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Abstract. Human movement facilitates the spatial spread of infectious diseases and poses
a serious threat to disease prevention and control. A large number of spatial epidemic models
have been proposed and analyzed in the past few decades. The vast majority of these studies
focus on establishing a threshold result between disease persistence and extinction in terms of the
basic reproduction number. In reality, disease eradication is difficult and even impossible for many
infectious diseases. Thus, it is crucial to understand how population dispersal affects the total
infection size and its distribution across the environment. Based on a susceptible-infected-susceptible
patch model with standard incidence, some general results on the number of infections over all patches
and disease prevalence in each patch are obtained. For the two-patch submodel, we give a complete
classification of the model parameter space as to whether dispersal is beneficial or detrimental to
disease control. Particularly, fast diffusion decreases the basic reproduction number but may increase
the total infection size, highlighting the necessity of evaluating control measures with other quantities
besides the basic reproduction number. Higher infection risk means higher disease prevalence in the
two-patch case. However, numerical simulations find that the patch with the highest risk of infection
may not have the highest disease prevalence when three or more patches are concerned. Besides
spatial heterogeneity and diffusion coefficient, the total infection size is also significantly affected by
patch connectivity.
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1. Introduction. Human migration and tourism play an important role in the
spatial spread of infectious diseases. On the one hand, infected humans reach disease-
free regions, transmit infectious agents to local residents, and incur disease outbreaks.
This process happens repeatedly over time, e.g., 2003 SARS outbreak [33], 2009 H1N1
influenza pandemic [27], 2015--2016 Zika virus disease epidemic [45], and 2019--2020
coronavirus disease pandemic [46]. On the other hand, imported cases pose a big
challenge to nonendemic countries in achieving or maintaining elimination status.
About 1,700 malaria cases are reported annually in the United States even though the
disease was eliminated from the country in the early 1950s [32]. With transportation
and economic development, different regions have stronger connection and humans
travel more frequently than ever before. However, during severe disease outbreaks
like the ongoing COVID-19 outbreak, flight cancellations, border closures, and travel
restrictions are implemented in many countries and regions, which dramatically reduce
human mobility. These changes urge public agencies to pay increasing attention to
investigate the effects of travel on the geographical spread of infectious diseases.

\ast Received by the editors December 13, 2019; accepted for publication (in revised form) June 9,
2020; published electronically September 22, 2020.

https://doi.org/10.1137/19M130652X
Funding: This work was supported by the National Natural Science Foundation of China

(12071300), the Natural Science Foundation of Shanghai (20ZR1440600), Program for Professor of
Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (TP2015050),
and Shanghai Gaofeng Project for University Academic Development Program.

\dagger Department of Mathematics, Shanghai Normal University, Shanghai 200234, People's Republic
of China (dzgao@shnu.edu.cn).

2144

D
ow

nl
oa

de
d 

09
/2

2/
20

 to
 8

.2
10

.2
31

.1
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M130652X
mailto:dzgao@shnu.edu.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOW DOES DISPERSAL AFFECT THE INFECTION SIZE? 2145

Many compartmental models consisting of multiple patches (countries, cities,
communities, etc.) have been developed to study the spread of general or specific
diseases in discrete space [5, 41]. Wang and coauthors [26, 40, 42, 43] studied the dy-
namics of SIS patch models with bilinear incidence and standard incidence. Salmani
and van den Driessche [34] proposed an SEIRS patch model by incorporating incu-
bation period and temporary immunity. Cui, Takeuchi, and Saito [10] formulated
a two-patch SIS model that includes infection during transport. Liu and Takeuchi
[30] further considered the joint effect of transport-related infection and entry-exit
screening through a two-patch SIQS model. Sun et al. [36] and Gao and Ruan [20]
analyzed an SIS model with the consideration of behavior change to describe disease
spread between two patches and an arbitrary number of patches, respectively. Arino
and Portet [6] modeled the disease spread between a large urban center and some
smaller neighboring satellite cities via an SIR infectious disease propagation model
where the urban center has standard incidence and the satellite cities have bilinear
incidence. Cosner et al. [9] presented two classes of the multipatch Ross--Macdonald
model to explore how human movement affects vector-borne disease transmission.
Gao and Ruan [21] introduced a more detailed multipatch malaria model with SEIRS
structure for humans and SEI structure for mosquitoes.

So far most existing theoretical works concentrate on analyzing the dynamical
behavior of model systems. Threshold results can usually be established in terms of
the basic reproduction number \scrR 0. Namely, if \scrR 0 < 1, then the disease dies out, while
if \scrR 0 > 1, then the disease is uniformly persistent in all patches. The multipatch
reproduction number is determined by spatial heterogeneity, habitat connectivity,
and movement rates [1]. For the simple SIS patch model with standard incidence,
the multipatch reproduction number is bounded below and above by the minimum
and maximum values of the patch reproduction numbers [20], which means that the
disease becomes persistent or extinct in all connected patches if the disease spreads
or disappears in each isolated patch. However, for the SIS patch model with bilinear
incidence [43] or the multipatch Ross--Macdonald model [9], population dispersal may
induce disease spread even though the disease dies out in each isolated patch. Gao and
Ruan [21] numerically found that human movement can drive malaria to persist or
die out even if the disease goes extinct or persistent in two disconnected but identical
patches. Moreover, nonhomogeneous mixing between hosts and vectors alone can
result in a larger basic reproduction number for both visitation model and migration
model [22, 23]. In brief, population dispersal may intensify or weaken the persistence
of infectious diseases.

When an infectious disease becomes endemic in a patchy environment, a natural
question is how human movement affects the infection size or disease prevalence (i.e.,
the proportion of individuals in a population having a specific disease or a particular
condition) across the environment. In particular, we are interested in finding the
conditions under which dispersal results in more infections than nondispersal. As
we know, the basic reproduction number measures the initial transmission potential,
but can rarely characterize the endemic level of the infection. For the classical Ross--
Macdonald model, Dye and Hasibeder [13] showed that the number of host infections
initially increases then decreases with host size, whereas \scrR 0 is strictly decreasing in
host size. Few studies on examining the influence of human movement on infection
size or disease prevalence over all patches are available. Hsieh, van den Driessche, and
Wang [25] developed an SEIRP multipatch model with partial immunity and presented
a numerical example in which banning travel of sick individuals from the high to the
low prevalence patch can have a negative impact on the overall disease prevalence.
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2146 DAOZHOU GAO

Based on a multipatch Ross--Macdonald model without spatial heterogeneity, Gao,
van den Driessche, and Cosner [22] found that the difference of the overall prevalence
in humans with and without dispersal may be constantly positive or change sign
when the diffusion rates of humans and mosquitoes vary. For a two-group multipatch
SIS model, Gao [17] demonstrated that infrequent travelers in the high risk patch
(where the patch reproduction number is larger) and the low risk patch (where the
patch reproduction number is smaller), respectively, have the highest and the lowest
disease prevalence. However, there is yet no systematic work towards answering the
aforementioned question. The main difficulty lies in the facts that the uniqueness and
global attractivity of the endemic equilibrium are generally unknown and the explicit
expression of the total number of infections at the endemic equilibrium is unavailable
or intractable.

It is worth noting that a pretty similar question in ecology is how the population
size and distribution of animals change with dispersal [11]. The maximal total pop-
ulation abundance is desirable for an endangered species, while we seek to minimize
the abundance of an insect pest. Freedman and Waltman [15] analyzed a two-patch
logistic model and proved that sufficiently high dispersal increases the total popula-
tion abundance if there is a positive relationship between intrinsic growth rate and
local carrying capacity. Holt [24] generalized these results to a source-sink system.
Recently, Arditi, Lobry, and Sari [3, 4] gave a full mathematical analysis of the model
of Freedman and Waltman [15] with symmetric and asymmetric dispersal. Wang
[44] studied the effect of dispersal on the total pollinator abundance according to a
two-patch pollination-mutualism model where only the pollinator can move between
patches. Lou [31] observed that continuous diffusion in a heterogeneous environment
increases the total population size if the intrinsic growth rate is proportional to car-
rying capacity. Zhang et al. [47] proposed a consumer-resource model in a continuous
spatial setting and tested it mathematically and experimentally. The reader may re-
fer to DeAngelis, Ni, and Zhang [11] for more references on the effects of diffusion on
the total biomass in discrete and continuous space. Although the method and theory
in ecology could inspire the study in epidemiology, we can expect that the latter is
possibly more challenging since only the infected subpopulation instead of the whole
population is concerned.

The main aim of this paper is to study the effect of population dispersal on total
infection size. In the next section, we formulate an SIS patch model with standard
incidence and present some preliminaries. In section 3, the asymptotic values of the
total infection size at the endemic equilibrium as the diffusion rate goes to zero and
infinity, respectively, are derived and compared. The disease prevalence of each patch
is estimated. Section 4 is devoted to a detailed study of the two-patch case. Numerical
examples are given to further explore the effect of population dispersal on the local
and global disease prevalence in section 5. The paper ends with a brief discussion.

2. The model. We consider an environment consisting of n patches connected
by human migration. The total population in patch i \in \Omega = \{ 1, . . . , n\} , denoted by
Ni, is divided into the susceptible and infected classes, with Si and Ii denoting the
respective numbers. Allen et al. [1] studied the following SIS patch model:

(2.1)

dSi

dt
=  - \beta i

SiIi
Ni

+ \gamma iIi + \delta 
\sum 
j\in \Omega 

LijSj , i \in \Omega ,

dIi
dt

= \beta i
SiIi
Ni

 - \gamma iIi + \varepsilon 
\sum 
j\in \Omega 

LijIj , i \in \Omega ,
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where \beta i and \gamma i are positive transmission and recovery rates, respectively; Lij is the
degree of incoming movement from patch j to patch i for i \not = j, and  - Lii =

\sum 
j \not =i Lji

is the degree of outgoing movement from patch i to all other patches; and \delta and
\varepsilon are positive diffusion coefficients of the susceptible and infected subpopulations,
respectively.

Assume that the connectivity matrix L = (Lij) is irreducible. Then the model
(2.1) has a unique disease-free equilibrium E0 = (\bfitN \ast ,0), where \bfitN \ast = (N\ast 

1 , . . . , N
\ast 
n)

is the unique positive solution of\sum 
j\in \Omega 

LijNj = 0, i \in \Omega , and
\sum 
i\in \Omega 

Ni =
\sum 
i\in \Omega 

(Si(0) + Ii(0)) := N > 0.

More precisely, it follows from Lemma 3.1 in Gao and Dong [18] that

(2.2) (N\ast 
1 , . . . , N

\ast 
n) =

N\sum 
i\in \Omega L\ast 

ii

(L\ast 
11, . . . , L

\ast 
nn),

where L\ast 
ii is the (i, i)-cofactor of L and sgn(L\ast 

ii) = ( - 1)n - 1. In particular, if L is
symmetric or line-sum-symmetric (i.e., the ith row sum of L equals the ith column
sum of L for all i \in \Omega ), then L\ast 

11 = \cdot \cdot \cdot = L\ast 
nn and hence N\ast 

1 = \cdot \cdot \cdot = N\ast 
n = N/n.

The new infection and transition matrices of model (2.1) are, respectively,

F = diag\{ \beta 1, . . . , \beta n\} and V = diag\{ \gamma 1, . . . , \gamma n\}  - \varepsilon L.

Thus, by the next generation matrix method [12, 39], the basic reproduction number
of model (2.1) is defined as

\scrR 0 = \rho (FV  - 1).

Obviously, the basic reproduction number of patch i in isolation is \scrR (i)
0 = \beta i/\gamma i.

