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TRAVEL FREQUENCY AND INFECTIOUS DISEASES\ast 

DAOZHOU GAO\dagger 

Abstract. Empirical and statistical evidence suggests that the number of trips taken per year
varies significantly among people by age, gender, income, occupation, ethnicity, region, and so on.
Only a small fraction of people are frequent travelers while most travel occasionally or never. Taking
the difference in travel frequency into consideration, we propose a multipatch epidemic model where
humans in each patch are divided into susceptible unfrequent, infectious unfrequent, susceptible
frequent, and infectious frequent classes. The basic reproduction number \scrR 0 is derived and shown
to govern the global dynamics of the model system if infection does not impede travel. Lower and
upper bounds on \scrR 0 are given, and the disease can become endemic or extinct even though it dies out
or persists in each isolated patch. Both analytical and numerical approaches show that the model,
without distinguishing the difference in travel frequency, tends to underestimate the infection risk.
Several numerical examples are presented to illustrate the impact of changes in modern travel on
disease spread. We find that \scrR 0 may decreasingly, or increasingly, or nonmonotonically depend on
the diffusion coefficient of the infected subpopulation. Meanwhile, the basic reproduction number
of the model with uniform travel frequency is shown to be monotone decreasing in the diffusion
coefficient if the connectivity matrix is symmetric. The unfrequent travelers at high transmission
regions are at the highest risk of infection, and allocating resources to frequent and unfrequent
travelers in high transmission regions probably yields the maximal reduction in infections and the
basic reproduction number, respectively.
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1. Introduction. Travel varies greatly over human history in distance (local,
regional, national, and intercontinental), means (such as foot, horse, car, train, ship,
and airplane), and purpose (such as business and recreation). Globalization, urban-
ization, and transport development have driven more people to move more frequently
and farther at less cost of time and money. The number of road motor vehicles per
1,000 inhabitants in the U.S. reached 821 in 2015 [31]. The total length of high-speed
rail in China has exceeded 31,000 km and will reach 38,000 km in 2025 [26]. The
numbers of air passengers and international inbound tourists increased from 1.391
billion and 0.556 billion in 1996 to 3.705 billion and 1.235 billion in 2016 [40], respec-
tively. These changes strengthen the connection between different economic entities
but also facilitate the spread of common or novel infectious diseases, leading to a se-
rious public health problem across the world. Influenza A (H1N1) was first reported
in Mexico in March 2009 and spread to 168 countries and territories in late July 2009
[48]. The Zika virus disease hit Brazil in April 2015 and spread to much of South
America, Central America, the Caribbean, and Mexico before it was contained [49].
On the other hand, human movement brings a big challenge to disease control and
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elimination. Over 98\% (3,021 of 3,077) of malaria cases in China in 2014 are among
travelers from Africa and southeast Asia [6].

Mathematical models have become an important tool in characterizing, predict-
ing, and controlling the spatial and temporal spread of infectious diseases (see, for
example, Arino [2], Gao and Ruan [20], and Wang [44]). With the development and
application of new technologies, massive data (demography, epidemiology, travel, etc.)
are available for checking the reliability and validity of modeling approaches so that
a real-time large-scale disease surveillance system is gradually achievable. Bartlett [4]
is among the first to propose a two-patch epidemic model with cross patch infection
to explore the mechanism of recurrent epidemics. Dye and Hasibeder [12] and Ha-
sibeder and Dye [22] considered a mosquito-borne disease model where a mosquito in
any vector patch can bite in any host patch and showed that a heterogeneous mixing
of vectors and hosts results in a higher basic reproduction number. Wang and Zhao
[46] and Jin and Wang [28] analyzed an SIS patch model with mass-action incidence
and found that the effect of population dispersal on disease spread is complicated.
Cui, Takeuchi, and Saito [9] studied the influence of transport-related infection on
disease dynamics. Wang et al. [47] formulated a multipatch SEIQR model to discuss
the impact of entry-exit screening on disease control. Patch models are widely used
to study specific infectious diseases including malaria [3, 8, 17, 19], rabies [7], cholera
[13], bovine tuberculosis [14], Rift Valley fever [15, 50], influenza [24, 25, 33], West
Nile virus [29, 51], and SARS [32].

