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FAST DIFFUSION INHIBITS DISEASE OUTBREAKS
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(Communicated by Wenxian Shen)

Abstract. We show that the basic reproduction number of an SIS patch
model with standard incidence is either strictly decreasing and strictly con-
vex with respect to the diffusion coefficient of infected subpopulation if the
patch reproduction numbers of at least two patches in isolation are distinct
or constant otherwise. Biologically, it means that fast diffusion of infected
people reduces the risk of infection. This completely solves and generalizes a
conjecture by Allen et al. [SIAM J. Appl. Math., 67 (2007) pp. 1283–1309].
Furthermore, a substantially improved and reachable lower bound on the mul-
tipatch reproduction number, a generalized monotone result on the spectral
bound of the Jacobian matrix of the model system at the disease-free equilib-
rium, and the limit of the endemic equilibrium as the diffusion coefficient goes
to infinity are obtained. The approach and results can be applied to a class of
epidemic patch models where only one class of infected compartments migrate
between patches and one transmission route is involved.

1. Introduction

In 2007, Allen and her collaborators proposed the following SIS epidemic patch
model:

(1.1)

dSi

dt
= dS

∑
j∈Ω

LijSj − βi
SiIi

Si + Ii
+ γiIi, i ∈ Ω,

dIi
dt

= dI
∑
j∈Ω

LijIj + βi
SiIi

Si + Ii
− γiIi, i ∈ Ω,

where Ω = {1, 2, . . . , n} and n ≥ 2 is the number of patches. The variables Si(t) and
Ii(t) represent the number of susceptible and infected individuals in patch i at time
t, respectively. The parameters βi and γi are positive transmission coefficient and
recovery rate in patch i, respectively; dS and dI are positive diffusion coefficients
for the susceptible and infected subpopulations, respectively; Lij is a nonnegative
constant that denotes the degree of movement from patch j to patch i for i �= j and
−Lii =

∑n
j=1,j �=i Lji is the degree of movement from patch i to all other patches.
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2 DAOZHOU GAO AND CHAO-PING DONG

The following three assumptions on the initial condition, the connectivity matrix

L = (Lij), and the patch reproduction number R(i)
0 = βi/γi are made:

(A1) Si(0) ≥ 0 and Ii(0) ≥ 0 for i ∈ Ω, and
∑

i∈Ω Ii(0) > 0;
(A2) L is essentially nonnegative (or called quasi-positive), irreducible, and sym-

metric;

(A3) H− = {i ∈ Ω : R(i)
0 < 1} and H+ = {i ∈ Ω : R(i)

0 > 1} are nonempty and
H− ∪H+ = Ω.

It follows from Theorem 6.4.16 in Berman and Plemmons [7] that L has rank n− 1
and hence the system of linear equations∑

j∈Ω

LijSj = 0, i = 1, . . . , n and
∑
i∈Ω

Si =
∑
i∈Ω

(Si(0) + Ii(0))

has a unique positive solution, denoted by S0. Then the model (1.1) admits a
unique disease-free equilibrium (DFE) E0 = (S0,0). Linearizing the model system
(1.1) at the DFE gives the new infection and transition matrices

F = diag{β1, . . . , βn} and V = D − dIL = diag{γ1, . . . , γn} − dIL,

where D = diag{γ1, . . . , γn}. Following the recipe of van den Driessche and Wat-
mough [31], the basic reproduction number for model (1.1) is defined as the spectral
radius of the next generation matrix (Diekmann et al. [12]) FV −1, i.e.,

R0 = ρ(FV −1).

Allen et al. [1] showed that the DFE is globally asymptotically stable if R0 < 1
and there exists a unique endemic equilibrium if R0 > 1 and (A2) is satisfied.
Under assumptions (A1)–(A3), two main theorems linked spatial heterogeneity,
habitat connectivity, and movement rate to disease dynamics are presented. Three
open problems are left in their discussion. The first one is to conjecture that the
basic reproduction number R0 is a monotone decreasing function of dI . Biolog-
ically speaking, an increase in the diffusion of infected subpopulation can lower
the potential for disease transmission. The two-patch case can be easily verified
by direct calculation. Nevertheless, when three or more patches are concerned,
the expression of V −1 is complicated so that a direct proof of the monotonicity
is intractable. Recently, Gao [15] gave an affirmative answer to the conjecture by
using the Perron–Frobenius theorem. The proof strongly relies on the symmetry
of connectivity matrix L. The main purpose of the present paper is to extend the
conjecture to asymmetric L and to seek its applications.