Allen et al. [1] showed that the disease-free equilibrium E0 is globally asymptotically
stable if \scrR 0 < 1, and there exists a unique endemic equilibrium E\ast if \scrR 0 > 1 and L is
symmetric. Two main theorems relate spatial heterogeneity, habitat connectivity, and
movement rates to disease persistence and extinction. They left three open problems
concerning the monotonicity of \scrR 0 with respect to \varepsilon , the global attractivity of E\ast ,
and the asymptotic behavior of E\ast as \delta \rightarrow 0, respectively. The first problem was
recently answered by Gao [17] and Gao and Dong [18], while some progress in solving
the remaining two problems was made by Li and Peng [28] and Chen et al. [8].
To facilitate the study of the impact of human movement on the total number of
infections, we make the following assumptions throughout the paper:

(B1) Si(0) \geq 0 and Ii(0) > 0 for i \in \Omega .
(B2) L is essentially nonnegative and irreducible.

(B3) \scrR (i)
0 is nonconstant in i \in \Omega .

(B4) The population distribution by patch obeys (2.2) as \delta = \varepsilon = 0 (no dispersal).
(B5) The diffusion coefficients of the susceptible and infected subpopulations are

the same.
The first two assumptions mean that the disease initially presents in every patch and
the n patches cannot be separated into disconnected parts, respectively. If (B3) fails,
then Proposition 2.2 in Gao and Ruan [20] implies that \scrR 0 is constant for any \varepsilon 
and L. Meanwhile, the total number of infections at the endemic equilibrium equals
max\{ (1 - 1/\scrR 0)N, 0\} , which is also independent of \varepsilon and L. The fourth assumption
guarantees that the population size of each patch in isolation is the same as that of
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2148 DAOZHOU GAO

the patch in connection with \delta = \varepsilon \rightarrow 0+ or at the disease-free equilibrium. The last
assumption is acceptable when a disease like the common cold has a mild effect on the
mobility of infected people. It enables us to establish the global asymptotic stability
of the endemic equilibrium. In fact, if \delta = \varepsilon , then model (2.1) becomes

(2.3)

dSi

dt
=  - \beta i

SiIi
Ni

+ \gamma iIi + \varepsilon 
\sum 
j\in \Omega 

LijSj , i \in \Omega ,

dIi
dt

= \beta i
SiIi
Ni

 - \gamma iIi + \varepsilon 
\sum 
j\in \Omega 

LijIj , i \in \Omega .

The total population in patch i obeys

dNi

dt
= \varepsilon 

\sum 
j\in \Omega 

LijNj , i \in \Omega , and
\sum 
i\in \Omega 

Ni = N > 0,

which has a globally asymptotically stable positive equilibrium \bfitN \ast = (N\ast 
1 , . . . , N

\ast 
n)

satisfying (2.2). Replacing Ni with N\ast 
i in the second equation of system (2.3) gives

the limit system

(2.4)
dIi
dt

= \beta i

Å
1 - Ii

N\ast 
i

ã
Ii  - \gamma iIi + \varepsilon 

\sum 
j\in \Omega 

LijIj , i \in \Omega .

By the theory of monotone dynamical systems [35] and asymptotically autonomous
systems [7], the global dynamics of system (2.3) are fully determined by the basic
reproduction number.

Theorem 2.1 (Corollary 3.5 in Gao and Ruan [20]). For model (2.3), the disease-
free equilibrium E0 is globally asymptotically stable in \BbbR 2n

+ if \scrR 0 \leq 1, and there exists
a unique endemic equilibrium

E\ast = (\bfitS \ast , \bfitI \ast ) = (S\ast 
1 , . . . , S

\ast 
n, I

\ast 
1 , . . . , I

\ast 
n) = (N\ast 

1  - I\ast 1 , . . . , N
\ast 
n  - I\ast n, I

\ast 
1 , . . . , I

\ast 
n),

which is globally asymptotically stable on the nonnegative orthant minus the disease-
free state if \scrR 0 > 1.

For system (2.4), if \scrR 0 > 1, then (I\ast 1 , . . . , I
\ast 
n) is the unique positive solution to

(2.5) \beta i

Å
1 - Ii

N\ast 
i

ã
Ii  - \gamma iIi + \varepsilon 

\sum 
j\in \Omega 

LijIj = 0, i \in \Omega .

In what follows, we will investigate how human movement affects the total number
of infections over all patches. In particular, when is it detrimental or beneficial to
disease control in terms of infection size? Mathematically speaking, we will analyze
the dependence of the total infection size at the positive stationary solution

Tn(\varepsilon ) :=
\sum 
i\in \Omega 

I\ast i (\varepsilon )

with respect to the diffusion coefficient \varepsilon \geq 0 and see when Tn(\varepsilon ) is greater or smaller
than Tn(0) (no dispersal). Note that system (2.4) can be viewed as a single species
multipatch logistic model, which has been studied from the aspect of dynamical behav-
ior and total biomass by many researchers [3, 4, 11, 14, 15, 21, 24, 37]. Nevertheless,
in theoretical ecology, the matrix of connectivity is usually assumed to be symmetric
and a sink patch does not have density-dependent mortality.
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3. General results. First of all, we present a lemma on the basic reproduction
number and the spectral bound of the Jacobian matrix of system (2.1) at the disease-
free equilibrium with respect to the diffusion coefficient of the infected subpopulation,
which ensures that if Tn(\varepsilon 0) = 0 for some \varepsilon 0 \in [0,\infty ), then Tn(\varepsilon ) \equiv 0 for any
\varepsilon \in [\varepsilon 0,\infty ). The interested reader may refer to a recent paper by Gao and Dong [18]
for the proof and more details.

Lemma 3.1. For model (2.1), the basic reproduction number \scrR 0(\varepsilon ) = \rho (FV  - 1)
and the spectral bound s(\varepsilon ) := s(F  - V ) = s(F  - D + \varepsilon L) are strictly decreasing and
strictly convex in \varepsilon \in [0,\infty ), where D = diag\{ \gamma 1, . . . , \gamma n\} . Moreover, we have

min
i\in \Omega 

\scrR (i)
0 < \scrR 0(\infty ) =

\sum 
i\in \Omega 

\beta iL
\ast 
ii

\Bigg/ \sum 
i\in \Omega 

\gamma iL
\ast 
ii < \scrR 0(\varepsilon ) < \scrR 0(0) = max

i\in \Omega 
\scrR (i)

0 , \forall \varepsilon > 0,

where \scrR (i)
0 = \beta i/\gamma i is nonconstant in i \in \Omega and L\ast 

ii is the (i, i)-cofactor of L. In
addition, if \scrR 0(0) > 1, then the following hold:

(a) If \scrR 0(\infty ) < 1, then there exists a unique critical value \varepsilon \ast \in (0,\infty ) such that
\scrR 0(\varepsilon ) > 1 for \varepsilon < \varepsilon \ast , \scrR 0(\varepsilon ) = 1 for \varepsilon = \varepsilon \ast , and \scrR 0(\varepsilon ) < 1 for \varepsilon > \varepsilon \ast .

(b) If \scrR 0(\infty ) \geq 1, then we have \scrR 0(\varepsilon ) > 1 for all \varepsilon \geq 0.

Remark 3.2. When \scrR 0(0) > 1 > \scrR 0(\infty ), the critical value \varepsilon \ast exists and is actu-
ally the least positive root to the (n - 1)th degree polynomial equation det(F  - D +
\varepsilon L) = 0. For the two-patch case, a straightforward calculation yields

\varepsilon \ast =
(\beta 1  - \gamma 1)(\beta 2  - \gamma 2)

(\beta 1  - \gamma 1)L12 + (\beta 2  - \gamma 2)L21
.

When three patches are concerned, \varepsilon \ast is a positive root of the quadratic equation

c2\varepsilon 
2 + c1\varepsilon + c0 = 0,

where

c2 =

3\sum 
i=1

(\beta i  - \gamma i)L
\ast 
ii < 0, c1 =

3\sum 
i=1

Ñ\prod 
j \not =i

(\beta j  - \gamma j)

é
Lii, and c0 =

3\prod 
i=1

(\beta i  - \gamma i).

Next we calculate the total number of infections at the stable steady state as
\varepsilon \rightarrow 0+ and \infty . Denote the positive part of m by m+ = max\{ m, 0\} .

Theorem 3.3. For model (2.3), we have

Tn(0) =
\sum 
i\in \Omega 

I\ast i (0) =
\sum 
i\in \Omega 

Ç
1 - 1

\scrR (i)
0

å+

N\ast 
i

and

Tn(\infty ) =
\sum 
i\in \Omega 

I\ast i (\infty ) =

Å
1 - 1

\scrR 0(\infty )

ã+
N,

where

I\ast i (0) := lim
\varepsilon \rightarrow 0+

I\ast i (\varepsilon ) =

Ç
1 - 1

\scrR (i)
0

å+

N\ast 
i , i \in \Omega ,

I\ast i (\infty ) := lim
\varepsilon \rightarrow \infty 

I\ast i (\varepsilon ) =

Å
1 - 1

\scrR 0(\infty )

ã+
N\ast 

i , i \in \Omega .
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2150 DAOZHOU GAO

Proof. If \varepsilon \rightarrow 0+, then the transmission dynamics of patch i \in \Omega can be described
by a single patch SIS model,

dSi

dt
=  - \beta i

SiIi
N\ast 

i

+ \gamma iIi,

dIi
dt

= \beta i
SiIi
N\ast 

i

 - \gamma iIi,

where Si(t) + Ii(t) = N\ast 
i . Thus,

Ii(t) \rightarrow max
¶
(1 - 1/\scrR (i)

0 )N\ast 
i , 0
©
= (1 - 1/\scrR (i)

0 )+N\ast 
i as t \rightarrow \infty .

Suppose \scrR 0(\infty ) \geq 1. It follows from Theorem 3.6 in Gao and Dong [18] that

lim
\varepsilon \rightarrow \infty 

(I\ast 1 (\varepsilon ), . . . , I
\ast 
n(\varepsilon )) = m(| L\ast 

11| , . . . , | L\ast 
nn| ) = m( - 1)n - 1(L\ast 

11, . . . , L
\ast 
nn)

for some m \geq 0. Summing up (2.5) over i from 1 to n gives

\sum 
i\in \Omega 

Å
\beta i

Å
1 - I\ast i

N\ast 
i

ã
I\ast i  - \gamma iI

\ast 
i

ã
=
\sum 
i\in \Omega 

Å
\beta i

Å
1 - m| L\ast 

ii| 
N\ast 

i

ã
 - \gamma i

ã
m| L\ast 

ii| = 0

\Rightarrow 
\sum 
i\in \Omega 

(\beta i  - \gamma i)| L\ast 
ii| = m

\Biggl( \sum 
i\in \Omega 

\beta i
| L\ast 

ii| 2

N\ast 
i

\Biggr) 
= m

\sum 
i\in \Omega 

\beta i| L\ast 
ii| \cdot 

\sum 
i\in \Omega 

| L\ast 
ii| 

N

\Rightarrow m =

\sum 
i\in \Omega 

(\beta i  - \gamma i)| L\ast 
ii| \sum 

i\in \Omega 

\beta i| L\ast 
ii| 

\cdot N\sum 
i\in \Omega 

| L\ast 
ii| 

=

Å
1 - 1

\scrR 0(\infty )

ã
\cdot N\sum 
i\in \Omega 

| L\ast 
ii| 

\Rightarrow Tn(\infty ) =
\sum 
i\in \Omega 

I\ast i (\infty ) = m
\sum 
i\in \Omega 

| L\ast 
ii| =

Å
1 - 1

\scrR 0(\infty )

ã
N.