However, these models disregard the difference in travel behavior by assuming
that individuals in the same disease status have the same travel rate, which is inap-
propriate, for the distribution of travel frequency is typically uneven. Some people
travel several times a month while some stay home or nearby for a whole year. For
instance, the percentages of frequent air traveler, occasional air traveler, and never
flown in the U.S. in 2015 are 7\%, 71\%, and 22\%, respectively. A household survey
in Norway found that 3.1\% respondents who take domestic flights make more than
20 trips annually [10]. The travel frequency of an individual is determined by vari-
ous factors such as occupation, age, gender, income, and residency, while the average
frequency of a population is affected by development of public transit, possession of
private vehicles, percentage of people with a driver's license, industry structure, and
climatic condition. Jobs such as salesman, retail buyer, official, journalist, athlete, re-
cruiter, consultant, pilot, and tour guide require travel frequently. In England, women
make more trips but accumulate less mileage than men on average, the highest in-
come households travel more than twice as far as the lowest, and rural residents travel
around 44\% farther than urban residents [37]. The National Household Travel Survey
in the U.S. shows similar patterns [35]. It is worth mentioning that the importance
of taking into account the effects of heterogeneity in travel frequency on the global
spread of a directly transmitted disease was once addressed by Hollingsworth, Fergu-
son, and Anderson [23]. They used a stochastic SEIR model to simulate exportation
of cases from an epidemic in a population for which a small proportion travel more
frequently than the rest and concluded that infected people who travel often have the
potential to spread infection even more rapidly.

The rest of this paper is organized as follows. In the next section, we develop a
hybrid of metapopulation and multigroup models to highlight the difference in travel
behaviors. In section 3, we derive the basic reproduction number which serves as a
threshold for the disease extinction and persistence if the disease is not severe enough
to impair mobility. Biologically meaningful estimates for the multipatch reproduction
number are obtained. We compare our new model with previous models in terms of



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TRAVEL FREQUENCY AND INFECTIOUS DISEASES 1583

the reproduction numbers. Three numerical examples are presented to illustrate the
impact of changes in human movement on disease spread and the potential application
of the model. The last section is devoted to a brief discussion of our main results and
future work. We solve an open problem raised by Allen et al. [1] in the appendix.

2. Model formulation. We begin with an SIS model with standard incidence
for the transmission of an infectious disease with population dispersal between p
patches. In patch i, the population is divided into susceptible and infectious classes,
with Si(t) and Ii(t) denoting the number of susceptible and infectious individuals,
respectively. Susceptible individuals contract the disease through contact with infec-
tious individuals, and infectious individuals revert to susceptible class on recovery.
Travelers migrate from one patch to another in a negligible period of time so that no
infection or recovery takes place during travel. The dynamics of disease transmission
in patch i are described by

(2.1)

dSi

dt
= \varepsilon i  - \beta i

Ii
Ni
Si + \gamma iIi  - \mu iSi + dS

p\sum 
j=1

cijSj , 1 \leq i \leq p,

dIi
dt

= \beta i
Ii
Ni
Si  - (\gamma i + \mu i + \nu i)Ii + dI

p\sum 
j=1

dijIj , 1 \leq i \leq p,

where Ni = Si + Ii represents the total population within a single patch, \varepsilon i the re-
cruitment rate due to newborns and immigrants, \beta i the transmission coefficient, \gamma i
the recovery rate, \mu i the natural death rate, \nu i the disease-induced death rate, and
dS and dI the respective diffusion coefficients for the susceptible and infected subpop-
ulations. The parameters cij and dij denote, respectively, the degrees of movement
for susceptible and infectious people from patch j to patch i for i, j = 1, 2, . . . , p and
i \not = j, while  - cii and  - dii denote, respectively, the outgoing degrees of movement for
susceptible and infectious people of patch i for i = 1, 2, . . . , p. The ignorance of the
death and birth processes during travel leads to

 - cii =
p\sum 

j=1,j \not =i

cji and  - dii =

p\sum 
j=1,j \not =i

dji, i = 1, 2, . . . , p.