The remainder of this paper is organized as follows. In Section 2, based on
some profound results on the spectral theory of nonnegative matrices, the basic
reproduction number R0 is shown to be strictly decreasing and strictly convex in
dI even if the connectivity matrix L is asymmetric. Section 3 is devoted to the
application of the monotonicity of R0 to estimate R0 and the spectral bound of
F − V . A brief discussion is given at the end.

2. Monotonicity of R0

Throughout this paper, unless otherwise indicated, we assume that:

(B1) L is an essentially nonnegative and irreducible matrix with zero column
sums;
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FAST DIFFUSION INHIBITS DISEASE OUTBREAKS 3

(B2) at least two patch reproduction numbers are different, i.e., there exist i �= j

such that R(i)
0 �= R(j)

0 (otherwise, by Proposition 2.2 in Gao and Ruan [16],
the multipatch reproduction number R0 is constant irrespective of L and
dI).

Now we provide a simpler proof for the conjecture of Allen et al. [1] than that
of Gao [15]. The single and double prime symbols denote the first and second
derivatives with respect to dI , respectively.

Theorem 2.1. For model (1.1), if the connectivity matrix L is symmetric, then the
basic reproduction number R0 is strictly decreasing in dI ∈ [0,∞) and R′

0(dI) < 0
for dI ∈ (0,∞).

Proof. The fact R0 = ρ(FV −1) = ρ(V −1F ) implies that there exists a column
vector v := v(dI) = (v1, . . . , vn)

T � 0 such that V −1Fv = R0v, or equivalently,

(2.1)

(
1

R0
F − V

)
v =

(
1

R0
F −D + dIL

)
v = 0.

Differentiating both sides of (2.1) with respect to dI gives

(2.2)

(
−R′

0

R2
0

F + L

)
v +

(
1

R0
F −D + dIL

)
v′ = 0.

Multiplying (2.1) by (v′)T and (2.2) by vT , and subtracting the two resulting
equations yield

vT

(
−R′

0

R2
0

F + L

)
v = 0

due to the symmetry of 1
R0

F −D + dIL. We thus have

R′
0 =

vTLv

vTFv
R2

0.

It follows from the symmetry of L that

vTLv =

n∑
i=1

n∑
j=1

Lijvivj =

n∑
i=1

∑
j �=i

Lijvivj +

n∑
i=1

Liiv
2
i

=
n∑

i=1

∑
j �=i

Lijvivj −
n∑

i=1

∑
j �=i

Ljiv
2
i =

n∑
i=1

∑
j �=i

Lijvi(vj − vi)

=

n∑
i=1

∑
j �=i

Lijvj(vi − vj) = −1

2

n∑
i=1

∑
j �=i

Lij(vi − vj)
2 ≤ 0.

Similar to the proof of Lemma 3.4 in Allen et al. [1], we can use the irreducibility
of L to prove by contradiction that vTLv < 0. In particular, if v1 = · · · = vn, then

(2.1) implies that R(i)
0 = R0 for 1 ≤ i ≤ n, a contradiction. Hence R′

0(dI) < 0 for
dI ∈ (0,∞). �

Before stating the general result on the strict monotonicity of R0 with respect
to dI in case of asymmetric L, we introduce a lemma on the spectral bound of a
class of essentially nonnegative matrices.
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4 DAOZHOU GAO AND CHAO-PING DONG

Lemma 2.2 (Theorem 1 in Altenberg [4], Theorem 1.1 in Altenberg [5], and Theo-
rem 5.2 in Karlin [21]). Let P be an irreducible stochastic matrix (i.e., nonnegative
and each column summing to one), and let D be a positive diagonal matrix that is
not a scalar multiple of identity matrix In of order n ≥ 2. Put

M(α) = (1− α)In + αP.

Then for α > 0, the spectral bound s(M(α)D) has the following properties:

(a) d
dαs(M(α)D) < 0. Thus s(M(α)D) decreases strictly as α increases.

(b) s(M(α)D) is strictly convex in α. Thus d2

dα2 s(M(α)D) ≥ 0.

Proof. By the implicit function theorem, s(M(α)D), the spectral bound of the
essentially nonnegative matrix M(α)D, is twice differentiable with respect to α ∈
(0,∞). Part (a) comes from the proof of Theorem 2 of Altenberg [3], which uses
the results of Friedland and Karlin [13], Friedland [14], and Karlin [21].

