
global stability.

Proof. Suppose, on the contrary, that there exists some µ0 such that (2.2) has two
positive equilibria E1

µ0
and E2

µ0
satisfying E1

µ0
≪K E2

µ0
. Clearly, we have µ0 > 1/a1.

We claim that E1
µ0

and E2
µ0

are both non-hyperbolic equilibria.

We argue by contradiction to prove the claim. By Theorem 3.1, one of E1
µ0

and

E2
µ0

must be non-hyperbolic. If the other is hyperbolic, then it must be linearly

stable. Without loss of generality, suppose E1
µ0

is linearly stable and E2
µ0

is non-

hyperbolic, the other case can be proved similarly. Since E1
µ0

is linearly stable, we
can find ǫ > 0 which is small so that for µ = µ0 +ǫ system (2.2) has a linearly stable
positive equilibrium, denoted by E1

µ, satisfying E1
µ ≪K E2

µ0
. Since Ex is linearly

unstable and F (E2
µ0

) >K 0, ψt(E
2
µ0

) increases to a positive equilibrium, denoted by

E2
µ, satisfying E2

µ0
≪K E2

µ. Hence E1
µ and E2

µ are both stable in [E1
µ, E

2
µ]K . By the

theory of connecting orbits in [7], there must exist a further positive equilibrium, a
contradiction.

Since both E1
µ0

and E2
µ0

are non-hyperbolic, according to Remark 3.2, Ei
µ0

must

satisfy (3.1) and detJ(Ei
µ0

) = 0, i = 1, 2. Direct calculations yield

δ2r1x1 + (−r1x1 + δr1x1 + µr1x
2
1 + 2r1x1y1 − µa1r1x1y1)(−δ+ s2 − 2s2y2/L2) = 0.

Substituting x1 = 1 − a1y1 and y2 = (δy1 − y1(1 − y1 − µ(1 − a1y1)))/δ into the
above equation produces

− 4Ay3
1 + 6By2

1 + 2Cy1 +D = 0, (3.5)
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where A,B,C,D are defined as in Proposition 3.2. Multiplying (3.2) by 4δ/y1 and
then subtracting it from (3.5), there hold

2By2
1 + 2Cy1 + 3D = 0. (3.6)

Therefore, (3.6) has two different positive roots. If B = 0, i.e., µ = 1 − δ, then
C = D = 0. We have s2 = δ from C = 0, then D = δs2 > 0, a contradiction. Thus
B 6= 0. Substituting D = −(2By2

1 + 2Cy1)/3 into (3.5) produces

− 3Ay2
1 + 4By1 + C = 0. (3.7)

Therefore, (3.7) also has two different positive roots. Hence, we have

2B

−3A
=

2C

4B
=

3D

C

and C 6= 0, D 6= 0. It follows that C2 = 6BD. Since (3.6) has two different positive
roots, 4C2 − 24BD > 0, a contradiction. The theorem is proved.

Note that the proof of Theorem 3.2 tells us that system (2.2) cannot have two non-
hyperbolic positive equilibria simultaneously. To answer the biological questions
that whether the refuge is effective and whether there is some better idea to protect
species Y , in the rest of this section we focus on the properties of positive equilibria
and the dynamics of (2.2) for sufficiently large µ.

Proposition 3.5. If there exists a sequence {µn} with µn → ∞ as n → ∞, cor-
responding to a convergent sequence of positive equilibria {Eµn

}, then precisely one
of the three alternatives holds:

(i) Eµn
→ Ex, which holds only if s2 ≤ δ. In this case, y2(µn) ∼ µny1(µn)δ−1;

(ii) Eµn
→ (1, 0, s2−δ

s2

L2), denoted by Ea, which holds only if s2 ≥ δ. In this case,

y2(µn) ∼ µny1(µn)δ−1, y2(µn) > s2−δ
s2

L2;

(iii) Eµn
→ (0, 1

a1

,
(s2−δ)+

√
(s2−δ)2+4s2L

−1

2
a
−1

1
δ

2s2L
−1

2

), denoted by Eb, which holds only

if 1 − a1ỹ1 ≤ 0.

Proof. Let Eµn
→ (x∗1, y

∗
1 , y

∗
2) as n → ∞. Claim x∗1 = 0 or 1. If not, then y∗1 =

(1 − x∗1)/a1 > 0. Passing to the limit n→ ∞ of the following equation

µnx1(µn)y1(µn) = δ(y2(µn) − y1(µn)) + y1(µn)(1 − y1(µn)),

we obtain that µn → δ(y∗

2
−y∗

1
)+y∗

1
(1−y∗

1
)

x∗

1
y∗

1

as n→ ∞, which contradicts to µn → ∞.