If \scrR 0(\infty ) < 1, then by Lemma 3.1 the disease dies out and Tn(\varepsilon ) = 0 for sufficiently
large \varepsilon .

Remark 3.4. To compare the infection sizes with fast dispersal and slow dispersal,

we suppose that \scrR (i)
0 > 1 for all i \in \Omega . Then

Tn(\infty ) - Tn(0) =

Å
1 - 1

\scrR 0(\infty )

ã
N  - 

\sum 
i\in \Omega 

Ç
1 - 1

\scrR (i)
0

å
N\ast 

i

=
\sum 
i\in \Omega 

N\ast 
i

\scrR (i)
0

 - N

\scrR 0(\infty )
=

\Biggl( \sum 
i\in \Omega 

li
\gamma i
\beta i

 - 

\Biggl( \sum 
i\in \Omega 

li\gamma i

\Biggr) \Bigg/ \Biggl( \sum 
i\in \Omega 

li\beta i

\Biggr) \Biggr) 
N,

where li = L\ast 
ii

\big/ \sum 
j\in \Omega L\ast 

jj satisfies 0 < li < 1 and
\sum 

i\in \Omega li = 1. Therefore, by using
the Cauchy--Schwarz inequality, we obtain the following results:

(a) If \beta i = \beta for i \in \Omega , then Tn(\infty ) = Tn(0).
(b) If \gamma i = \gamma for i \in \Omega , then Tn(\infty ) \geq Tn(0) with equality if and only if \beta i = \beta 

for i \in \Omega .
(c) If \beta i  - \gamma i is constant for i \in \Omega , then Tn(\infty ) \leq Tn(0) with equality if and only

if \beta i = \beta for i \in \Omega .
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Biologically speaking, large dispersal results in more infections than small dispersal,
provided that all patches have the same recovery rate. Thus, an increase in diffusion
coefficient reduces the basic reproduction number but may enlarge the total infection
size. The conclusion of part (c) can be extended to Tn(\varepsilon ) < Tn(0) for \varepsilon > 0 by
calculating the tangent space of the ellipsoid

\sum 
i\in \Omega (\beta i(1 - Ii/N

\ast 
i ) - \gamma i)Ii = 0 at point

(I\ast 1 (0), . . . , I
\ast 
n(0)). In addition, if L is line-sum-symmetric, then li = 1/n for all i \in \Omega 

and the difference becomes

Tn(\infty ) - Tn(0) =

\Biggl( 
1

n

\sum 
i\in \Omega 

\gamma i
\beta i

 - 
\sum 
i\in \Omega 

\gamma i

\Bigg/ \sum 
i\in \Omega 

\beta i

\Biggr) 
N.

Thus, it follows from Proposition A.3 in DeAngelis, Ni, and Zhang [11] that

(a) if one of the sequences \{ \scrR (i)
0 \} i\in \Omega and \{ \beta i\} i\in \Omega is monotone increasing and the

other is monotone decreasing, then Tn(\infty ) \leq Tn(0);

(b) if both \{ \scrR (i)
0 \} i\in \Omega and \{ \beta i\} i\in \Omega are monotone increasing or decreasing, then

Tn(\infty ) \geq Tn(0).

By the continuity of Tn(\varepsilon ) in \varepsilon \in \BbbR +, the change trend of Tn(\varepsilon ) near zero can be
determined by its right derivative.

Theorem 3.5. For model (2.3), if \scrR (i)
0 \not = 1 for all i \in \Omega , then

T \prime 
n(0+) =

\sum 
i\in \Omega 

Ñ
1

| \beta i  - \gamma i| 
\sum 
j\in \Omega 

LijI
\ast 
j (0)

é
.

In particular,

T \prime 
2(0+) =

Å
1

| \beta 2  - \gamma 2| 
 - 1

| \beta 1  - \gamma 1| 

ã
(L21I

\ast 
1 (0) - L12I

\ast 
2 (0))

and if \scrR (1)
0 > max\{ \scrR (2)

0 , 1\} , then

sgn(T \prime 
2(0+)) = sgn (\beta 1  - \gamma 1  - | \beta 2  - \gamma 2| ) .

Proof. Suppose \scrR 0(0) = maxi\in \Omega \scrR (i)
0 > 1. Otherwise, Tn(\varepsilon ) \equiv 0 for \varepsilon \geq 0 and

the conclusion immediately holds. Thus, for sufficiently small \varepsilon , we have \scrR 0(\varepsilon ) > 1
and there exists a unique positive solution (I\ast 1 , . . . , I

\ast 
n) to the equilibrium equations

(3.1) Mn(I
\ast 
1 , . . . , I

\ast 
n)

T = 0,

where Mn = F - V  - diag\{ \beta 1I
\ast 
1/N

\ast 
1 , . . . , \beta nI

\ast 
n/N

\ast 
n\} . Differentiating both sides of (3.1)

with respect to \varepsilon gives

(3.2) \~Mn

Å
dI\ast 1
d\varepsilon 

, . . . ,
dI\ast n
d\varepsilon 

ãT
=  - 

Ñ\sum 
j\in \Omega 

L1jI
\ast 
j , . . . ,

\sum 
j\in \Omega 

LnjI
\ast 
j

éT

,

where \~Mn = Mn  - diag\{ \beta 1I
\ast 
1/N

\ast 
1 , . . . , \beta nI

\ast 
n/N

\ast 
n\} . The essential nonnegativity and

irreducibility of Mn imply that s(Mn) = 0 and hence s( \~Mn) < s(Mn) = 0 and
sgn(| \~Mn| ) = ( - 1)n \not = 0. So, \~M - 1

n exists and is negative (see, e.g., Corollary 4.3.2 in
Smith [35]). Solving dI\ast i /d\varepsilon from (3.2) gives

(3.3)
Å
dI\ast 1
d\varepsilon 

, . . . ,
dI\ast n
d\varepsilon 

ãT
=  - \~M - 1

n

Ñ\sum 
j\in \Omega 

L1jI
\ast 
j , . . . ,

\sum 
j\in \Omega 

LnjI
\ast 
j

éT

.
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As \varepsilon \rightarrow 0+, we have

\~Mn \rightarrow diag\{ \beta 1  - \gamma 1  - 2\beta 1I
\ast 
1 (0)/N

\ast 
1 , . . . , \beta n  - \gamma n  - 2\beta nI

\ast 
n(0)/N

\ast 
n\} 

=  - diag\{ | \beta 1  - \gamma 1| , . . . , | \beta n  - \gamma n| \} 

and hence

T \prime 
n(0+) =

Å
1

| \beta 1  - \gamma 1| 
, . . . ,

1

| \beta n  - \gamma n| 

ãÑ\sum 
j\in \Omega 

L1jI
\ast 
j (0), . . . ,

\sum 
j\in \Omega 

LnjI
\ast 
j (0)

éT

=
\sum 
i\in \Omega 

Ñ
1

| \beta i  - \gamma i| 
\sum 
j\in \Omega 

LijI
\ast 
j (0)

é
.

For n = 2, if \scrR (1)
0 > \scrR (2)

0 > 1, then we have

T \prime 
2(0+) =

Å
1

| \beta 2  - \gamma 2| 
 - 1

| \beta 1  - \gamma 1| 

ã
(L21I

\ast 
1 (0) - L12I

\ast 
2 (0))

=
\beta 1  - \gamma 1  - \beta 2 + \gamma 2
(\beta 1  - \gamma 1)(\beta 2  - \gamma 2)

Ä
L21

Ä
1 - 1/\scrR (1)

0

ä
N\ast 

1  - L12

Ä
1 - 1/\scrR (2)

0

ä
N\ast 

2

ä
=

\beta 1  - \gamma 1  - \beta 2 + \gamma 2
(\beta 1  - \gamma 1)(\beta 2  - \gamma 2)

Ç
1

\scrR (2)
0

 - 1

\scrR (1)
0

å
L12N

\ast 
2 .

The last equality follows from L21N
\ast 
1  - L12N

\ast 
2 = 0. The case of \scrR (1)

0 > 1 > \scrR (2)
0 is

simpler and can be proved similarly.

It is easy to show that T \prime 
n(0+) can be positive or negative for any n \geq 2 by

constructing concrete examples (e.g., \scrR (1)
0 > 1 but \scrR (i)

0 < 1 for all i \in \Omega \setminus \{ 1\} ). Based
on Theorems 3.3 and 3.5, we can further construct numerical examples in which the
asymptotic total infection size is not a monotone function of the diffusion coefficient.

Corollary 3.6. For model (2.3), if Tn(0) \leq Tn(\infty ) and T \prime 
n(0+) < 0, or Tn(0) \geq 

Tn(\infty ) and T \prime 
n(0+) > 0, then Tn(\varepsilon ) nonmonotonically depends on \varepsilon .

The remainder of this section focuses on the impact of dispersal on the distribution
of infections or disease prevalence of each individual patch, i.e., I\ast i (\varepsilon ) or I

\ast 
i (\varepsilon )/N

\ast 
i for

i \in \Omega . We are particularly interested in studying whether a high-risk patch still
has high disease prevalence in the presence of population dispersal. The following
lower and upper bounds on the I-component of the endemic equilibrium E\ast comes
from Lemma 3.1 in Gao and Ruan [21], which was proved by applying the theory of
monotone dynamical systems (in particular Proposition 3.2.1 and Theorem 4.1.1 in
Smith [35]). It partially generalizes Proposition 1 in Arditi, Lobry, and Sari [3] from
two-patch to n-patch.

Lemma 3.7. For model (2.3), if \scrR 0(\varepsilon ) > 1 for \varepsilon > 0, then there exists a globally
asymptotically stable endemic equilibrium E\ast = (\bfitN \ast  - \bfitI \ast (\varepsilon ), \bfitI \ast (\varepsilon )) satisfyingÅ

min
i\in \Omega 

I\ast i (0)

| L\ast 
ii| 

ã
| L\ast 

jj | < I\ast j (\varepsilon ) <

Å
max
i\in \Omega 

I\ast i (0)

| L\ast 
ii| 

ã
| L\ast 

jj | , j \in \Omega ,

where I\ast i (0) = (1  - 1/\scrR (i)
0 )+N\ast 

i for i \in \Omega . If, in addition, L is line-sum-symmetric,
then

min
i\in \Omega 

I\ast i (0) < I\ast j (\varepsilon ) < max
i\in \Omega 

I\ast i (0), j \in \Omega ,
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where I\ast i (0) = (1 - 1/\scrR (i)
0 )+N/n for i \in \Omega .

Since (N\ast 
1 , . . . , N

\ast 
n) is proportional to (L\ast 

11, . . . , L
\ast 
nn), rewriting the first inequality

in Lemma 3.7 gives an estimate of the disease prevalence of each patch as follows. Note
that the estimate also works for the disease prevalence over all patches, i.e., Tn(\varepsilon )/N .

Proposition 3.8. For model (2.3), if \scrR 0(\varepsilon ) > 1 for \varepsilon > 0, then the disease
prevalence at the endemic equilibrium E\ast = (\bfitN \ast  - \bfitI \ast (\varepsilon ), \bfitI \ast (\varepsilon )) satisfiesÑ

1 - 1

min
i\in \Omega 

\scrR (i)
0

é+

<
I\ast j (\varepsilon )

N\ast 
j

< 1 - 1

max
i\in \Omega 

\scrR (i)
0

, j \in \Omega .