Part (b) comes from the proof of Karlin’s Theorem 5.2 by Altenberg [4]. For the
convenience of readers, let us outline the argument. Note that

M(α)D = (α(P − In) + In)D = α(P − In)D + βD = αA+ βD,

where A := (P − In)D is an essentially nonnegative matrix and β = 1. Now let β
vary in the interval [0,+∞). By Theorem 4.1 of Friedland [14] (which strengthens
the work of Cohen [8]), the spectral bound s(αA+ βD) is strictly convex in D and
hence in β as well. Then by Lemma 1 on dual convexity in Altenberg [4], we have
that s(αA + βD) is strictly convex in α, which also implies that s(αA + βD) is
strictly decreasing in α. �

Next we remove the restriction on the symmetry of the connectivity matrix L.
The basic reproduction number R0 for model (1.1) is found to be not only strictly
decreasing but also strictly convex in dI ∈ [0,∞).

Theorem 2.3. For model (1.1), the basic reproduction number R0 is strictly de-
creasing and strictly convex in dI ∈ [0,∞). Moreover, R′

0(dI) < 0 and R′′
0(dI) > 0

for dI ∈ (0,∞).

Proof. Denote D̃ = DF−1, L̃ = LF−1, and Ṽ = D̃−dI L̃. By the Perron–Frobenius
theorem [19], there is a real vector v � 0 such that

FV −1v = (DF−1 − dILF
−1)−1v = Ṽ −1v = R0v,

which implies that
1

R0
v = Ṽ v,

or equivalently,

(kIn − Ṽ )v =

(
k − 1

R0

)
v for k ∈ R.

Clearly, the square matrix

kIn − Ṽ = (kIn − D̃) + dI L̃ = (kIn −DF−1) + dILF
−1

is nonnegative and irreducible for sufficiently large k. Thus

ρ(dI) := ρ(kIn − D̃ + dI L̃) = k − 1

R0(dI)
,

Licensed to Hunan University. Prepared on Tue Dec 31 01:12:04 EST 2019 for download from IP 58.20.30.21.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST DIFFUSION INHIBITS DISEASE OUTBREAKS 5

or equivalently,

R0(dI) =
1

k − ρ(dI)
.

Therefore, the first and second derivatives of R0 with respect to dI are, respectively,

(2.3) R′
0(dI) =

ρ′(dI)

(k − ρ(dI))2

and

(2.4) R′′
0(dI) =

(k − ρ(dI))ρ
′′(dI) + 2(ρ′(dI))

2

(k − ρ(dI))3
.

Choose k large enough so that all the diagonal entries of

D̂ := kIn − D̃

are positive and the matrix

P̂ := In + L̃D̂−1

is irreducible and stochastic. Note that D̂ is not a scalar multiple of the identity
matrix In due to assumption (B2). By Lemma 2.2, letting M̂(dI) = (1−dI)In+dI P̂ ,
the spectral radius

ρ(dI) = ρ(kIn−D̃+dI L̃)=ρ(D̂+dI(P̂−In)D̂) = s((In+dI(P̂−In))D̂) = s(M̂(dI)D̂)

satisfies ρ′(dI) < 0 and ρ′′(dI) ≥ 0. It follows from (2.3) and (2.4) that R′
0(dI) < 0

and R′′
0(dI) > 0. Therefore, the strict monotonicity and strict convexity of R0(dI)

follow. �

Biologically, fast diffusion of the infected subpopulation decreases the disease
transmission potential. The negativity of R′

0(dI) and the positivity of R′′
0(dI) mean

that R0 is monotone decreasing but has a positive acceleration. So the impact of
increasing infected human diffusion on reducing the infection risk keeps shrinking.
In particular, the fastest declining speed for R0 is achieved at dI = 0. Suppose

that R(1)
0 ≤ R(2)

0 ≤ · · · ≤ R(n−1)
0 < R(n)

0 ; then

(2.5) R′
0(0) = lim

dI→0
R′

0(dI) =
βn

γ2
n

Lnn < 0.

Indeed, let A(dI) = kIn − D̃ + dI L̃; when dI = 0, the right and left eigenvectors

corresponding to the largest eigenvalue k− 1/R0(0) of matrix A(0) = kIn − D̃ are,
respectively,

x(0) := (0, . . . , 0, 1)T and yT (0) := (0, . . . , 0, 1).