The connectivity matrices C = (cij)p\times p and D = (dij)p\times p are assumed to be irreduc-
ible; otherwise the p patches can be split into multiple disconnected parts and studied
separately.

The model (2.1) and its variant in a two-patch setting was intensively studied
by Wang and Mulone [45], Salmani and van den Driesssche [34], and Sun et al. [38].
Later, Allen et al. [1] and Gao and Ruan [18] generalized these works to the model
with an arbitrary number of patches. They established the threshold dynamics of the
model in terms of the multipatch basic reproduction number. It was shown that the
maximum and minimum of the set of the basic reproduction numbers of each isolated
patch (i.e., no movement) are, respectively, the upper and lower bounds of the multi-
patch reproduction number. Epidemiologically, this implies that the disease persists
or goes extinct in each isolated patch then remains persistent or extinct when all
patches are connected by population dispersal. In particular, provided that the dis-
ease is non-fatal and susceptible and infectious individuals have the same connectivity



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1584 DAOZHOU GAO

matrix, namely, the model (2.1) becomes

(2.2)

dSi

dt
= \varepsilon i  - \beta i

Ii
Ni
Si + \gamma iIi  - \mu iSi + dS

p\sum 
j=1

cijSj , 1 \leq i \leq p,

dIi
dt

= \beta i
Ii
Ni
Si  - (\gamma i + \mu i)Ii + dI

p\sum 
j=1

cijIj , 1 \leq i \leq p,

then either the disease-free equilibrium or the endemic equilibrium is globally asymp-
tomatically stable if dS \approx dI [18].

We now consider the heterogeneity in travel frequency among individuals. For the
sake of simplicity, only frequent and unfrequent travelers are introduced. A frequent
traveler is a person who regularly makes more than a given number of long distance
trips away from home per unit of time, e.g., six or more round trips of 50 miles or
more a year. Based on disease status and travel behavior, the population in the ith
patch is further divided into susceptible unfrequent, infectious unfrequent, susceptible
frequent, and infectious frequent classes, denoted by Su

i , I
u
i , S

f
i , and I

f
i , respectively.

Thus the total population within patch i is Ni = Su
i + Sf

i + Iui + Ifi . We make some
additional assumptions as follows:

(1) Individuals are recruited susceptible with a fraction \theta i being frequent.
(2) People do not change their travel frequency upon infection and recovery.
(3) Unfrequent and frequent people mutually transfer at constant rates, \phi ui and

\phi fi , respectively, which are independent of disease status.
(4) Immigrants do not immediately change their travel frequency upon arrival at

a new patch.
(5) The population within each patch is homogeneously mixed, but the transmis-

sion probability could vary from group to group.
The above assumptions and the flowchart shown in Figure 1 lead to a multigroup-
multipatch epidemic model with consideration of travel difference (1 \leq i \leq p),

(2.3)

dSu
i

dt
= (1 - \theta i)\varepsilon i  - \lambda ui S

u
i + \gamma ui I

u
i  - \mu u

i S
u
i  - \phi ui S

u
i + \phi fi S

f
i + dS

p\sum 
j=1

cuijS
u
j ,

dSf
i

dt
= \theta i\varepsilon i  - \lambda fi S

f
i + \gamma fi I

f
i  - \mu f

i S
f
i + \phi ui S

u
i  - \phi fi S

f
i + dS

p\sum 
j=1

cfijS
f
j ,

dIui
dt

= \lambda ui S
u
i  - (\gamma ui + \mu u

i )I
u
i  - \phi ui I

u
i + \phi fi I

f
i + dI

p\sum 
j=1

cuijI
u
j ,

dIfi
dt

= \lambda fi S
f
i  - (\gamma fi + \mu f

i )I
f
i + \phi ui I

u
i  - \phi fi I

f
i + dI

p\sum 
j=1

cfijI
f
j ,

where \lambda ui = (\beta uu
i Iui + \beta uf

i Ifi )/Ni and \lambda 
f
i = (\beta fu

i Iui + \beta ff
i Ifi )/Ni are, respectively, the

forces of infection for unfrequent and frequent travelers. Here \beta uu
i , \beta uf