The disease prevalence of patch i in isolation is max\{ 1 - 1/\scrR (i)
0 , 0\} , which means

that without diffusion a higher risk patch has higher disease prevalence. The above
result indicates that diffusion decreases the disease prevalence and infection size of
the highest risk patch but increases those of the lowest risk patch. Can the highest
risk patch have the lowest disease prevalence or the lowest risk patch have the highest
disease prevalence in the presence of diffusion? We find that this extreme scenario
cannot happen for model (2.3). Thus, the sequence of the disease prevalences of each
patch cannot be in the descending order of the patch reproduction numbers.

Theorem 3.9. For model (2.3), suppose that \scrR (1)
0 \geq \cdot \cdot \cdot \geq \scrR (n)

0 and \scrR 0(\varepsilon ) > 1
for \varepsilon > 0. Then the disease prevalence at the endemic equilibrium E\ast = (\bfitN \ast  - 
\bfitI \ast (\varepsilon ), \bfitI \ast (\varepsilon )) satisfies

I\ast 1 (\varepsilon )

N\ast 
1

> min
i\in \Omega 

I\ast i (\varepsilon )

N\ast 
i

and
I\ast n(\varepsilon )

N\ast 
n

< max
i\in \Omega 

I\ast i (\varepsilon )

N\ast 
i

.

In particular, for the two-patch case, we have I\ast 1 (\varepsilon )/N
\ast 
1 > I\ast 2 (\varepsilon )/N

\ast 
2 , i.e., the disease

prevalence of the high-risk patch is always larger than that of the low-risk patch.

Proof. We only prove the first part, while the second part can be shown similarly.
Suppose not, i.e., the inequality I\ast 1 (\varepsilon )/N

\ast 
1 > mini\in \Omega I\ast i (\varepsilon )/N

\ast 
i may fail; then there

exists some \varepsilon 0 > 0 such that I\ast 1 (\varepsilon 0)/N
\ast 
1 = mini\in \Omega I\ast i (\varepsilon 0)/N

\ast 
i .

Claim: I\ast 1 (\varepsilon )/N
\ast 
1 = \cdot \cdot \cdot = I\ast n(\varepsilon )/N

\ast 
n if and only if \scrR (1)

0 = \cdot \cdot \cdot = \scrR (n)
0 . Suppose

I\ast i (\varepsilon )/N
\ast 
i = \tau \in (0, 1) for all i \in \Omega . Then\sum 

j\in \Omega 

LijI
\ast 
j =

\sum 
j\in \Omega 

Lij\tau N
\ast 
j = \tau 

\sum 
j\in \Omega 

LijN
\ast 
j = 0, i \in \Omega ,

which implies that

fi(I
\ast 
i ) := \beta i

Å
1 - I\ast i

N\ast 
i

ã
I\ast i  - \gamma iI

\ast 
i = 0 \Rightarrow I\ast i

N\ast 
i

= 1 - \gamma i
\beta i

= 1 - 1

\scrR (i)
0

= \tau , i \in \Omega .

Hence \scrR (i)
0 = 1/(1  - \tau ) for all i \in \Omega . On the other hand, if \scrR (1)

0 = \cdot \cdot \cdot = \scrR (n)
0 , then

\scrR 0 = \scrR (1)
0 > 1 and the unique positive solution to (2.5) is \bfitI \ast = (1  - 1/\scrR 0)\bfitN 

\ast , or
equivalently, I\ast i /N

\ast 
i = 1 - 1/\scrR 0 for i \in \Omega .

It follows from the above claim and the fact

\sum 
i\in \Omega 

Ñ
fi(I

\ast 
i ) + \varepsilon 

\sum 
j\in \Omega 

LijI
\ast 
j

é
=
\sum 
i\in \Omega 

fi(I
\ast 
i ) = 0
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that there exist k, l \in \Omega such that fk(I
\ast 
k) > 0 and fl(I

\ast 
l ) < 0. Thus,

max
i\in \Omega 

Ç
sgn(\beta i  - \gamma i)

Ç
1 - I\ast i

N\ast 
i

\cdot 1

1 - 1/\scrR (i)
0

åå
= 1 - I\ast 1

N\ast 
1

\cdot 1

1 - 1/\scrR (1)
0

,

which implies that

(\beta 1  - \gamma 1)

Ç
1 - I\ast 1

N\ast 
1

\cdot 1

1 - 1/\scrR (1)
0

å
I\ast 1 = \beta 1

Å
1 - I\ast 1

N\ast 
1

ã
I\ast 1  - \gamma 1I

\ast 
1 = f1(I

\ast 
1 ) > 0.

On the other hand, it follows from L(\bfitN \ast )T = 0 that\sum 
j\in \Omega 

L1jI
\ast 
j \geq 

\sum 
j\in \Omega 

L1j
I\ast 1
N\ast 

1

N\ast 
j =

I\ast 1
N\ast 

1

\sum 
j\in \Omega 

L1jN
\ast 
j = 0.

So the left-hand side of the equilibrium equation for I1 is positive, a contradiction.

Remark 3.10. When three or more patches are concerned, we will numerically
show that the highest/lowest risk patch does not necessarily have the highest/lowest
disease prevalence even if the connectivity matrix L is symmetric. Moreover, the
disease prevalence of every patch converges to the same limit for infinite diffusion,
i.e., I\ast i (\varepsilon )/N

\ast 
i \rightarrow (1 - 1/\scrR 0(\infty ))+ as \varepsilon \rightarrow \infty for all i \in \Omega .

Remark 3.11. Dispersal changes the coordinates of the stable equilibrium, i.e.,
(I\ast 1 (\varepsilon ), . . . , I

\ast 
n(\varepsilon )) \not = (I\ast 1 (0), . . . , I

\ast 
n(0)) for any \varepsilon > 0, and the asymptotic disease

prevalence of at least one patch unless the disease dies out in each isolated patch.
In fact, it suffices to prove the case where the disease persists in all isolated patches,

i.e., \scrR (i)
0 > 1 for all i \in \Omega . If not, then for some movement strategy L and diffusion

coefficient \varepsilon > 0, we have

I\ast i (\varepsilon )

N\ast 
i

=
I\ast i (0)

N\ast 
i

= 1 - 1

\scrR (i)
0

\forall i \in \Omega ,

and hence
fi(I

\ast 
i (\varepsilon )) = 0 \leftrightarrow 

\sum 
j\in \Omega 

LijI
\ast 
j (\varepsilon ) = 0 \forall i \in \Omega .

Thus, I\ast i (\varepsilon )/N
\ast 
i is constant in i \in \Omega . The claim in the proof of Theorem 3.9 implies

that \scrR (i)
0 is also constant, which contradicts assumption (B3). Note that the claim

also means that the distribution of the disease prevalences across the environment
is nonuniform, and there does not exist an ``ideal free distribution"" strategy such
that the distribution of infections is proportional to its host abundance. For the
multipatch logistic population model in ecology, the distribution of organisms can be
proportional to its resource level under any ideal free distribution strategy [16]. The
difference comes from the restriction that the ``carrying capacity"" of the SIS patch
model without dispersal, I\ast i (0), depends on the movement strategy.

Remark 3.12. The patch with the highest infection risk has more exported infec-
tions than imported infections, while the patch with the lowest infection risk has more
imported infections than exported infections. Mathematically speaking, suppose that

\scrR (1)
0 \geq \cdot \cdot \cdot \geq \scrR (n)

0 and \scrR 0(\varepsilon ) > 1 for \varepsilon > 0. Then\sum 
j\in \Omega 

L1jI
\ast 
j (\varepsilon ) < 0 and

\sum 
j\in \Omega 

LnjI
\ast 
j (\varepsilon ) > 0.
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In fact, it follows from Proposition 3.8 that

I\ast 1
N\ast 

1

< 1 - 1

\scrR (1)
0

\leftrightarrow  - \varepsilon 
\sum 
i\in \Omega 

L1jI
\ast 
j = f1(I

\ast 
1 ) = \beta 1

Ç
1 - 1

\scrR (1)
0

 - I\ast 1
N\ast 

1

å
I\ast 1 > 0.

The other case can be proved in a similar way. Using this method, we can give a
different but simpler proof of Theorem 3.9.

4. Two-patch case. In this section, we concentrate on the two-patch submodel

(4.1)

dI1
dt

= \beta 1

Å
1 - I1

N\ast 
1

ã
I1  - \gamma 1I1 + \varepsilon ( - L21I1 + L12I2),

dI2
dt

= \beta 2

Å
1 - I2

N\ast 
2

ã
I2  - \gamma 2I2 + \varepsilon (L21I1  - L12I2).

Without loss of generality, we suppose that \scrR (1)
0 > \scrR (2)

0 .

Lemma 4.1. For model (4.1), if 0 < T2(\varepsilon 0) \leq T2(0) for some \varepsilon 0 > 0, then
T \prime 
2(\varepsilon 0) < 0. In particular, if T \prime 

2(0+) < 0, then T \prime 
2(\varepsilon ) < 0 for all \varepsilon \in (0,\infty ) as

\scrR 0(\infty ) \geq 1 (or (0, \varepsilon \ast ) as \scrR 0(\infty ) < 1).

Proof. The assumption T2(\varepsilon 0) > 0 for \varepsilon 0 > 0 implies that \scrR 0(0) > 1. Denote
ri = | \beta i  - \gamma i| and Ki = | 1  - \gamma i/\beta i| N\ast 

i for i = 1, 2. We prove the statement by
considering three cases as follows.

Case (1): \scrR (1)
0 > \scrR (2)

0 > 1. Similar to the proof of Proposition 4 in Arditi, Lobry,
and Sari [3], the equilibrium equations of system (4.1) can be written as

K1  - I\ast 1 =  - K1

r1I\ast 1
\varepsilon ( - L21I

\ast 
1 + L12I

\ast 
2 ),

K2  - I\ast 2 =  - K2

r2I\ast 2
\varepsilon (L21I

\ast 
1  - L12I

\ast 
2 ),

and hence

T2(\varepsilon ) - T2(0) = (I\ast 1 + I\ast 2 ) - (K1 +K2) = \varepsilon (L21I
\ast 
1  - L12I

\ast 
2 )

Å
K2

r2I\ast 2
 - K1

r1I\ast 1

ã
=

\varepsilon 
r1
K1

r2
K2

I\ast 1 I
\ast 
2

(L21I
\ast 
1  - L12I

\ast 
2 )

Å
r1

I\ast 1
K1

 - r2
I\ast 2
K2

ã
.(4.2)

On the other hand, differentiating the equilibrium equations with respect to \varepsilon givesÅ
dI\ast 1
d\varepsilon 

,
dI\ast 2
d\varepsilon 

ãT
=

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

\Biggl( 
\varepsilon L21

I\ast 
1

I\ast 
2
+ r2

I\ast 
2

K2
\varepsilon L12

\varepsilon L21 \varepsilon L12
I\ast 
2

I\ast 
1
+ r1

I\ast 
1

K1

\Biggr) Å
 - 1
1

ã
,

where \~M2 is defined as in the proof of Theorem 3.5 with | \~M2| > 0. This implies that

T \prime 
2(\varepsilon ) =

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

Å
\varepsilon L12

I\ast 2
I\ast 1

+ r1
I\ast 1
K1

+ \varepsilon L12  - \varepsilon L21
I\ast 1
I\ast 2

 - r2
I\ast 2
K2

 - \varepsilon L21

ã
=

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

Å
r1

I\ast 1
K1

 - r2
I\ast 2
K2

 - \varepsilon (I\ast 1 + I\ast 2 )

I\ast 1 I
\ast 
2

(L21I
\ast 
1  - L12I

\ast 
2 )

ã
.
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Thus, if T2(\varepsilon 0) \leq T2(0), then (4.2) implies that

T \prime 
2(\varepsilon 0) \leq 

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

Å
 - \varepsilon 0(I

\ast 
1 + I\ast 2 )

I\ast 1 I
\ast 
2

(L21I
\ast 
1  - L12I

\ast 
2 )

ã
=  - \varepsilon 0(I

\ast 
1 + I\ast 2 )

| \~M2| I\ast 1 I\ast 2
(L21I

\ast 
1  - L12I

\ast 
2 )

2 < 0.