By our assumption, the largest eigenvalue is not repeated; then ρ(0) = k − 1/R(n)
0

and
dρ

ddI

∣∣∣∣
dI=0

= yT (0)
dA(dI)

ddI

∣∣∣∣
dI=0

x(0) = yT (0)L̃x(0) =
Lnn

βn
.

Substituting the above results into (2.3) gives (2.5).

3. Applications

We will demonstrate some simple applications of the approach and results ob-
tained in the previous section to the SIS epidemic patch model (1.1).
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6 DAOZHOU GAO AND CHAO-PING DONG

3.1. Asymptotic behavior of R0 and s(F − V ).

Lemma 3.1. Let L = (Lij) be an n × n matrix with zero column sums and let
L∗ = (L∗

ij)
T be the adjoint matrix of L with L∗

ij representing the (i, j) cofactor of
L. Then

(a) L∗
ij = L∗

jj for 1 ≤ i, j ≤ n. In particular, if L is symmetric, then L∗
ij = L∗

11

for 1 ≤ i, j ≤ n.
(b) (L∗

11, . . . , L
∗
nn)

T is either zero or a right eigenvector of L associated with the
zero eigenvalue. In addition, if L is essentially nonnegative and irreducible,
then the vector (−1)n−1(L∗

11, . . . , L
∗
nn)

T is strictly positive.

Proof. (a) For any i �= j and 1 ≤ i, j ≤ n, we have

L∗
ij − L∗

jj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L11 · · · L1j−1 0 L1j+1 · · · L1n

...
. . .

...
...

...
. . .

...
Li−11 · · · Li−1j−1 0 Li−1j+1 · · · Li−1n

Li1 · · · Lij−1 1 Lij+1 · · · Lin

Li+11 · · · Li+1j−1 0 Li+1j+1 · · · Li+1n

...
. . .

...
...

...
. . .

...
Lj−11 · · · Lj−1j−1 0 Lj−1j+1 · · · Lj−1n

Lj1 · · · Ljj−1 −1 Ljj+1 · · · Ljn

Lj+11 · · · Lj+1j−1 0 Lj+1j+1 · · · Lj+1n

...
. . .

...
...

...
. . .

...
Ln1 · · · Lnj−1 0 Lnj+1 · · · Lnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

due to the zero column sums of the associated matrix. If L is symmetric, so is L∗.
Hence L∗

ij = L∗
1j = L∗

j1 = L∗
11 for 1 ≤ i, j ≤ n.

(b) It follows from LL∗ = (detL)In = 0n×n that the (i, j) entry of LL∗ satisfies∑
k∈Ω

LikL
∗
jk =

∑
k∈Ω

LikL
∗
kk = 0 ⇒ L(L∗

11, . . . , L
∗
nn)

T = 0.

If in addition, L is essentially nonnegative and irreducible, then Lkk < 0 for k =
1, . . . , n and L∗

ii is the determinant of a diagonally dominant matrix, denoted by

L̃ii.

(i) If L̃ii is irreducible, by Corollary 6.2.27 in Horn and Johnson [19], every

eigenvalue of matrix −L̃ii has positive real part and hence (−1)n−1L∗
ii =

(−1)n−1 det L̃ii = det(−L̃ii) > 0.

(ii) If L̃ii is reducible, then L̃ii is similar via a permutation to a block upper
triangular matrix where each diagonal block is either a single negative entry
or an irreducibly diagonally dominant submatrix. The result is obtained by
again applying Corollary 6.2.27 in Horn and Johnson [19] to each diagonal
block. �

Lemma 3.2. Let D = diag{γ1, . . . , γn} be a positive diagonal matrix and let L
be an essentially nonnegative and irreducible matrix with zero column sums. As
dI → ∞, the inverse of V = D − dIL converges to a strictly positive rank-one
matrix

V −1
∞ := lim

dI→∞
V −1 =

1∑
i∈Ω

γiL∗
ii

L∗,

where L∗ = (L∗
ij)

T is the adjoint matrix of L.
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FAST DIFFUSION INHIBITS DISEASE OUTBREAKS 7

Proof. Since V is a strictly diagonally dominant and irreducible M -matrix, the
inverse of V exists and it is positive. Obviously,

V −1 =
1

detV
V ∗,

where V ∗ = (V ∗
ij)