If x∗1 = 1, then y∗1 = 0. Taking the limit n→ ∞ of the following equation

s2y2(µn)(1 − L−1
2 y2(µn)) + δ(y1(µn) − y2(µn)) = 0, (3.8)

we get (s2 − δ − s2L
−1
2 y∗2)y∗2 = 0. If y∗2 = 0, then Eµn

→ Ex; else if y∗2 > 0, then

y∗2 = s2−δ
s2

L2, that is, Eµn
→ Ea.

If x∗1 = 0, then y∗1 = 1/a1. Limiting (3.8) as n→ ∞ yields

s2L
−1
2 y∗2

2 − (s2 − δ)y∗2 − δ/a1 = 0.

This equation has two roots, one positive and one negative. We choose the positive
one, i.e., Eb. Because of x1(µn) = 1−a1y1(µn) > 1−a1ỹ1, we infer that 1−a1ỹ1 ≤
0.

Remark 3.7. Actually from the discussion below we know that there exists a
sequence {Eµn

} with Eµn
→ Ex as µn → ∞ if and only if s2 = δ and 1− a1ỹ1 6= 0.
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We will examine in detail the properties of positive equilibria and the dynamical
behavior of (2.2). Our analysis will be carried out according to the following four
cases:

1. s2 ≥ δ, 1 − a1ỹ1 > 0, namely Ex and Ey are both linearly unstable.
2. s2 < δ, 1− a1ỹ1 > 0, so Ey is linearly unstable, Ex is linearly stable if µ > µ∗

and linearly unstable if µ < µ∗.
3. s2 < δ, 1 − a1ỹ1 < 0, so Ey is linearly stable, Ex is linearly stable if µ > µ∗

and linearly unstable if µ < µ∗.
4. s2 ≥ δ, 1 − a1ỹ1 < 0, namely Ex is linearly unstable, Ey is linearly stable.

Case 1: s2 ≥ δ, 1 − a1ỹ1 > 0.
In this case, Ex and Ey are both linearly unstable. It follows from Theorem 3.2

that (2.2) has a unique positive equilibrium Eµ for any µ > 0.

Theorem 3.3. Let s2 > δ. Then

(i) Eµ → Ea as µ→ ∞, and y1(µ) ∼ s2−δ
s2

L2δ· 1µ as µ→ ∞; moreover, x1(µ) < 1,

y2(µ) > s2−δ
s2

L2;

(ii) Eµ is linearly stable for sufficiently large µ.

Proof. (i) Since s2 > δ and 1 − a1ỹ1 > 0, by Proposition 3.5 we directly get the
result; (ii) Applying (i), then, we have

lim
µ→∞

1

µ
(

1

a1
+
δs2
a1

· y3
2(µ)

y2
1(µ)(s2y2

2(µ) + δL2y1(µ))
) = lim

µ→∞

δs2
µa1

· y2(µ)

s2y2
1(µ)

= lim
µ→∞

δ

µa1

s2−δ
s2

L2

( s2−δ
s2

L2δ · 1
µ
)2

= lim
µ→∞

s2µ

a1δL2(s2 − δ)
= ∞.

According to Remark 3.4, Eµ is linearly stable for sufficiently large µ .

Remark 3.8. When s2 = δ, by Proposition 3.5 we can easily prove Eµ → Ex and
y2(µn) ∼ µny1(µn)δ−1 as µ→ ∞. Since

lim
n→∞

1

µn

(
1

a1
+K(µn)) = lim

n→∞

δs2y
3
2(µn)

µna1L2y2
1(µn)(s2y2(µn) + 2δy1(µn) − δy2(µn))

= lim
n→∞

δs2
µna1

· y3
2(µn)

2δL2y3
1(µn)

= lim
n→∞

s2
2a1L2µn

· (µn

δ
)3 = ∞,

it follows that Eµ is linearly stable for sufficiently large µ.

Case 2: s2 < δ, 1 − a1ỹ1 > 0.
In this case, Ey is linearly unstable, Ex is linearly stable if µ > µ∗ and linearly

unstable if µ < µ∗.

Proposition 3.6. Ex is globally stable as µ is sufficiently large. In particular, if
µ∗ < µ∗∗ = 1/a1, then Ex is globally stable for any µ > µ∗.

Proof. Suppose by contradiction that there exists a sequence {µn} with µn → ∞
such that Ex is not globally stable. Then it corresponds to a sequence of pos-
itive equilibria {Eµn

}. By Proposition 3.5, we have Eµn
→ Ex and y2(µn) ∼
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µny1(µn)δ−1 as n→ ∞.

lim
n→∞

1

µn

(
1

a1
+K(µn)) = lim

n→∞

δs2y
3
2(µn)

µna1L2y2
1(µn)(s2y2(µn) + 2δy1(µn) − δy2(µn))

≥ lim
n→∞

δs2
µna1

· y3
2(µn)

2δL2y3
1(µn)

= lim
n→∞

s2
2a1L2µn

· (µn

δ
)3 = ∞.