The fact L21I
\ast 
1  - L12I

\ast 
2 \not = 0 follows from Theorem 3.9 or Remark 3.12.

Case (2): \scrR (1)
0 > \scrR (2)

0 = 1. Similarly, we obtain

(4.3) I\ast 1 + I\ast 2  - K1 =
\varepsilon 

r1
K1

\beta 2

N\ast 
2
I\ast 1 I

\ast 
2

(L21I
\ast 
1  - L12I

\ast 
2 )

Å
r1

I\ast 1
K1

 - \beta 2
I\ast 2
N\ast 

2

ã
and

T \prime 
2(\varepsilon ) =

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

Å
r1

I\ast 1
K1

 - \beta 2
I\ast 2
N\ast 

2

 - \varepsilon (I\ast 1 + I\ast 2 )

I\ast 1 I
\ast 
2

(L21I
\ast 
1  - L12I

\ast 
2 )

ã
.

If T2(\varepsilon 0) = I\ast 1 + I\ast 2 \leq T2(0) = K1, then (4.3) implies that

T \prime 
2(\varepsilon 0) \leq  - \varepsilon 0(I

\ast 
1 + I\ast 2 )

| \~M2| I\ast 1 I\ast 2
(L21I

\ast 
1  - L12I

\ast 
2 )

2 < 0.

Case (3): \scrR (1)
0 > 1 > \scrR (2)

0 . Similarly, we get

(4.4) I\ast 1 + I\ast 2  - K1 =
\varepsilon 

r1
K1

r2
K2

I\ast 1 (I
\ast 
2 +K2)

(L21I
\ast 
1  - L12I

\ast 
2 )

Å
r1

I\ast 1
K1

 - r2
I\ast 2 +K2

K2

ã
and

T \prime 
2(\varepsilon ) =

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

Å
r1

I\ast 1
K1

 - r2
I\ast 2
K2

 - \varepsilon (I\ast 1 + I\ast 2 )

I\ast 1 I
\ast 
2

(L21I
\ast 
1  - L12I

\ast 
2 )

ã
.

If T2(\varepsilon 0) = I\ast 1 + I\ast 2 \leq T2(0) = K1, then (4.4) implies that

T \prime 
2(\varepsilon 0) \leq 

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

Å
r2  - 

\varepsilon 0(I
\ast 
1 + I\ast 2 )

I\ast 1 I
\ast 
2

(L21I
\ast 
1  - L12I

\ast 
2 )

ã
=

L21I
\ast 
1  - L12I

\ast 
2

| \~M2| 

Å
r2  - 

I\ast 1 + I\ast 2
I\ast 1 I

\ast 
2

r2I
\ast 
2

Å
1 +

I\ast 2
K2

ãã
< 0

due to \varepsilon 0(L21I
\ast 
1  - L12I

\ast 
2 ) = r2I

\ast 
2 (1 + I\ast 2/K2) > 0. This completes the proof.

Note that the above proof is independent of K1 and K2, i.e., the restriction (2.2)
on N\ast 

1 and N\ast 
2 is not required, so the lemma can be extended to a general two-patch

population model. Based on Lemma 4.1, we can easily obtain a complete classification
on when dispersal leads to more or less infections.

Theorem 4.2. Suppose \scrR (1)
0 > max\{ \scrR (2)

0 , 1\} . The following statements are valid:
(a) If T \prime 

2(0+) \leq 0, then T2(\varepsilon ) < T2(0) for \varepsilon \in (0,\infty ).
(b) If 0 < T \prime 

2(0+) \leq \infty and T2(\infty ) < T2(0), then there exists \^\varepsilon such that T2(\varepsilon ) >
T2(0) for \varepsilon \in (0, \^\varepsilon ), T2(\varepsilon ) = T2(0) for \varepsilon = \^\varepsilon , and T2(\varepsilon ) < T2(0) for \varepsilon \in (\^\varepsilon ,\infty ).

(c) If T2(\infty ) \geq T2(0), then T2(\varepsilon ) > T2(0) for \varepsilon \in (0,\infty ).
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Proof. It is only left to prove the cases of T \prime 
2(0+) = 0 and T \prime 

2(0+) = \infty ; all other
cases immediately follow from Lemma 4.1, the continuity of T2(\varepsilon ) in \varepsilon \in [0,\infty ), and
the continuous differentiability of T2(\varepsilon ) for 0 < \varepsilon \ll 1.

If T \prime 
2(0+) = 0, i.e., r1 = | \beta 1  - \gamma 1| = \beta 1  - \gamma 1 = r2 = | \beta 2  - \gamma 2| > 0, then the

following hold:

(1) \scrR (1)
0 > \scrR (2)

0 > 1. It follows from Proposition 3.8 and (4.2) that

I\ast 1
K1

< 1 <
I\ast 2
K2

\Rightarrow r1
I\ast 1
K1

 - r2
I\ast 2
K2

< 0 \Rightarrow T2(\varepsilon ) < T2(0) for \varepsilon \in (0,\infty ).

(2) \scrR (1)
0 > 1 > \scrR (2)

0 . Again it follows from Proposition 3.8 and (4.4) that

I\ast 1
K1

< 1 \Rightarrow r1
I\ast 1
K1

 - r2
I\ast 2 +K2

K2
< 0 \Rightarrow T2(\varepsilon ) < T2(0) for \varepsilon \in (0,\infty ).

If T \prime 
2(0+) = \infty , i.e., r2 = \beta 2  - \gamma 2 = 0 \leftrightarrow \scrR (2)

0 = 1, then it follows from the fact

r1
I\ast 1
K1

 - \beta 2
I\ast 2
N\ast 

2

\rightarrow r1
I\ast 1 (0)

K1
 - \beta 2

I\ast 2 (0)

N\ast 
2

= r1 > 0 as \varepsilon \rightarrow 0+,

equation (4.3), the continuity of T2(\varepsilon ), and Lemma 4.1 that the conclusion holds.

Recall that T \prime 
2(0+) =

\bigl( 
| \beta 2  - \gamma 2|  - 1  - | \beta 1  - \gamma 1|  - 1

\bigr) 
(L21I

\ast 
1 (0) - L12I

\ast 
2 (0)) and direct

calculation yields

T2(\infty ) - T2(0) =

\left\{                 

L12L21(\beta 1  - \beta 2)(\beta 1\gamma 2  - \beta 2\gamma 1)N

(L12 + L21)\beta 1\beta 2(\beta 1L12 + \beta 2L21)
if \scrR (1)

0 > \scrR (2)
0 \geq 1,

L21\Delta 

(L12 + L21)\beta 1(\beta 1L12 + \beta 2L21)
N if \scrR (1)

0 > \scrR 0(\infty ) \geq 1 > \scrR (2)
0 ,

 - L12(\beta 1  - \gamma 1)

(L12 + L21)\beta 1
N if \scrR (1)

0 > 1 > \scrR 0(\infty ) > \scrR (2)
0 ,

where \Delta = L12\beta 1(\beta 1 + \beta 2  - \gamma 1  - \gamma 2)  - L12\beta 2(\beta 1  - \gamma 1)  - L21\beta 1(\gamma 2  - \beta 2). We can
then give a more detailed classification in terms of the patch reproduction numbers

\scrR (1)
0 and \scrR (2)

0 . In addition, a lengthy but interesting proof using a graphical method
similar to that used by Arditi, Lobry, and Sari [4] is given in the appendix. Note that

if \scrR (1)
0 > \scrR (2)

0 \geq 1, then the signs of both T2(\infty ) - T2(0) and T \prime 
2(0+) are independent

of the connectivity matrix L, and hence the change pattern (beneficial or detrimental)
of the total infection size T2(\varepsilon ) is unaffected by the selection of L.

Theorem 4.3. For model (4.1), we have the following:

(a) \scrR (1)
0 > \scrR (2)

0 > 1. Then
(1) if \beta 1  - \gamma 1 \leq \beta 2  - \gamma 2, then T2(\varepsilon ) < T2(0) for \varepsilon \in (0,\infty ) (and \beta 1 < \beta 2);
(2) if \beta 1  - \gamma 1 > \beta 2  - \gamma 2 and \beta 1 < \beta 2, then there exists

\varepsilon a =
\beta 1\beta 2(\beta 1  - \gamma 1  - \beta 2 + \gamma 2)

(\beta 2  - \beta 1)(L21\beta 1 + L12\beta 2)

such that T2(\varepsilon ) > T2(0) for \varepsilon \in (0, \varepsilon a), T2(\varepsilon ) = T2(0) for \varepsilon = \varepsilon a, and
T2(\varepsilon ) < T2(0) for \varepsilon \in (\varepsilon a,\infty );

(3) if \beta 1 \geq \beta 2, then T2(\varepsilon ) > T2(0) for \varepsilon \in (0,\infty ) (and \beta 1  - \gamma 1 > \beta 2  - \gamma 2).

(b) \scrR (1)
0 > \scrR (2)

0 = 1. Then
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(1) if \beta 1 < \beta 2, then there exists

\varepsilon b =
\beta 1\beta 2(\beta 1  - \gamma 1)

(\beta 2  - \beta 1)(L21\beta 1 + L12\beta 2)

such that T2(\varepsilon ) > T2(0) for \varepsilon \in (0, \varepsilon b), T2(\varepsilon ) = T2(0) for \varepsilon = \varepsilon b, and
T2(\varepsilon ) < T2(0) for \varepsilon \in (\varepsilon b,\infty );

(2) if \beta 1 \geq \beta 2, then T2(\varepsilon ) > T2(0) for \varepsilon \in (0,\infty ).

(c) \scrR (1)
0 > \scrR 0(\infty ) = L12\beta 1+L21\beta 2

L12\gamma 1+L21\gamma 2
\geq 1 > \scrR (2)

0 . Then

(1) if \beta 1  - \gamma 1 \leq \gamma 2  - \beta 2, then T2(\varepsilon ) < T2(0) for \varepsilon \in (0,\infty );

(2) if \beta 1  - \gamma 1 > \gamma 2  - \beta 2 and L21

L12
> L21\beta 1(\beta 1+\beta 2 - \gamma 1 - \gamma 2)

L12\beta 2(\beta 1 - \gamma 1)+L21\beta 1(\gamma 2 - \beta 2)
, then there

exists

\varepsilon c =
\beta 1(L12\beta 2(\beta 1  - \gamma 1) + L21\beta 1(\gamma 2  - \beta 2))(\beta 1 + \beta 2  - \gamma 1  - \gamma 2)

(L12(\beta 1(\gamma 1 + \gamma 2) - \beta 2
1  - \beta 2\gamma 1) + L21\beta 1(\gamma 2  - \beta 2))(L21\beta 1 + L12\beta 2)

such that T2(\varepsilon ) > T2(0) for \varepsilon \in (0, \varepsilon c), T2(\varepsilon ) = T2(0) for \varepsilon = \varepsilon c, and
T2(\varepsilon ) < T2(0) for \varepsilon \in (\varepsilon c,\infty );

(3) if L21

L12
\leq L21\beta 1(\beta 1+\beta 2 - \gamma 1 - \gamma 2)

L12\beta 2(\beta 1 - \gamma 1)+L21\beta 1(\gamma 2 - \beta 2)
, then T2(\varepsilon ) > T2(0) for \varepsilon \in (0,\infty )

(and \beta 1  - \gamma 1 > \gamma 2  - \beta 2).