T is the adjoint matrix of V with V ∗
ij representing the (i, j) cofactor

of V . The determinant of V can be written as

detV = and
n
I + an−1d

n−1
I + · · ·+ a1dI + a0,

where an = (−1)n detL = 0 and an−1 =
∑

i∈Ω γi(−1)n−1L∗
ii = (−1)n−1

∑
i∈Ω γiL

∗
ii

> 0. The positivity of an−1 comes from Lemma 3.1(b). Meanwhile, the (i, j)
cofactor of V can be written as

V ∗
ij = bn−1d

n−1
I + · · ·+ b1dI + b0 > 0,

where bn−1 = (−1)n−1L∗
ij = (−1)n−1L∗

jj > 0. Thus, the (j, i) entry of V −1
∞ is

lim
dI→∞

V ∗
ij

detV
= lim

dI→∞

bn−1d
n−1
I + · · ·+ b1dI + b0

an−1d
n−1
I + · · ·+ a1dI + a0

=
bn−1

an−1
= L∗

ij

/∑
i∈Ω

γiL
∗
ii .

The proof is complete. �
Next, we improve some known results on the bounds of the basic reproduction

number and the spectral bound of the Jacobian matrix associated with model (1.1).

Theorem 3.3. For model (1.1) with dI ∈ (0,∞), the basic reproduction number
R0 satisfies

min
i∈Ω

R(i)
0 < R0(∞) =

∑
i∈Ω

βiL
∗
ii

/∑
i∈Ω

γiL
∗
ii

< R0(dI) = ρ(FV −1) < R0(0) = max
i∈Ω

R(i)
0 ,

where R(i)
0 = βi/γi and L∗ = (L∗

ij)
T is the adjoint matrix of L.

Proof. The result that the multipatch reproduction number R0 is between the
minimum and maximum patch reproduction numbers was proved by Gao and Ruan
[16]. Indeed, this can be established by multiplying both sides of (2.1) by 1 =
{1, . . . , 1}, i.e.,

1(FD−1 −R0In)Dv = 0,

where FD−1 −R0In = diag{R(1)
0 −R0, . . . ,R(n)

0 −R0} and Dv � 0.
Next it suffices to consider

R0(∞) := lim
dI→∞

R0(dI) = lim
dI→∞

ρ(FV −1) = ρ
(

lim
dI→∞

(FV −1)
)

= ρ
(
F lim

dI→∞
V −1

)
= ρ(FV −1

∞ ).

The positive matrix FV −1
∞ satisfies

1FV −1
∞ = (β1, . . . , βn)V

−1
∞ =

1∑
i∈Ω

γiL∗
ii

(β1, . . . , βn)L
∗ =

∑
i∈Ω

βiL
∗
ii∑

i∈Ω

γiL∗
ii

1.

The proof is complete via the Perron–Frobenius theorem and the strict monotonicity
of R0 with respect to dI . �
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8 DAOZHOU GAO AND CHAO-PING DONG

The distribution of infected individuals among patches as dI → ∞ is pro-
portional to the positive eigenvector (−1)n−1(L∗

11, . . . , L
∗
nn)

T of the connectivity
matrix L. The larger lower bound of R0(dI) is actually the ratio of the aver-
age transmission rate

∑
β := (−1)n−1

∑
i∈Ω βiL

∗
ii to the average recovery rate∑

γ := (−1)n−1
∑

i∈Ω γiL
∗
ii. Similar to Allen et al. [1], we call a patchy envi-

ronment Ω a low-risk domain if ∑
β
<

∑
γ
,

but a high-risk domain if ∑
β
≥

∑
γ
.

Using Theorems 2.3 and 3.3, we can easily obtain a generalization of Theorem 1
in Allen et al. [1] as follows.

Corollary 3.4. For model (1.1), suppose that R0(0) = maxi∈Ω R(i)
0 > 1. The

following hold:

(a) In a low-risk domain, there exists a unique threshold value d∗I ∈ (0,∞)
determined by the polynomial equation det(F −V ) = det(F −D+dIL) = 0
such that R0 > 1 for dI < d∗I and R0 < 1 for dI > d∗I .

(b) In a high-risk domain, we have R0 > 1 for all dI ≥ 0.

With respect to the spectral bound of F −V , the following is a generalization of
Lemma 3.4 in Allen et al. [1].