i , \beta fu
i , and \beta ff

i

denote, respectively, the transmission rates between classes Su
i and Iui , S

u
i and Ifi , S

f
i

and Iui , and S
f
i and Ifi . Other parameters have the same meaning as before with the

superscripts u and f representing unfrequent and frequent classes, respectively. All
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parameters are positive except \theta i \in [0, 1] and the movement rates. Again, we have

 - cuii =
p\sum 

j=1,j \not =i

cuji and  - cfii =

p\sum 
j=1,j \not =i

cfji, i = 1, 2, . . . , p.

The addition of connectivity matrices for unfrequent and frequent travelers Cu+Cf =
(cuij + cfij)p\times p is assumed to be irreducible. By definition, it is reasonable to require

that cuij \leq cfij for i \not = j, and an extreme case is that Cu = 0, i.e., the unfrequent
travelers do not migrate between patches.

(1−θi)εi //

µu
i

oo Su
i

φu
i

��

(βuu
i Iui +βuf

i Ifi )/Ni //
Iui

φu
i

��

γu
i

oo
µu
i //

θiεi //

µf
i

oo Sf
i

(βfu
i Iui +βff

i Ifi )/Ni //

φf
i

OO

Ifi
γf
i

oo

φf
i

OO

µf
i //

Fig. 1. A schematic illustration of the two-group model for patch i omitting travel.

Note that the multigroup model (2.3) cannot be regarded as a regular 2p-patch

model since Ifi can infect Su
i and Iui can infect Sf

i . The following result shows that
the model system (2.3) is epidemiologically and mathematically well-posed.

Theorem 2.1. Solutions of system (2.3) with nonnegative initial conditions
uniquely exist and remain nonnegative for all time t \geq 0. Moreover, the system
is point dissipative.

Proof. Define the incidence terms:

\beta uu
i

Iui
Ni
Su
i , \beta uf

i

Ifi
Ni
Su
i , \beta fu

i

Iui
Ni
Sf
i , and \beta ff

i

Ifi
Ni
Sf
i

equal zero whenever Ni = 0 for i = 1, . . . , p. It is simple to verify that the vector field
defined by the right-hand side of (2.3) is locally Lipschitz on \BbbR 4p

+ , so there exists a
unique solution of system (2.3) for t \geq 0. The nonnegativity of each state variable
can be directly verified via the corresponding model equation.

Let \Lambda =
\sum p

i=1 \varepsilon i and \Upsilon = min\{ \mu u
1 , . . . , \mu 

u
p , \mu 

f
1 , . . . , \mu 

f
p\} . The total population over

all patches, denoted by N =
\sum p

i=1Ni, satisfies

dN

dt
=

p\sum 
i=1

\Bigl( 
\varepsilon i  - \mu u

iN
u
i  - \mu f

iN
f
i

\Bigr) 
\leq \Lambda  - \Upsilon N,

which implies N(t) is bounded above by \Lambda /\Upsilon for sufficiently large t.
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3. Mathematical analysis. In this section, we first study the existence and
uniqueness of the disease-free equilibrium, define the basic reproduction number, and
give its estimation. Then we investigate the disease dynamics of the system. Second,
we consider the single patch case and estimate the proportion of residents who travel
frequently. At the end we perform a comparative study between the traditional model
(2.2) and the new model (2.3).