(d) \scrR (1)
0 > 1 > \scrR 0(\infty ) = L12\beta 1+L21\beta 2

L12\gamma 1+L21\gamma 2
> \scrR (2)

0 . There exists

\varepsilon \ast =
(\beta 1  - \gamma 1)(\beta 2  - \gamma 2)

(\beta 1  - \gamma 1)L12 + (\beta 2  - \gamma 2)L21
> 0

such that \scrR 0(\varepsilon ) > 1 for \varepsilon \in [0, \varepsilon \ast ), \scrR 0(\varepsilon 
\ast ) = 1 and \scrR 0(\varepsilon ) < 1 for \varepsilon \in (\varepsilon \ast ,\infty ).

Then
(1) if \beta 1 - \gamma 1 \leq \gamma 2 - \beta 2, then 0 < T2(\varepsilon ) < T2(0) for \varepsilon \in (0, \varepsilon \ast ) and T2(\varepsilon ) \equiv 0

for \varepsilon \in [\varepsilon \ast ,\infty );
(2) if \beta 1 - \gamma 1 > \gamma 2 - \beta 2, then T2(\varepsilon ) > T2(0) for \varepsilon \in (0, \varepsilon c), T2(\varepsilon ) = T2(0) for

\varepsilon = \varepsilon c, 0 < T2(\varepsilon ) < T2(0) for \varepsilon \in (\varepsilon c, \varepsilon 
\ast ), and T2(\varepsilon ) \equiv 0 for \varepsilon \in [\varepsilon \ast ,\infty ).

(e) 1 \geq \scrR (1)
0 > \scrR (2)

0 . Then T2(\varepsilon ) \equiv T2(0) = 0 for \varepsilon \in [0,\infty ).

It is worth noting that the analysis performed by Arditi, Lobry, and Sari [3, 4]
is limited to a source-source system (i.e., r1 = \beta 1  - \gamma 1 > 0 and r2 = \beta 2  - \gamma 2 > 0).
We extensively generalize their findings by using both the analytical and graphical
methods.

5. Numerical simulations. We further explore how dispersal affects the total
infection size in a numerical way. The parameter ranges are mainly based on the
common cold by choosing \beta i \in [0.05, 0.3] and \gamma i \in [0.05, 0.15] with per day as the
time unit [38]. For convenience, we assume the total population size N = 1, which
makes Tn(\varepsilon ) equivalent to the overall disease prevalence.

Example 5.1 (dependence of total infection size on diffusion coefficient). For the
two-patch submodel (4.1), choosing four parameter sets as listed in Table 1, we plot the
curves of T2 and \scrR 0 in terms of \varepsilon \in [0, 1] in Figure 1. In all four scenarios, two source

patches, with patch 1 being the high-risk patch, are considered, i.e., \scrR (1)
0 > \scrR (2)

0 > 1.
As indicated by Lemma 3.1, the basic reproduction number \scrR 0 is always strictly
decreasing and strictly convex in the dispersal rate \varepsilon . In the first scenario, it follows
from Theorem 4.2 that the negativity of T \prime 

2(0+) =  - 0.049 implies that T2(\varepsilon ) decreases
strictly from T2(0) = 0.37 to T2(\infty ) = 0.33 (see Figure 1(a)). Namely, fast diffusion
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reduces the transmission potential and the infection size simultaneously. In the second
and third scenarios, the fact that T \prime 

2(0+) > 0 and T2(0) < T2(\infty ) means that dispersal
always leads to larger total infection size than no dispersal. More specifically, T2(\varepsilon )
initially increases then decreases in scenario 2 but constantly increases in scenario
3 (see Figures 1(b) and 1(c)). The third scenario is of particular interest in that
increasing diffusion always has inconsistent effects from the aspects of infection risk
and infection size, respectively. The last scenario has T \prime 

2(0+) > 0 and T2(0) > T2(\infty ),
which suggests that small dispersal is detrimental but large dispersal is beneficial (see
Figure 1(d)). Similar scenarios can be found when dispersal is asymmetric.

Table 1
The parameter settings for Figure 1 with L12 = L21 = 1 for all scenarios.

\beta 1 \gamma 1 \beta 2 \gamma 2 \scrR (1)
0 \scrR (2)

0 \scrR 0(\infty ) T2(0) T2(\infty ) T \prime 
2(0+)

a 0.1 0.051 0.2 0.15 1.96 1.33 1.49 0.37 0.33  - 0.049
b 0.25 0.15 0.15 0.14 1.67 1.07 1.38 0.23 0.275 15
c 0.24 0.12 0.16 0.1 2 1.6 1.82 0.44 0.45 0.52
d 0.1 0.06 0.15 0.14 1.67 1.07 1.25 0.23 0.2 12.5

0.0 0.2 0.4 0.6 0.8 1.0

0.33

0.34

0.35

0.36

0.37

¶

T
2

1.5

1.6

1.7

1.8

1.9

R
0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.24

0.25

0.26

0.27

0.28

¶

T
2

1.40

1.45

1.50

1.55

1.60

1.65

R
0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.438

0.440

0.442

0.444

0.446

0.448

0.450

¶

T
2

1.85

1.90

1.95

2.00

R
0

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.21

0.22

0.23

0.24

0.25

¶

T
2

1.3

1.4

1.5

1.6

R
0

(d)

Fig. 1. The total number of infections T2 (solid line) and the basic reproduction number \scrR 0

(dashed line) versus diffusion coefficient \varepsilon under four scenarios. The x-axis represents \varepsilon , while the
left and right y-axes represent T2 and \scrR 0, respectively. See Table 1 for parameter settings.

Briefly speaking, there are four types of relationships between the total infection
size and diffusion coefficient for the two-patch submodel, i.e., strictly decreasing, ini-
tially increasing and then decreasing, strictly increasing, and constant. More complex
dependencies can appear when three or more patches are concerned (see Figure 2 for
the three-patch case).
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(a)
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¶
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R
0

(b)

Fig. 2. The total number of infections T3 (solid line) and the basic reproduction number \scrR 0

(dashed line) versus diffusion coefficient \varepsilon under two scenarios. The x-axis represents \varepsilon , while
the left and right y-axes represent T3 and \scrR 0, respectively. Parameter values are (a) \beta 1 = 0.29,
\gamma 1 = 0.073, \beta 2 = 0.105, \gamma 2 = 0.061, \beta 3 = 0.053, \gamma 3 = 0.14, L12 = 0.03, L13 = 0.094, L21 = 0.176,
L23 = 0.66, L31 = 0.098, L32 = 0.52; (b) \beta 1 = 0.25, \gamma 1 = 0.085, \beta 2 = 0.131, \gamma 2 = 0.053, \beta 3 = 0.076,
\gamma 3 = 0.135, L12 = 0.14, L13 = 0.04, L21 = 0.13, L23 = 0.47, L31 = 0.04, L32 = 0.45.

Example 5.2 (disease persistence versus disease prevalence). Consider a two-patch
environment with the same parameter setting as scenario 2 in Table 1. The curves
of the disease prevalences of patch 1, patch 2, and both patches in terms of diffusion
coefficient, i.e.,

I\ast 1 (\varepsilon )

N\ast 
1

,
I\ast 2 (\varepsilon )

N\ast 
2

, and
I\ast 1 (\varepsilon ) + I\ast 2 (\varepsilon )

N\ast 
1 +N\ast 

2

=
T2(\varepsilon )

N
,

are plotted in Figure 3(a). Since \scrR (1)
0 = 1.67 and \scrR (2)

0 = 1.07, the disease prevalences
of patches 1 and 2 in isolation are, respectively,

I\ast 1 (0)

N\ast 
1

= 1 - 1

\scrR (1)
0

= 0.4 and
I\ast 2 (0)

N\ast 
2

= 1 - 1

\scrR (2)
0

= 0.067.

When the two patches are connected, the disease prevalence of patch 1 decreases,
while that of patch 2 increases as diffusion coefficient \varepsilon varies from 0 to \infty . The
sequence of the three curves from top to bottom are for patch 1, both patches, and
patch 2, respectively. In other words, the disease prevalence of the high-risk patch is
constantly higher than that of the low-risk patch, and the overall disease prevalence
is between them. As \varepsilon \rightarrow \infty , all three disease prevalences converge to the same value,
1  - 1/\scrR 0(\infty ). However, for a three-patch environment as illustrated in Figure 3(b),
the lowest risk patch does not necessarily have the lowest disease prevalence whenever
the dispersal rate is large enough. So the disease prevalences may not be in ascending
order of the patch reproduction numbers even if the connectivity matrix L is symmet-
ric. A possible reason for the occurrence of this phenomenon is that the connection
between the lowest risk and the highest risk patches is much stronger than any other
connection, which results in more cases imported to the lowest risk patch. With a
similar idea, one can easily construct an example in which the highest risk patch does
not have the highest disease prevalence.

Example 5.3 (effect of asymmetric dispersal). The total infection size, or equiva-
lently, the overall disease prevalence, is not only affected by spatial heterogeneity and
diffusion coefficient, but it is also influenced by patch connectivity. Using the same
parameter set as the last scenario in Table 1, the contour plot in Figure 4(a) shows
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I1
*�N1

*
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*�N2

*
T2�N

0.1 0.2 0.3 0.4 0.5
¶
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0.15

0.20

0.25
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(a)
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*
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*�N2

*
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*�N3

*
T3�N

0.1 0.2 0.3 0.4 0.5
¶

0.1

0.2

0.3

0.4

(b)

Fig. 3. The single-patch and overall disease prevalences versus diffusion coefficient. Parameter
settings are (a) \beta 1 = 0.25, \gamma 1 = 0.15, \beta 2 = 0.15, \gamma 2 = 0.14, L12 = L21 = 1 for a two-patch
environment; (b) \beta 1 = 0.15, \beta 2 = 0.12, \beta 3 = 0.11, \gamma 1 = \gamma 2 = \gamma 3 = 0.1, L12 = L21 = 0.1,
L13 = L31 = 0.9, L23 = L32 = 0.2 for a three-patch environment.

(a) (b)

Fig. 4. The contour plots of the total infection size T2(\varepsilon L12, \varepsilon L21) (left panel) and the difference
of the total infection sizes with and without diffusion T2(\varepsilon L12, \varepsilon L21) - T2(0, 0) (right panel) versus
travel rates \varepsilon L12 and \varepsilon L21. Parameter values are \beta 1 = 0.1, \gamma 1 = 0.06, \beta 2 = 0.15, \gamma 2 = 0.14.

the total infection size versus travel rates \varepsilon L12 and \varepsilon L21. We observe that if both the
diffusion coefficient \varepsilon and the asymmetry Lij/Lji are large enough, then the overall
disease prevalence approaches the disease prevalence of patch i in isolation. In fact,
for the two-patch case, if \scrR 0(\infty ) > 1, then it follows from Theorem 3.3 that

T2(\infty )

N
= 1 - 1

\scrR 0(\infty )
= 1 - \gamma 1L

\ast 
11 + \gamma 2L

\ast 
22

\beta 1L\ast 
11 + \beta 2L\ast 

22

= 1 - \gamma 1L12 + \gamma 2L21

\beta 1L12 + \beta 2L21

= 1 - \gamma 1 + L21/L12\gamma 2
\beta 1 + L21/L12\beta 2

\approx 

\left\{   1 - 1

\scrR (1)
0

if L12

L21
\gg 1,

1 - 1

\scrR (2)
0

if L21

L12
\gg 1.