Corollary 3.5. The spectral bound of the Jacobian matrix of model system (1.1)
at the disease-free equilibrium, λ∗ := s(F − V ), satisfies

(a) λ∗ is strictly decreasing and strictly convex in dI ∈ [0,∞).
(b) λ∗ → maxi∈Ω(βi − γi) as dI → 0.
(c) λ∗ →

∑
i∈Ω(βi − γi)L

∗
ii

/∑
i∈Ω L∗

ii as dI → ∞.

(d) In a low-risk domain, if R0(0) = maxi∈Ω R(i)
0 > 1, then there exists a

unique d∗I ∈ (0,∞) determined by the polynomial equation det(F − V ) =
det(F −D+dIL) = 0 such that λ∗ > 0 for dI < d∗I and λ∗ < 0 for dI > d∗I .

(e) In a high-risk domain, we have λ∗ > 0 for all dI ≥ 0.

Proof. Note that (b) is obvious, while (d) and (e) follow immediately from (a) and
(c). Let us show the remaining two parts.

(a) Choose k large enough so that all the diagonal entries of D̂ := kIn + F −D

are positive and that P̂ := In + LD̂−1 is an irreducible stochastic matrix. Recall
that V = D − dIL. For any dI ≥ 0, applying Lemma 2.2 to the nonnegative and
irreducible matrix

kIn + F − V = (kIn + F −D) + dIL = D̂ + dI(P̂ − In)D̂ =
(
(1− dI)In + dI P̂

)
D̂

gives that

ρ(dI) := ρ(kIn + F − V ) = s(kIn + F − V ) = k + s(F − V )

is strictly decreasing in dI . It follows that λ
∗ strictly decreases as dI increases.

(c) For sufficiently large k, there exists a real column vector x := x(dI) � 0
satisfying x1 + · · ·+ xn = 1 such that

(kIn + F − V )x = ((kIn + F −D) + dIL)x = ρ(dI)x = (k + s(F − V ))x,
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or equivalently,

(((p− k)In − F +D)− dIL)x = (p− k − s(F − V ))x, ∀ p ∈ R.

Denote Ṽ = ((p−k)In−F +D)−dIL. For sufficiently large p such that (p−k)In−
F +D is a positive diagonal matrix, then

(3.1) Ṽ −1x =
1

p− k − s(F − V )
x.

The boundedness of x guarantees that we can pick up a sequence {dl} satisfying
0 < d1 < · · · < dl < · · · and liml→∞ dl = ∞ such that x(∞) := liml→∞ x(dl)
exists. By taking l → ∞, the equation (3.1) gives

Ṽ −1
∞ x(∞) =

1

p− k − s∞
x(∞),

which implies s∞ := liml→∞ s(F − V ) = liml→∞ s(F −D + dlL) exists. It follows
that

1Ṽ −1
∞ x(∞) =

1

p− k − s∞
1x(∞),

that is, ∑
i∈Ω

L∗
ii∑

i∈Ω

(p− k − βi + γi)L∗
ii

∑
i∈Ω

xi(∞) =
1

p− k − s∞

∑
i∈Ω

xi(∞).

The proof is complete by solving s∞. �

3.2. Limiting endemic equilibrium. When R0 > 1, the model (1.1) has at least
one endemic equilibrium, denoted by

E∗ := (S∗, I∗) = (S∗
1 , . . . , S

∗
n, I

∗
1 , . . . , I

∗
n),

which is a positive solution to

dS
∑
j∈Ω

LijS
∗
j − βi

S∗
i I

∗
i

S∗
i + I∗i

+ γiI
∗
i = 0, i ∈ Ω,(3.2a)

dI
∑
j∈Ω

LijI
∗
j + βi

S∗
i I

∗
i

S∗
i + I∗i

− γiI
∗
i = 0, i ∈ Ω.(3.2b)

Previously, Allen et al. [1] and Li and Peng [23] studied the asymptotic behavior
of the endemic equilibrium as dS → 0 and dI → 0, respectively. We will study the
case of dI → ∞. Allen et al. [2] and Peng [25] considered similar problems for an
SIS reaction-diffusion model.