Hence Eµn
is linearly stable when n is sufficiently large. This contradicts to the

linear stability of Ex when µ > µ∗. If µ∗ < µ∗∗, suppose by contradiction that
there exists µ1 > µ∗∗ such that (2.2) has a positive equilibrium Eµ1

at µ = µ1.

So Fµ1(Eµ1
) = 0. Since Ey is linearly unstable and Fµ∗∗

(Eµ1
) <K 0, ψµ∗∗

t (Eµ1
)

decreases to a positive equilibrium, which contradicts to Corollary 3.2.

Corollary 3.4. Suppose µ > µ∗. Then

(i) there exists µ′ ≥ µ∗ such that (2.2) has a positive equilibrium for any µ ∈
(µ∗, µ′), and it has no positive equilibrium and Ex is globally stable for µ > µ′;

(ii) furthermore, if µ′ > µ∗, then system (2.2) has exactly two positive equilibria
for any µ ∈ (µ∗, µ′).

Proof. We only prove (ii) since the proof of (i) is obvious. First, we claim that
(2.2) has a positive equilibrium Eµ′ at µ = µ′. Indeed, by definition, we can find
µn ∈ (µ∗, µ′], corresponding to a positive equilibrium Eµn

, such that µn → µ′.
Hence by passing to a subsequence we may assume that Eµn

→ Eµ′ . It is then
easily seen that Eµ′ is a nonnegative equilibrium of (2.2) at µ = µ′. We show that
it is a positive equilibrium. Otherwise we have either Eµ′ = Eo, or Ex, or Ey. We
can easily exclude the possibility that Eµ′ can equal Eo or Ey according to the first
equation of (3.1). Deducing by contradiction, we assume that Eµn

→ Ex. Dividing
the second equation of (3.1) by y1 and taking the limit n→ ∞ yields

lim
n→∞

y2(µn)/y1(µn) = 1 + (µ′ − 1)/δ > 1 + (µ∗ − 1)/δ = δ/(δ − s2).

Similarly, according to the third equation of (3.1) we have

lim
n→∞

y1(µn)/y2(µn) = (δ − s2)/δ,

a contradiction. Therefore Eµ′ is a positive equilibrium of (2.2) at µ = µ′. Since
for any µ ∈ (µ∗, µ′), we have F (Eµ′ ) <K 0. There exists a positive equilibrium E1

µ

for system (2.2) which is contained in (Ey, Eµ′)K . Since Ex and E1
µ are both stable

in [E1
µ, Ex]K , there must exist a further positive equilibrium E2

µ ∈ (E1
µ, Ex)K .

Case 3: s2 < δ, 1 − a1ỹ1 < 0.
In this case, Ex is linearly stable for µ > µ∗ and is linearly unstable for µ < µ∗,

Ey is linearly stable.

Proposition 3.7. If µ > µ∗, then system (2.2) has a unique positive equilibrium
Eµ. Moreover, Eµ is linearly unstable for sufficiently large µ and converges to Eb

as µ→ ∞. In addition, µ∗ ≥ µ∗∗.

Proof. Since Ex and Ey are both linearly stable, we conclude that there exist a
positive equilibrium for any µ > µ∗. Similar to Theorem 3.2, we can prove the
uniqueness of the positive equilibrium. Arguing by contradiction, assume that there
exists a sequence of positive equilibria {Eµn

} with Eµn
→ Ex, where µn → ∞. We

prove that the attracting region of Ex is nondecreasing in µ. In other words, for
any µ2 > µ1 > µ∗, if Ex attracts z ∈ R

3
+ at µ = µ1, so does µ = µ2. Since
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Fµ2(z) ≥K Fµ1(z) for any z ∈ R
3
+, by Lemma 2.5, we have ψµ2

t (z) ≥K ψµ1

t (z) for
any t > 0. Hence for sufficiently large n, Eµn

are attracted by Ex, a contradiction.
By Proposition 3.5, we conclude that Eµ → Eb as µ → ∞. A simple calculation
shows

detJ(Eµ) = − r1x1(µ)[(y1(µ) + δ
y2(µ)

y1(µ)
)(s2L

−1
2 y2(µ) + δ

y1(µ)

y2(µ)
)

− δ2 − a1µy1(µ)(s2L
−1
2 y2(µ) + δ

y1(µ)

y2(µ)
)].

Thus detJ(Eµ) > 0 as µ → ∞. Hence Eµ is linearly unstable for sufficiently large
µ.

Let Aµ be the attracting region of Ex, that is, Aµ consists of all z ∈ R
3
+ such

that ω(z) = {Ex}. In Proposition 3.7, we prove Aµ is nondecreasing in µ. In fact,
we have a much stronger result.