In addition, the total infection size decreases with respect to the travel rate from high-
risk patch to low-risk patch, L21, but increases with respect to the travel rate from
low-risk patch to high-risk patch, L12. Meanwhile, the difference of the total numbers
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of infections with and without dispersal is big when the asymmetry is not very large
and the diffusion coefficient is relatively small or sufficiently large (see Figure 4(b)).

6. Discussion. Despite a large number of studies regarding the effect of hu-
man movement on the spread and control of infectious diseases, very few of them
have been focused on how population dispersal affects the size and distribution of
infections. In this paper, we considered an SIS patch model where the disease does
not impair the mobility of infected people. Either the disease-free equilibrium or the
endemic equilibrium is globally attractive. The numbers of infections in each patch
and over all patches at the globally stable equilibrium are obtained as the diffusion
coefficient goes to zero or infinity. We established sufficient conditions under which
large dispersal causes more or less infections than no dispersal. The right derivative
of the total infection size at zero was calculated to determine its change trend for
small dispersal. We estimated the number of infections and the disease prevalence of
each patch at any dispersal rate and showed that diffusion reduces the infection size
and disease prevalence of the highest risk patch but increases these of the lowest risk
patch. However, the highest/lowest risk patch cannot have the lowest/highest disease
prevalence. In the case of two patches, the disease is always more prevalent in the
high-risk patch than the low-risk patch. Furthermore, we gave a complete classifica-
tion on when dispersal has a beneficial or detrimental effect on reducing infections
across two patches.

In addition, numerical simulations were conducted to further investigate how dis-
ease morbidity and endemic level vary with human migration. In the first example,
we confirmed that for the two-patch submodel the change pattern of the total in-
fection size in diffusion coefficient is completely governed by the total infection size
and its right derivative at no dispersal and the infection size with infinite dispersal.
Specifically, the total infection size either decreases, increases, or initially increases
then decreases with respect to diffusion coefficient. There are more change patterns
for the model involved more patches. The second example examined the relationship
between infection risk and disease prevalence. Higher infection risk means higher dis-
ease prevalence for the two-patch case. However, this result may fail under suitable
travel patterns for an environment containing three or more patches. The last exam-
ple concerned the impact of dispersal asymmetry. We found that the asymmetry can
significantly affect the persistence and endemicity of infectious diseases.

The basic reproduction number only characterizes initial transmission and serves
as a threshold quantity between disease persistence and extinction. It is usually
very difficult or even impossible to eradicate an infectious disease due to natural
reservoir, imported cases, pathogen mutation, etc. Therefore, reducing the number
of infections is a more feasible objective for the global control of most infectious
diseases. The potential inconsistency between the basic reproduction number and the
total infection size indicates that inappropriate border control may change the disease
persistence and disease prevalence in an opposite direction. To design a better control
strategy, health agencies should consider the influence of population dispersal on both
infection risk and infection size. Moreover, limiting human movement can lead to more
infections under certain conditions. This possibility deserves much attention for the
COVID-19 pandemic, in which domestic or international travel restrictions including
lockdowns are widely carried out across the globe.

To the best knowledge of the author, this is possibly the first theoretical work
about the effect of human movement on disease burden and its distribution. There are
many directions to improve and extend the current work. It is generally unknown how
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the total infection size changes with medium diffusion coefficient. We are interested
in developing a systematic approach to classify the parameter space into beneficial
and detrimental parts for a model system with an arbitrary number of patches. The
graphical method used for the two-patch case can hardly be applied to cases with
three or more patches since the associated ellipse, parabola, and line in the plane
become ellipsoid, paraboloid, and hyperplane in higher dimensional space. Under
what level of diffusion does the total infection size attain its maximum or minimum?
To what extent can diffusion change the total infection size relative to no dispersal
for a given connectivity matrix? When the susceptible and infected subpopulations
have different diffusion coefficients, Allen et al. [1] and Chen et al. [8], respectively,
showed the existence and uniqueness of the endemic equilibrium if the connectivity
matrix is symmetric and asymmetric. We would like to know whether the main
results obtained in this paper still hold [19]. Similar questions can be considered for
the SIS patch models with vital dynamics [20, 42, 43], the SIR patch model [29],
the SEIR or SEIRS patch model [34], the multipatch Ross--Macdonald model [9, 22],
the SIS reaction-diffusion model [2], and so on. In reality, movement from high-risk
patch to low-risk patch may be restricted or banned. For example, the United States
banned travel from China very early to fight the novel coronavirus, but it failed to
block imported cases from Europe. What happens to the total infection size and its
distribution if some but not all travel rates are proportionally decreasing or increasing
while the remainder are unchanged [21]? The methods and results developed in this
topic may be valuable in studying the effect of dispersal on total population abundance
in spatial ecology.

Appendix: Proof of Theorem 4.3.

Proof. The positive equilibrium (I\ast 1 , I
\ast 
2 ) of system (4.1) is the solution to

(A1)

\beta 1

Å
1 - I1

N\ast 
1

ã
I1  - \gamma 1I1 + \varepsilon ( - L21I1 + L12I2) = 0,

\beta 2

Å
1 - I2

N\ast 
2

ã
I2  - \gamma 2I2 + \varepsilon (L21I1  - L12I2) = 0.

Adding the two equations in (A1) and solving I2 from the first equation of (A1) yields

(A2)

E (I1, I2) : \beta 1

Å
1 - I1

N\ast 
1

ã
I1  - \gamma 1I1 + \beta 2

Å
1 - I2

N\ast 
2

ã
I2  - \gamma 2I2 = 0,

P(I1) : I2 =
L21

L12
I1  - 

1

\varepsilon L12

Å
\beta 1

Å
1 - I1

N\ast 
1

ã
I1  - \gamma 1I1

ã
,

where E is an ellipse independent of \varepsilon and P is a parabola (open upward). Obviously,

systems (A1) and (A2) are equivalent. Further, if \scrR (1)
0 > 1, then P can be written

as

P\varepsilon (I1) : I2 =
L21

L12
I1  - 

r1
\varepsilon L12

Å
1 - I1

K1

ã
I1,

where r1 = \beta 1  - \gamma 1 > 0 and K1 = I\ast 1 (0) = (1  - \gamma 1/\beta 1)N
\ast 
1 > 0. The parabola P\varepsilon 

passes through O(0, 0) and M(K1,K1L21/L12) for any \varepsilon > 0. Moreover, the left and
right branches of the parabola P\varepsilon converge, respectively, to vertical lines I1 = 0 and
P0 : I1 = K1 as \varepsilon \rightarrow 0+, and to a straight line P\infty : I2 = L21

L12
I1 as \varepsilon \rightarrow \infty .
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Fig. A1. A schematic graph for Case (a2).

Case (a): \scrR (1)
0 > \scrR (2)

0 > 1. Denote r2 = \beta 2  - \gamma 2 > 0 and K2 = I\ast 2 (0) =
(1 - \gamma 2/\beta 2)N

\ast 
2 > 0. Then the ellipse E can be rewritten as

Ea(I1, I2) : r1

Å
1 - I1

K1

ã
I1 + r2

Å
1 - I2

K2

ã
I2 = 0.

Clearly, Ea passes through the points O(0, 0), P (K1, 0), A(K1,K2), and Q(0,K2). As
\varepsilon varies from 0 to \infty , the intersection of Ea and the parabola P\varepsilon moves along the
ellipse from A to

B =

Å
L12K1K2(r1L12 + r2L21)

r1K2L2
12 + r2K1L2

21

,
L21K1K2(r1L12 + r2L21)

r1K2L2
12 + r2K1L2

21

ã
,

which is the nontrivial intersection of Ea and P\infty (see Figure A1).
To facilitate comparison of T2(\varepsilon ) and T2(0) = I\ast 1 (0)+ I\ast 2 (0) = K1+K2, we define

a straight line La : I1 + I2 = K1 +K2. If the intersection of the ellipse Ea and the
parabola P\varepsilon , i.e., (I

\ast 
1 , I

\ast 
2 ), is on or below the line La, then T2(\varepsilon ) \leq T2(0), whereas

if the intersection is above the line, then T2(\varepsilon ) > T2(0). Direct calculation finds that
the ellipse Ea and the line La have two intersections:

A(K1,K2) and C

Å
r2K1(K1 +K2)

r1K2 + r2K1
,
r1K2(K1 +K2)

r1K2 + r2K1

ã
.

By differentiating the equation of Ea with respect to I1 and substituting point A into
the resulting equation, the slope of Ta, the tangent line to the ellipse Ea at point A,
is  - r1

r2
. Next we split the model parameter space in terms of the relative position of

the three points A,B, and C, or equivalently, the three lines
 - \rightarrow 
OA,

 -  - \rightarrow 
OB, and

 -  - \rightarrow 
OC whose
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slopes are
K2

K1
,

L21

L12
, and

r1K2

r2K1
,

respectively. It follows from

\scrR (1)
0 > \scrR (2)

0 > 1 \Rightarrow 1 - 1

\scrR (1)
0

> 1 - 1

\scrR (2)
0

> 0 \Rightarrow L21

L12
>

K2

K1
=

(1 - 1/\scrR (2)
0 )N\ast 

2

(1 - 1/\scrR (1)
0 )N\ast 

1

that line
 - \rightarrow 
OA is below line

 -  - \rightarrow 
OB in int\BbbR 2

+.

(1) K2

K1
= r1K2

r2K1
\leftrightarrow r1 = r2 \leftrightarrow  - r1/r2 =  - 1. The line

 - \rightarrow 
OA coincides with

 -  - \rightarrow 
OC

and the tangent line Ta coincides with La. Thus the ellipse Ea is below La

except for the point A, and hence T2(\varepsilon ) \leq T2(0) for \varepsilon \geq 0.

(2) K2

K1
> r1K2

r2K1
\leftrightarrow r1 < r2 \leftrightarrow  - r1/r2 >  - 1. The line

 -  - \rightarrow 
OB is above line

 - \rightarrow 
OA and

line
 - \rightarrow 
OA is above line

 -  - \rightarrow 
OC in int\BbbR 2

+. Therefore, the arc ÃB is below the line
La, and hence T2(\varepsilon ) \leq T2(0) for \varepsilon \geq 0.

(3) K2

K1
< r1K2

r2K1
\leftrightarrow r1 > r2 \leftrightarrow  - r1/r2 <  - 1. The line

 - \rightarrow 
OA is below both lines

 -  - \rightarrow 
OB

and
 -  - \rightarrow 
OC in int\BbbR 2

+.

(i) If
 -  - \rightarrow 
OB is above

 -  - \rightarrow 
OC, i.e.,

L21

L12
>

r1K2

r2K1
\leftrightarrow 1 - 1/\scrR (1)

0

1 - 1/\scrR (2)
0

=
r1
r2

\cdot \beta 2

\beta 1
>

r1
r2

\leftrightarrow \beta 2 > \beta 1,

then there exists \varepsilon a > 0 such that the intersection (I\ast 1 , I
\ast 
2 ) of Ea and P\varepsilon 

moves along Ea from A to C to B as \varepsilon varies from 0 to \varepsilon a to \infty . In other
words, if \beta 2 > \beta 1, then T2(\varepsilon ) \geq T2(0) for \varepsilon \in [0, \varepsilon a] and T2(\varepsilon ) < T2(0)
for \varepsilon \in (\varepsilon a,\infty ). Solving \varepsilon from the parabola P\varepsilon and substituting point
C into the expression gives the critical value

\varepsilon a =
r1r2K1K2(r1  - r2)

(r1K2 + r2K1)(r2K1L21  - r1K2L12)

=
\beta 1\beta 2(\beta 1  - \gamma 1  - \beta 2 + \gamma 2)

(\beta 2  - \beta 1)(L21\beta 1 + L12\beta 2)
.