Theorem 3.6. For model (1.1), assume R0(∞) := limdI→∞ R0(dI) = ρ(FV −1
∞ ) >

1 (i.e., a high-risk domain). Then the endemic equilibrium of model (1.1) satisfies

E∗ → m(Ŝ1, . . . , Ŝn, |L∗
11|, . . . , |L∗

nn|) � 0 as dI → ∞,

where (Ŝ1, . . . , Ŝn) is the unique positive solution to

dS
∑
j∈Ω

LijŜj − βi
|L∗

ii|
Ŝi + |L∗

ii|
Ŝi + γi|L∗

ii| = 0, i ∈ Ω,

and

m =

∑
i∈Ω(Si(0) + Ii(0))∑

i∈Ω(Ŝi + |L∗
ii|)

.
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Proof. It is clear that each entry of the endemic equilibrium E∗ is bounded for any
dI > 0. So, we have (up to a sequence of dI)

E∗ → Ẽ := (S̃, Ĩ) = (S̃1, . . . , S̃n, Ĩ1, . . . , Ĩn) ≥ 0 as dI → ∞.

Following equation (3.2b) and the irreducibility of L, we know either Ĩ = 0 or

Ĩ � 0.
Suppose Ĩ = 0; then the equation (3.2a) indicates that S̃ = S0 and hence

E∗ → Ẽ = E0 as dI → ∞. It follows from R0(∞) = limdI→∞ R0(dI) > 1 and
Corollary 3.5 that λ∗(∞) = limdI→∞ λ∗(dI) > 0. By choosing ε ∈ (0, λ∗(∞)), there

is a d̃I > 0 so that

βi(1− S∗
i /(S

∗
i + I∗i )) < ε, i ∈ Ω

for dI > d̃I . Denote F ∗ = diag{β1S
∗
1/(S

∗
1+I∗1 ), . . . , βnS

∗
n/(S

∗
n+I∗n)}. The equation

(3.2b) can be rewritten in a matrix form

(F ∗ − V )(I∗)T = 0,

which implies

s(F ∗ − V ) = 0.

On the other hand, for dI > d̃I , it follows from

F ∗ − V > diag{β1 − ε, . . . , βn − ε} − V = F − V − εIn

that

s(F ∗ − V ) > s(F − V )− ε = λ∗(dI)− ε ≥ λ∗(∞)− ε > 0,

which results in a contradiction. This means that Ĩ � 0.
The boundedness of

βi
Ĩi

S̃i + Ĩi
S̃i − γiĨi, i ∈ Ω,

implies ∑
j∈Ω

Lij Ĩj = 0, i ∈ Ω.

Hence, the limiting endemic equilibrium Ẽ is a solution of the system of 2n + 1
equations

dS
∑
j∈Ω

LijS̃j − βi
Ĩi

S̃i + Ĩi
S̃i + γiĨi = 0, i ∈ Ω,(3.3a)

∑
j∈Ω

Lij Ĩj = 0, i ∈ Ω,(3.3b)

∑
i∈Ω

(S̃i + Ĩi) =
∑
i∈Ω

(Si(0) + Ii(0)).(3.3c)

By Lemma 3.1, solving (3.3b) gives

(Ĩ1, . . . , Ĩn) = m(−1)n−1(L∗
11, . . . , L

∗
nn) = m(|L∗

11|, . . . , |L∗
nn|), m > 0,

and substituting it into (3.3a) and (3.3c) yields

(3.4) dS
∑
j∈Ω

LijS̃j − βi
m|L∗

ii|
S̃i +m|L∗

ii|
S̃i + γim|L∗

ii| = 0, i ∈ Ω,
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and

m =

∑
i∈Ω(Si(0) + Ii(0))−

∑
i∈Ω S̃i∑

i∈Ω |L∗
ii|

,

respectively. Denote Ŝi = S̃i/m for i ∈ Ω. The equation (3.4) can be rewritten as

(3.5) dS
∑
j∈Ω

LijŜj − βi
|L∗

ii|
Ŝi + |L∗

ii|
Ŝi + γi|L∗

ii| = 0, i ∈ Ω.

Consider the following auxiliary system:

(3.6)
dŜi

dt
= dS

∑
j∈Ω

LijŜj − βi
|L∗

ii|
Ŝi + |L∗

ii|
Ŝi + γi|L∗

ii|, i ∈ Ω,

which is dissipative, cooperative, and irreducible in R
n
+. Let f̂ denote the vector

field described by (3.6). Following f̂(0) � 0 and Theorem 3.2.1 in Smith [28], the
solution starting at the origin converges to a positive equilibrium ω(0). It is easy
to check that every positive equilibrium of system (3.6) is locally asymptotically
stable by computing the corresponding Jacobian matrix. By the theory of connect-
ing orbits [18], the system (3.6) cannot have more than one positive equilibrium.
Furthermore, Theorem C in Jiang [20] implies that the unique positive equilibrium
ω(0) is globally asymptotically stable in R

n
+.