Proposition 3.8. If µ > µ∗, then for any (b1, c1, c2) ∈ R
3
+ with b1 > 0 and

c1 + c2 > 0, there is some µ̃ such that (b1, c1, c2) ∈ Aµ whenever µ > µ̃.

Before proving this proposition, we need to analyze the following system:

ẏ1 = y1 − y2
1 − µy1 + δ(y2 − y1),

ẏ2 = s2y2 − s2L
−1
2 y2

2 + δ(y1 − y2).
(3.9)

Let κ(µ0) = (κ1(µ0), κ2(µ0)) be a positive equilibrium of system (3.9) when it
has at least one at µ = µ0. Let fµ0 denote the vector field described by (3.9) at
µ = µ0, φ

µ0

t the corresponding flow. If the field is at µ, then we drop the µ and
write f and φt.

Lemma 3.1. (i) If 0 < s2 < δ, then system (3.9) has no positive equilibrium
and (0, 0) attracts all solutions for µ > µ∗, and has a unique positive equilibrium
for 0 ≤ µ < µ∗ which attracts all non-trivial solutions and µ1 > µ2 ≥ 0 implies
κ(µ2) ≫ κ(µ1) ≫ 0; (ii) If s2 ≥ δ, then (3.9) has a unique positive equilibrium
for any µ ≥ 0 which attracts all non-trivial solutions and µ1 > µ2 ≥ 0 implies
κ(µ2) ≫ κ(µ1) ≫ κ = (0, s2−δ

s2

L2) . Furthermore, κ(µ) → κ as µ→ ∞.

Proof. The Jacobian matrix of f at (0, 0) is
(

1 − µ− δ δ
δ s2 − δ

)

.

By Proposition 3.1, we know that (0, 0) is linearly unstable if µ > 0 and s2 ≥ δ, or
µ < µ∗ and s2 < δ, where µ∗ = 1+ s2δ

δ−s2

. Suppose for some µ there exists a positive

equilibrium κ(µ), the Jacobian matrix of f at κ(µ) is
(

−κ1(µ) − δ κ2(µ)
κ1(µ) δ

δ −s2L−1
2 κ2(µ) − δ κ1(µ)

κ2(µ)

)

.

Hence κ(µ) is linearly stable when it exists. It is easy to show that (3.9) has finite
positive equilibria. Therefore, (3.9) has no positive equilibrium if (0, 0) is linearly
stable.

Obviously, (3.9) is cooperative and irreducible in IntR2
+. Therefore, φt is strongly

monotone in IntR2
+. Then for all large positive k, f(k1) ≪ 0, where k1 = (k, k).

Consequently φt(k1) decreasingly converges to an equilibrium for such k as t→ ∞.
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Therefore for µ > 0 such that (0, 0) is linearly unstable, there is a unique positive
equilibrium κ(µ).

Let us prove the monotonicity of κ(µ) in µ. For any µ1 > µ2 ≥ 0 such that (0, 0) is
linearly unstable at µ = µ1, we have fµ1(κ(µ2)) < fµ2(κ(µ2)) = 0. Hence, κ(µ1) <
κ(µ2). So strong monotonicity implies κ(µ1) ≪ κ(µ2). Since every trajectory is
bounded and the system has a unique positive equilibrium, the proof of global
stability is completed by Corollary 2.8 in [8]. We omit the proof of the last part
which is similar to the arguments in Proposition 3.5.

Proof of Proposition 3.8. Let (x1(t), y1(t), y2(t)) be the unique solution of system
(2.2) initiating in (b1, c1, c2). Choose µ1 > µ∗ and let α > max{1, L2, c1, c2}. By
Lemma 3.1, we know that the unique solution y0(t) of the following problem











ẏ1 = y1 − y2
1 − µ1y1 + δ(y2 − y1),

ẏ2 = s2y2 − s2L
−1
2 y2

2 + δ(y1 − y2), t > 1,

(y1(1), y2(1)) = α1, where α1 = (α, α),

converges to (0, 0) as t→ ∞. Since fµ1(α1) ≪ 0, y0(t) ≤ α1 for all t > 1.
Define ỹ0(t) = (ỹ0

1(t), ỹ
0
2(t)) such that it is continuous on (0,∞) and ỹ0 = α1 for

t ∈ [0, 1], ỹ0 ≥ y0 for t ∈ [1, 2], ỹ0 = y0 for t > 2. Let x0 denote the unique solution
of

ẋ1 = r1x1(1 − x1 − a1ỹ
0
1(t)), x1(0) = b1.

Since ỹ0
1(t) → 0 as t → ∞, it is easily shown that x0(t) > 0 for t > 0 and x0(t) → 1

as t→ ∞. Let x1 be the unique solution of the following auxiliary problem

ẋ1 = r1x1(1 − x1 − a1α), x1(0) = b1.