(ii) If
 -  - \rightarrow 
OB is below or coincident with

 -  - \rightarrow 
OC, i.e., \beta 2 \leq \beta 1, then B belongs to

the arc ÃC, which implies that T2(\varepsilon ) > T2(0) for \varepsilon > 0.

Case (b): \scrR (1)
0 > \scrR (2)

0 = 1. The ellipse now takes the form

Eb(I1, I2) : r1

Å
1 - I1

K1

ã
I1  - \beta 2

I22
N\ast 

2

= 0.

Clearly, in the first quadrant, Eb passes through points O(0, 0) and P (K1, 0). As \varepsilon 
varies from 0 to \infty , the intersection of Eb and the parabola P\varepsilon moves along the ellipse
from P (K1, 0) to

B =

Å
r1K1N

\ast 
2L

2
12

r1N\ast 
2L

2
12 + \beta 2K1L2

21

,
r1K1N

\ast 
2L12L21

r1N\ast 
2L

2
12 + \beta 2K1L2

21

ã
,

which is the nontrivial intersection of the ellipse Eb and P\infty .
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Since T2(0) = K1, we define Lb : I1+I2 = K1 to compare T2(\varepsilon ) and T2(0). Direct
calculation finds that the ellipse Eb and the line Lb have two intersections:

P (K1, 0) and C

Å
\beta 2K

2
1

r1N\ast 
2 + \beta 2K1

,
r1K1N

\ast 
2

r1N\ast 
2 + \beta 2K1

ã
.

The vertical line Tb : I1 = K1 is tangent to the ellipse Eb at point P (K1, 0). The

slopes of
 -  - \rightarrow 
OP ,

 -  - \rightarrow 
OB, and

 -  - \rightarrow 
OC are

0,
L21

L12
, and

r1N
\ast 
2

\beta 2K1
,

respectively. The line
 -  - \rightarrow 
OP is below both lines

 -  - \rightarrow 
OB and

 -  - \rightarrow 
OC.

(1) L21

L12
>

r1N
\ast 
2

\beta 2K1
\leftrightarrow \beta 1 < \beta 2. The line

 -  - \rightarrow 
OC is below line

 -  - \rightarrow 
OB but above line

 -  - \rightarrow 
OP . Then there exists \varepsilon b > 0 such that the intersection (I\ast 1 , I

\ast 
2 ) of Eb and P\varepsilon 

moves along Eb from P to C to B as \varepsilon varies from 0 to \varepsilon b to \infty . Consequently,
if \beta 2 > \beta 1, then T2(\varepsilon ) \geq T2(0) for \varepsilon \in [0, \varepsilon b] and T2(\varepsilon ) < T2(0) for \varepsilon \in (\varepsilon b,\infty ).
Similarly, solving \varepsilon from the parabola P\varepsilon and substituting point C into the
result gives the critical value

\varepsilon b =
r21\beta 2K1N

\ast 
2

(r1N\ast 
2 + \beta 2K1)(\beta 2K1L21  - r1N\ast 

2L12)
=

\beta 1\beta 2(\beta 1  - \gamma 1)

(\beta 2  - \beta 1)(L21\beta 1 + L12\beta 2)
.

(2) L21

L12
\leq r1N

\ast 
2

\beta 2K1
\leftrightarrow \beta 1 \geq \beta 2. The line

 -  - \rightarrow 
OC is above line

 -  - \rightarrow 
OB, and line

 -  - \rightarrow 
OB is above

line
 -  - \rightarrow 
OP . Therefore, the arc P̃B is above line Lb, and hence T2(\varepsilon ) \geq T2(0)

for \varepsilon \geq 0.
Case (c): \scrR (1)

0 > \scrR 0(\infty ) = L12\beta 1+L21\beta 2

L12\gamma 1+L21\gamma 2
\geq 1 > \scrR (2)

0 . Denote r2 = \gamma 2  - \beta 2 > 0

and K2 = (\gamma 2/\beta 2  - 1)N\ast 
2 > 0. Then the ellipse can be rewritten as

Ec(I1, I2) : r1

Å
1 - I1

K1

ã
I1 + r2

Å
 - 1 - I2

K2

ã
I2 = 0.

In the first quadrant, Ec passes through points O(0, 0) and P (K1, 0). As \varepsilon varies
from 0 to \infty , the intersection of Ec and the parabola P\varepsilon moves along the ellipse from
P (K1, 0) to

B =

Å
K1K2L12(r1L12  - r2L21)

r1K2L2
12 + r2K1L2

21

,
K1K2L21(r1L12  - r2L21)

r1K2L2
12 + r2K1L2

21

ã
,

which is the nonzero intersection of Ec and P\infty . Note that \scrR 0(\infty ) > 1 implies
r1L12 > r2L21, so B \in int\BbbR 2

+.
We still define Lc : I1 + I2 = K1. The ellipse Ec and the line Lc have two

intersections:

P (K1, 0) and C

Å
r2K1(K1 +K2)

r1K2 + r2K1
,
(r1  - r2)K1K2

r1K2 + r2K1

ã
.

Point C lies in int\BbbR 2
+ if and only if r1 > r2. The slope of Tc, the tangent line to the

ellipse Ec at point P , is  - r1
r2
. The slopes of

 -  - \rightarrow 
OP ,

 -  - \rightarrow 
OB, and

 -  - \rightarrow 
OC are, respectively,

0,
L21

L12
, and

(r1  - r2)K2

r2(K1 +K2)
.
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(1) r1 \leq r2 \leftrightarrow  - r1/r2 \geq  - 1. The tangent line Tc is below or coincides with line

Lc in the first quadrant. Therefore, the arc P̃B is below line Lc, and hence
T2(\varepsilon ) \leq T2(0) for \varepsilon \geq 0.

(2) r1 > r2 and L21

L12
> (r1 - r2)K2

r2(K1+K2)
\leftrightarrow L21

L12
> L21\beta 1(\beta 1+\beta 2 - \gamma 1 - \gamma 2)

L12\beta 2(\beta 1 - \gamma 1)+L21\beta 1(\gamma 2 - \beta 2)
and  - r1/r2

<  - 1. The line
 -  - \rightarrow 
OB is above line

 -  - \rightarrow 
OC, and line

 -  - \rightarrow 
OC is above line

 -  - \rightarrow 
OP . There

exists \varepsilon c > 0 such that the intersection (I\ast 1 , I
\ast 
2 ) of Ec and P\varepsilon moves along Ec

from P to C to B as \varepsilon varies from 0 to \varepsilon c to \infty . So we have T2(\varepsilon ) \geq T2(0)
for \varepsilon \in [0, \varepsilon c] and T2(\varepsilon ) < T2(0) for \varepsilon \in (\varepsilon c,\infty ). Solving \varepsilon from the parabola
P\varepsilon and substituting point C into the result gives the critical value

\varepsilon c =
r1r2(r1  - r2)K2(K1 +K2)

(r1K2 + r2K1)(r2(K1 +K2)L21  - (r1  - r2)K2L12)

=
\beta 1(L12\beta 2(\beta 1  - \gamma 1) + L21\beta 1(\gamma 2  - \beta 2))(\beta 1 + \beta 2  - \gamma 1  - \gamma 2)

(L12(\beta 1(\gamma 1 + \gamma 2) - \beta 2
1  - \beta 2\gamma 1) + L21\beta 1(\gamma 2  - \beta 2))(L21\beta 1 + L12\beta 2)

> 0.

(3) L21

L12
\leq (r1 - r2)K2

r2(K1+K2)
\leftrightarrow L21

L12
\leq L21\beta 1(\beta 1+\beta 2 - \gamma 1 - \gamma 2)

L12\beta 2(\beta 1 - \gamma 1)+L21\beta 1(\gamma 2 - \beta 2)
and  - r1/r2 <  - 1. The

line
 -  - \rightarrow 
OB is below line

 -  - \rightarrow 
OC but above line

 -  - \rightarrow 
OP . Therefore, the arc P̃B is above

line Lc, and hence T2(\varepsilon ) \geq T2(0) for \varepsilon \geq 0.

Case (d): \scrR (1)
0 > 1 > \scrR 0(\infty ) = L12\beta 1+L21\beta 2

L12\gamma 1+L21\gamma 2
> \scrR (2)

0 . It follows from Remark 3.2

that there exists a unique positive \varepsilon \ast such that \scrR 0(\varepsilon ) > 1 for \varepsilon \in [0, \varepsilon \ast ) and \scrR 0(\varepsilon ) < 1
for \varepsilon \in (\varepsilon \ast ,\infty ). Hence, T2(\varepsilon ) > 0 for \varepsilon \in [0, \varepsilon \ast ) and T2(\varepsilon ) = 0 for \varepsilon \in [\varepsilon \ast ,\infty ). Thus,
it suffices to consider \varepsilon on the interval [0, \varepsilon \ast ]. We define Ec, Lc, Tc, \varepsilon c, and C as in
Case (c). As \varepsilon varies from 0 to \varepsilon \ast , the intersection of Ec and the parabola P\varepsilon moves

along the ellipse from P (K1, 0) to O(0, 0). The slopes of
 -  - \rightarrow 
OP and

 -  - \rightarrow 
OC are, respectively,

0 and
(r1  - r2)K2

r2(K1 +K2)
.

(1) r1 \leq r2 \leftrightarrow  - r1/r2 \geq  - 1. The tangent line Tc is below or coincides with line

Lc. Therefore, the arc P̃O is below line Lc, and hence T2(\varepsilon ) \leq T2(0) for
\varepsilon \in [0, \varepsilon \ast ].

(2) r1 > r2 \leftrightarrow  - r1/r2 <  - 1. The line
 -  - \rightarrow 
OP is below line

 -  - \rightarrow 
OC. Therefore, for the

same \varepsilon c as in Case (c), the intersection (I\ast 1 , I
\ast 
2 ) of Ec and P\varepsilon moves along Ec

from P to C to O as \varepsilon varies from 0 to \varepsilon c to \varepsilon \ast . Hence we have T2(\varepsilon ) \geq T2(0)
for \varepsilon \in [0, \varepsilon c] and T2(\varepsilon ) < T2(0) for \varepsilon \in (\varepsilon c, \varepsilon 

\ast ].

Case (e): 1 \geq \scrR (1)
0 > \scrR (2)

0 . Since \scrR 0(\varepsilon ) < 1 for \varepsilon > 0, the disease-free equilibrium
E0 is globally asymptotically stable, which means that T2(\varepsilon ) \equiv 0 for \varepsilon \geq 0.

Remark. Suppose that \scrR (1)
0 > \scrR (2)

0 . Theorem 4.3 indicates that if 0 < \beta 1  - \gamma 1 \leq 
| \beta 2  - \gamma 2| , i.e., 0 < r1 \leq r2, then T2(\varepsilon ) < T2(0) for \varepsilon > 0. This can be easily proved in
a unified way. In fact, the condition 0 < r1 \leq r2 implies  - r1/r2 \geq  - 1, so Ta (or Tc),
the tangent line of the ellipse Ea (or Ec) at A (or P ), is below or coincides with line
La (or Lc). As \varepsilon varies from 0 to \infty (or \varepsilon \ast ), the intersection of the ellipse and the
parabola moves counterclockwise on the ellipse from A (or P ) to B (or O). Thus, the

arc ÃB (or P̃B or P̃O) is wholly below line La (or Lc), and hence T2(\varepsilon ) < T2(0) for
\varepsilon > 0.
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