Once the equation (3.5) is solved, we can then obtain

S̃i = mŜi and Ĩi = m|L∗
ii|, i ∈ Ω,

where

m =

∑
i∈Ω(Si(0) + Ii(0))∑

i∈Ω(Ŝi + |L∗
ii|)

.

The existence of a unique positive solution to (3.5) implies the convergence of the
endemic equilibrium E∗ as dI → ∞. �

An easy way to calculate
∑

i∈Ω βiL
∗
ii,

∑
i∈Ω γiL

∗
ii, and

∑
i∈Ω L∗

ii is through the
Laplace expansion ∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn

L21 L22 · · · L2n

...
...

. . .
...

Ln1 Ln2 · · · Lnn

∣∣∣∣∣∣∣∣∣
=

∑
i∈Ω

xiL
∗
ii,

by setting xi = βi, γi and 1 for i ∈ Ω, respectively. The above-mentioned analysis
can be adopted to some other epidemic patch models in studying the monotonicity,
convexity, and asymptotic properties of the basic reproduction number and the
spectral bound which serve as threshold quantities between disease persistence and
extinction [6, 16, 24, 30].

4. Discussion

It is clear that for SIS epidemic reaction-diffusion models the basic reproduction
number is a monotone decreasing function of the diffusion coefficient for the infected
population (e.g., Allen et al. [2], Deng and Wu [11], Li et al. [22]). However, the
dependence of R0 on dI for SIS epidemic patch models was generally unknown
[1, 15]. In this paper, by applying some recent advances in the spectral theory of
linear operators [3, 4], we show that R0 for the SIS epidemic patch model remains

Licensed to Hunan University. Prepared on Tue Dec 31 01:12:04 EST 2019 for download from IP 58.20.30.21.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 DAOZHOU GAO AND CHAO-PING DONG

strictly decreasing in dI regardless of the symmetry of the connectivity matrix.
Moreover, the first and second derivatives of R0 with respect to dI are strictly
negative and strictly positive for all dI > 0, respectively. Based on the approach
and results, an improved and reachable lower bound of R0, a generalized monotone
result on the spectral bound of F − V , and the limiting endemic equilibrium as
dI → ∞ are obtained.

The present work is applicable to epidemic patch models in which exactly one
class of infected compartments migrate between patches and one transmission route
is involved. In other words, the next generation matrix can be written in the form
of FV −1 = F (D−dIL)

−1 where F and D are positive diagonal matrices and L is an
essentially nonnegative and irreducible matrix with zero column sums. For example,
it works for an SIS patch model with bilinear incidence [32], the SIS patch model
with media effect in Gao and Ruan [16], SIR or SIRS patch model [24], SEIRS patch
model in the absence of diffusion for infectious subpopulation [27], the multipatch
cholera model studied by Tien et al. [30], and a Ross-Macdonald-type malaria
model with human movement analyzed by Auger et al. [6], Cosner et al. [9], and
Gao et al. [17]. These suggest that diffusion can help accelerate the elimination of
infectious diseases. Additionally, it can be used to study population persistencce
in a patchy environment (e.g., the single-species multipatch logistic model).

The asymmetric movement in patch models can be viewed as advection-diffusion
in reaction-diffusion models, so it is not surprising that the basic reproduction
number of the SIS model of reaction-diffusion-advection-type considered by Cui
and Lou [10] is also monotone decreasing in the diffusion coefficient for the infected
population dI if the advection rate is proportional to dI . It is worth mentioning that
based on a cholera model Tien et al. [30] derived the limit of R0(dI) as dI → ∞ and
found that the difference of R0(dI) and its limit is an infinitesimal of the same order
as 1/dI through a Laurent series expansion. The strict monotonicity of R0 with
respect to dI may fail when the SIS patch model (1.1) is extended to a multigroup-
multipatch model (Example 4.3 in Gao [15]), an SEIRS reaction-diffusion model
[29], an SIS reaction-diffusion periodic model (Theorem 2.5e in Peng and Zhao
[26]), a periodic patch model (it is easy to find a counterexample by using the
constructive method in Peng and Zhao [26]), or a reaction-diffusion model with
advection (Theorem 1.4 in Cui and Lou [10]). Generally speaking, the influence of
diffusion on disease persistence is strongly affected by model structures and model
formulations and further investigations are required.
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