Obviously, we have x1(t) > 0 for all t > 0. For any µ > µ1/x
1(1), we can find

tµ > 1 such that x1(t) > µ1/µ for t ∈ [1, tµ]. Moreover, we can choose tµ → ∞ as
µ→ ∞.

By the definition of α, we know that y(t) ≪ α1 for all t > 0 and hence x1(t) >
x1(t) for all t > 0. We claim that y(t) ≪ ỹ0(t) for t ∈ [0, tµ]. Indeed, since
y(t) ≪ α1 for all t ≥ 0, we obviously have y(t) ≪ ỹ0(t) for t ∈ [0, 1]. For t ∈ [1, tµ],
from x1 > x1 > µ1/µ we deduce

ẏ1 < y1 − y2
1 − µ1y1 + δ(y2 − y1),

ẏ2 = s2y2 − s2L
−1
2 y2

2 + δ(y1 − y2).

Since y(1) ≪ α1, by Lemma 2.5 we have y(t) ≪ y0(t) ≤ ỹ0(t) for t ∈ [1, tµ].
Let us fix T > 2 such that x0(t) > 1/2 for t ≥ T . Then choose µ̃ large so that

tµ > T and 1/2 > µ1/µ for µ ≥ µ̃. We claim that whenever µ ≥ µ̃, y(t) ≪ ỹ0(t) for
all t > 0. Otherwise, for some fixed µ ≥ µ̃, we can find t∗ > tµ such that

y(t) ≪ ỹ0(t), for t ∈ [0, t∗), and y1(t
∗) = ỹ0

1(t
∗) or y2(t

∗) = ỹ0
2(t

∗).

We show next that this is impossible. First, the above inequality implies x1(t) ≥
x0(t) for t ∈ [0, t∗]. Since x0(t) > 1/2, for t ∈ [T, t∗], by continuity, we can find
γ > 0 small so that x1(t) > 1/2 for t ∈ [T, t∗ + γ]. It follows that, for t ∈ [T, t∗ + γ],

ẏ1 < y1 − y2
1 − µ1y1 + δ(y2 − y1),

ẏ2 = s2y2 − s2L
−1
2 y2

2 + δ(y1 − y2).

Therefore, y(T ) ≪ ỹ0(T ) = y0(T ) implies that y(t) ≪ y0(t) for t ∈ [T, t∗+γ], which
is a contradiction to the definition of t∗. Hence we have 0 ≪ y(t) ≪ ỹ0(t) for all
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t > 0. Since ỹ0(t) = y0(t) for t > 2 and y0(t) → 0 as t → ∞, we easily deduce
y(t) → 0 as t → ∞. Since y1(t) < ỹ0

1(t) for all t > 0, we have x0(t) < x1(t) → 1 as
t→ ∞.

Case 4: s2 ≥ δ, 1 − a1ỹ1 < 0.
In this case, we know Ex is linearly unstable and Ey is linearly stable. We first

have the following theorem about the positive equilibria of (2.2).

Theorem 3.4. (i) There exists some µ∗ > 0 such that (2.2) has no positive equi-
librium for µ < µ∗, has at least one positive equilibria for µ = µ∗ and has exactly
two positive equilibria for µ > µ∗; (ii) Given any ρ ∈ (0, 1), there exists µ̂ρ > 0
such that for µ > µ̂ρ, (2.2) has a unique positive equilibrium Eµ with the property
x1(µ) ≥ ρ. Moreover, Eµ is linearly stable for sufficiently large µ and converges to
Ea, while the other cluster of positive equilibria is linearly unstable for sufficiently
large µ and converges to Eb as µ → ∞.

Proof. (i) For any ρ ∈ (0, 1), consider the equations

y1 − y2
1 − µρy1 + δ(y2 − y1) = 0,

s2y2 − s2L
−1
2 y2

2 + δ(y1 − y2) = 0.

By Lemma 3.1, this system has a positive solution κ(ρµ) = (κ1(ρµ), κ2(ρµ)) and
κ(ρµ) → κ as µ → ∞. Therefore, there exists some µ′ > 0 such that ρ − ρ2 −
a1ρκ1(ρµ) > 0 for any µ ≥ µ′. Now we fix µ ≥ µ′. Then F (Eκ) >K 0 and
Eκ ∈ (Ey , Ex)K , where Eκ = (ρ, κ(ρµ′)). Since Ex is linearly unstable, we conclude
that ψt(Eκ) increases to a positive equilibrium Eµ satisfying Eµ ∈ (Eκ, Ex)K .

Define µ∗ = inf{µ > 0 : (2.2) has a positive equilibrium}. Then from Corollary
3.1, µ∗∗ ≤ µ∗ < ∞, and there is µn ≥ µ∗ with µn → µ∗ as n → ∞ such that for
each µn system (2.2) has a positive equilibrium Eµn

. We can choose a subsequence
{Eµn

} (still denoted by {Eµn
}) such that {Eµn

} → Eµ∗
= (x1(µ∗), y1(µ∗), y2(µ∗)).

Moreover, Eµ∗
is a nonnegative equilibrium of (2.2) with µ = µ∗. We can easily

prove that Eµ∗
can be none of the three boundary equilibria Eo, Ex and Ey. Ev-

idently, Eµ∗
is not Eo or Ey. Similar to Corollary 3.4, suppose to the contrary, if

Eµ∗
= Ex, then we have

lim
n→∞

y2(µn)/y1(µn) = 1+(µ∗−1)/δ <∞ and lim
n→∞

y1(µn)/y2(µn) = (δ−s2)/δ ≤ 0,

a contradiction. Hence Eµ∗
is a positive equilibrium with µ = µ∗. Obviously, we

have F (Eµ∗
) >K 0 for any µ > µ∗. Therefore, similar to Corollary 3.4, there exist

two positive equilibria E1
µ ∈ (Eµ∗

, Ex)K and E2
µ ∈ (Ey , E

1
µ)K for any µ > µ∗.

(ii) We have shown in (i) that for any ρ ∈ (0, 1), we can find a positive equilibrium
Eµ with x1(µ) > ρ for sufficiently large µ. Since fµx1(µ)(y1(µ), y2(µ)) = 0, κ(µ) ≪
(y1(µ), y2(µ)) ≪ κ(µρ). By Lemma 3.1, (y1(µ), y2(µ)) → κ as µ → ∞. Therefore,
Eµ converges to Ea as µ → ∞. Similar to Theorem 3.3, we can prove that Eµ is
linearly stable for sufficiently large µ . Therefore, we prove the uniqueness and the
other cluster of positive equilibria, denoted by E′

µ = (x′1(µ), y′1(µ), y′2(µ)), satisfies
x′1(µ) ≤ ρ for sufficiently large µ. Hence, E′

µ converges to Eb. Similar to Proposition
3.7, E′

µ is linearly unstable for sufficiently large µ. This complete the proof of
theorem.
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In the above discussion, we have proved that for any ρ ∈ (0, 1), there is µ̂ρ > 0
such that for any µ > µ̂ρ, E

1
µ is the unique positive equilibrium of (2.2) satisfying

x1(µ) ≥ ρ, and it is linearly stable. Let Bµ be the attracting region of E1
µ, we have

Corollary 3.5. For any µ1 > µ2 > µ̂ρ, Bµ1
⊃ Bµ2

.

Proof. Suppose µ1 > µ2. Then we have Fµ1(E1
µ2

) >K 0. Therefore, ψµ1

t (E1
µ2

)

increases to E1
µ1

as t→ ∞. Since E1
µ1

is linearly stable, Bµ1
contains a neighborhood

U of E1
µ2

. Particularly, there is some (h1, g1, g2) ∈ Bµ1
with 0 < h1 < x1(µ2)

and (g1, g2) ≫ (y1(µ2), y2(µ2)). If (b1, c1, c2) ∈ Bµ2
, then there exists some t0

such that (x2
1(t0), y

2
1(t0), y

2
2(t0)) ≫K (h1, g1, g2), where (x2

1, y
2
1 , y

2
2) is the solution

of (2.2) initiating in (b1, c1, c2) and µ = µ2. Moreover, (x1
1(t0), y

1
1(t0), y

1
2(t0)) ≥K

(x2
1(t0), y

2
1(t0), y

2
2(t0)) ≫K (h1, g1, g2), where (x1

1, y
1
1 , y

1
2) is the solution of (2.2) with

initial value (b1, c1, c2) and µ = µ1. This implies that (x1
1(t0), y

1
1(t0), y

1
2(t0)) ∈ Bµ1

.
It follows that (b1, c1, c2) ∈ Bµ1

. Thus the corollary is proved.

Furthermore, we have the following result:

Proposition 3.9. For any (b1, c1, c2) ∈ R
3
+ with b1 > 0 and c1 + c2 > 0, there is

some µ̃ such that (b1, c1, c2) ∈ Bµ whenever µ > µ̃.

To prove this proposition, we need some preparations. Recall that κ(µ) is the
unique positive equilibrium of (3.9) and φt(c) denotes the unique solution of (3.9)
initiating in y(0) = c, where c = (c1, c2) > 0.

Lemma 3.2. Given any positive constants µ, θ satisfying µ > θ, there is a constant
Tµ = Tµ(θ) such that φt(c) ≤ κ(θ) for any t ≥ Tµ. Moreover, Tµ is nonincreasing
in µ.

Proof. For any µ > θ, by Lemma 3.1, κ(µ) ≪ κ(θ). Still by Lemma 3.1, φt(c) →
κ(µ) as t → ∞. Hence there is some Tµ such that φt(c) ≤ κ(θ) for any t > Tµ. On
the other hand, fµ1(u) ≤ fµ2(u) for any µ1 > µ2 and u ∈ R

2
+. Hence φµ1

t (c) ≤
φµ2

t (c). This implies that Tµ can be chosen to be nonincreasing in µ.

Since the equilibrium κ(µ) of (3.9) converges to κ as µ → ∞, given any ǫ > 0,
there is some C > 0 such that for any µ ≥ C, κ1(µ) ≤ ǫ. Fixing ǫ ∈ (0, 1/a1), we
have the following lemma.

Lemma 3.3. Let (x1(t), y1(t), y2(t)) be the solution of (2.2) with x1(0) = C/µ,
y(0) = κ(C). Then there is some µ∗

1 such that for any µ > µ∗
1, lim

t→∞
(x1(t), y1(t), y2(t))

= E1
µ.

Proof. Due to our choice of ǫ, it is easy to see that for sufficiently large µ > C,
1 − C

µ
− a1ǫ > 0 and therefore F (C/µ, κ(C)) >K 0. Hence ψt(C/µ, κ(C)) increases

to a positive equilibrium Eµ = (x1(µ), y1(µ), y2(µ)). Moreover, y1(t) ≤ y1(0) =
κ1(C) ≤ ǫ. It follows that x1(µ) ≥ 1 − a1ǫ > 0. By Theorem 3.4, we know that
Eµ = E1

µ provided that µ is large enough. This completes the proof.

Proof of Proposition 3.9. By Lemma 3.3, we only need to prove that for any (b1, c1,
c2) ∈ R

3
+ satisfying b1 > 0 and c1 + c2 > 0, there is a constant µ̃ such that for any

µ > µ̃, there is some positive number M such that y(M) ≤ κ(C) and x1(M) ≥ C/µ,
where (x1, y1, y2) is the solution of (2.2) with initial value (b1, c1, c2).

Choose a constant α such that α > max{1, L2, c1, c2}. Obviously, y(t) ≪ α1 for
all t > 0. It follows that

ẋ1 = r1x1(1 − x1 − a1y1) > r1x1(1 − x1 − a1α).
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Hence x1 > x1 for all t > 0, where x1 denotes the unique solution of

ẋ1 = r1x1(1 − x1 − a1α), x1(0) = b1.

Obviously, we have x1(t) > 0 for t > 0. Therefore, for each µ > (x1(1))−2, there is
a positive number τµ > 1 such that x1(t) ≥ 1/

√
µ for t ∈ [1, τµ], and we may choose

τµ such that τµ → ∞ as µ→ ∞.

Let µ∗
1 satisfy

√

µ∗
1 > C. Then by Lemma 3.2 there is some M > 1 such that

for any µ > µ∗
1, φ

√
µ

M−1(α1) ≤ κ(C). We then choose µ̃ sufficiently large such that
τµ > M and 1/

√
µ > C/µ whenever µ ≥ µ̃. Then for any µ ≥ µ̃ and t ∈ [1,M ],

x1(t) > x1(t) ≥ 1/
√
µ and y(t) satisfies

ẏ1 − δ(y2 − y1) = y1 − y2
1 − µx1y1 < y1 − y2

1 −√
µy1,

ẏ2 − δ(y1 − y2) = s2y2 − s2L
−1
2 y2

2 .

It follows that y(t) ≤ φ
√

µ

t−1(α1) for t ∈ [1,M ]. In particular, y(M) ≤ φ
√

µ

M−1(α1) ≤
κ(C). Moreover, we have x1(M) ≥ 1/

√
µ > C/µ. The proof is complete.

In [1], similar conclusions to Proposition 3.8 and Proposition 3.9 were obtained
for a reaction-diffusion model. From Theorem 3.3, Remark 3.8 and Proposition 3.6,
3.8, 3.9, we summarize a global result:

Theorem 3.5. Suppose both Ex and Ey are hyperbolic. Then for any initial value

(b1, c1, c2) ∈ R
3
+ with b1 > 0 and c1 + c2 > 0, Sµ → (1, 0,max{0, s2−δ

s2

L2}) as

µ→ ∞, where {Sµ} = ω((b1, c1, c2)).

The above result shows that when competitor X is much stronger than Y , species
X tends to reach its carrying capacity, while species Y in patch 1 tends to extinction
and in the refuge-patch 2, tends to a value less than its carrying capacity in patch
2. Hence the preceding analysis tells us that when the effect of species X on species
Y is strong enough, it is advisable to protect more species Y by restricting the
diffusion of Y .

Remark 3.9. Let δ1 and δ2 be the diffusion rates of species Y from patch 1 to
patch 2 (and vice versa). If δ1 6= δ2, then all corresponding results for system (2.2)
still hold by the following transformations:

ȳ2 =
δ2
δ1
y2, L̄2 =

δ2
δ1
L2, k =

δ2
δ1
, s̄2 =

δ1
δ2
s2,

which yield
dx1

dt
= r1x1(1 − x1 − a1y1),

dy1
dt

= y1(1 − y1 − µx1) + δ1(ȳ2 − y1),

dȳ2
dt

= k(s̄2ȳ2(1 − L̄−1
2 ȳ2) + δ1(y1 − ȳ2)).

Rewriting the differential equations above, we have

dx1

dt
= r1x1(1 − x1 − a1y1),

dy1
dt

= y1(1 − y1 − µx1) + δ(y2 − y1),

dy2
dt

= k(s2y2(1 − L−1
2 y2) + δ(y1 − y2)).
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4. Discussion. In this paper we consider a two-competitor system with a refuge
for one species. Based on the specific properties of the system and the method of
monotone dynamical systems, we have solved Takeuchi and Lu’s problem. We have
also shown that establishing a refuge for the weak competitor may be ineffective
when the effect of species X on species Y is strong enough. Figure 1 gives us a clear
illustration of the main results of this paper.

Figure 1. Denote sx = s(J(Ex)) and sy = s(J(Ey)). The small
disc stands for µ ≤ µ∗∗ and the area out of the big disc stands
for µ > µ̃, i.e., for sufficiently large µ, and the annulus stands
for medium µ. We divide sx − sy plane into twelve parts. In
part I, there exists a unique positive equilibrium which is linearly
stable and converges to Ea as µ → ∞; in part II, Ex is globally
stable; in part III, there exists a unique positive equilibrium which
is linearly unstable and converges to Eb as µ → ∞, the attracting
region of Ex can include any given interior point; in part IV, there
exists exactly two positive equilibria, one is linearly stable and
converges to Ea as µ → ∞, the other is linearly unstable and
converges to Eb as µ → ∞, the attracting region of the linearly
stable equilibrium can include any given interior point; in part V,
there exists a unique positive equilibrium which is linearly stable;
in part VI, Ex is globally stable or this part does not exist; in part
VII, this part does not exist; in part VIII, Ey is globally stable;
in part IX, there exists a unique positive equilibrium; in part XI,
there exists a unique positive equilibrium.

In part X and XII, we have two questions: (1) In part X, whether the system can
have a positive equilibrium, i.e., whether Ex must be globally stable. (2) In part
XII, what the exact number of positive equilibria at µ = µ∗. By Theorem 3.2 and
strong monotonicity of ψt in IntR3

+, obviously, we have the following.

Corollary 4.1. Suppose Ey is linearly unstable. Then for any µ1 > µ2 > 0 such
that Ex is linearly unstable at µ = µ1, Eµ1

≫K Eµ2
≫K (1−a1ỹ1, ỹ1, ỹ2). Moreover,

s(J(Eµ)) ≤ 0 for any µ > 0 such that Ex is linearly unstable. In particular,
s(J(Eµ)) < 0 as µ is sufficiently small or large.
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In Corollary 4.1, we do not know whether the unique positive equilibrium is
linearly stable in general. Suppose Ex and Ey are both linearly stable. We know
the unique positive equilibrium Eµ satisfying s(J(Eµ)) > 0 for sufficiently large µ.
However, similarly, we do not know whether Eµ is linearly unstable in general.

We close with a modification of system (2.2) assuming that the diffusion rates of
species Y between the two patches, denoted by δi(µ) (i = 1, 2), are dependent of
the effects of species X on species Y . It is probably a more reasonable assumption,
because many species have the ability to choose better habitats. It is natural to
suppose that δi(µ) (i = 1, 2) are nonnegative and bounded for µ ∈ (0,∞).

Figure 2. 0 < δ1(µ) < M as µ > µ1, δ2(µ) = 0 as µ > µ2, where
µi(i = 1, 2) and M are all positive constants.

Here we consider a special case: 0 < δ1(µ) < ∞ and δ2(µ) ≡ 0 for sufficiently
large µ (see Figure 2 for example), which can be described as follows:

dx1

dt
= r1x1(1 − x1 − a1y1),

dy1
dt

= y1(1 − y1 − µx1) − δ1(µ)y1,

dy2
dt

= s2y2(1 − L−1
2 y2) + δ1(µ)y1.

(4.1)

Similar to the proof of Proposition 3.8, for system (4.1) we have the following
result.

Theorem 4.1. For any initial value (b1, c1, c2) ∈ R
3
+ with b1 > 0 and c1 + c2 > 0,

then ω((b1, c1, c2)) = {Ex1y2
} for sufficiently large µ, where Ex1y2

= (1, 0, L2).

Comparing Theorem 3.5 with the above result, we can see that the latter is more
biologically accepted.
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