3.1. Disease-free equilibrium and reproductive number. In the absence
of disease, the numbers of unfrequent and frequent travelers in patch i, denoted,
respectively, by Nu

i = Su
i + Iui and Nf

i = Sf
i + Ifi , satisfy

(3.1)

dNu
i

dt
= (1 - \theta i)\varepsilon i  - \mu u

iN
u
i  - \phi uiN

u
i + \phi fiN

f
i + dS

p\sum 
j=1

cuijN
u
j , 1 \leq i \leq p,

dNf
i

dt
= \theta i\varepsilon i  - \mu f

iN
f
i + \phi uiN

u
i  - \phi fiN

f
i + dS

p\sum 
j=1

cfijN
f
j , 1 \leq i \leq p.

It follows from the irreducibility of the matrix Cu +Cf that the coefficient matrix of
the equilibrium equations

(3.2)

(\mu u
i + \phi ui )N

u
i  - \phi fiN

f
i  - dS

p\sum 
j=1

cuijN
u
j = (1 - \theta i)\varepsilon i, 1 \leq i \leq p,

 - \phi uiNu
i + (\mu f

i + \phi fi )N
f
i  - dS

p\sum 
j=1

cfijN
f
j = \theta i\varepsilon i, 1 \leq i \leq p,

or explicitly

A =

\biggl( 
A11  - A12

 - A21 A22

\biggr) 
,

is irreducible with A11 = diag\{ \mu u
1 +\phi 

u
1 , . . . , \mu 

u
p +\phi 

u
p\}  - dSCu, A12 = diag\{ \phi f1 , . . . , \phi fp\} ,

A21 = diag\{ \phi u1 , . . . , \phi up\} , and A22 = diag\{ \mu f
1 + \phi f1 , . . . , \mu 

f
p + \phi fp\}  - dSC

f . Thus A is
a nonsingular M -matrix with positive inverse and hence (3.2) has a unique solution

(\bfitN u\ast ,\bfitN f\ast ) with \bfitN u\ast = (Nu\ast 
1 , . . . , Nu\ast 

p ) \gg 0 and \bfitN f\ast = (Nf\ast 
1 , . . . , Nf\ast 

p ) \gg 0. So

the model (2.3) has a unique disease-free equilibrium E0 = (\bfitN u\ast ,\bfitN f\ast ,0,0), where
0 is a zero row vector with p entries.

Using the next generation operator approach as described by Diekmann, Heester-
beek, and Metz [11] and the recipe of van den Driessche and Watmough [43], the new
infection and transition matrices are, respectively, given by

F =

\biggl( 
F11 F12

F21 F22

\biggr) 
and V =

\biggl( 
V11  - V12
 - V21 V22

\biggr) 
with

F11 = diag

\biggl\{ 
\beta uu
1

Nu\ast 
1

N\ast 
1

, . . . , \beta uu
p

Nu\ast 
p

N\ast 
p

\biggr\} 
, F12 = diag

\biggl\{ 
\beta uf
1

Nu\ast 
1

N\ast 
1

, . . . , \beta uf
p

Nu\ast 
p

N\ast 
p

\biggr\} 
,

F21 = diag

\Biggl\{ 
\beta fu
1

Nf\ast 
1

N\ast 
1

, . . . , \beta fu
p

Nf\ast 
p

N\ast 
p

\Biggr\} 
, F22 = diag

\Biggl\{ 
\beta ff
1

Nf\ast 
1

N\ast 
1

, . . . , \beta ff
p

Nf\ast 
p

N\ast 
p

\Biggr\} 
,
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and

V11 = diag\{ \gamma u1 + \mu u
1 + \phi u1 , . . . , \gamma 

u
p + \mu u

p + \phi up\}  - dIC
u, V12 = diag\{ \phi f1 , . . . , \phi fp\} ,

V21 = diag\{ \phi u1 , . . . , \phi up\} , V22 = diag\{ \gamma f1 + \mu f
1 + \phi f1 , . . . , \gamma 

f
p + \mu f

p + \phi fp\}  - dIC
f .

The basic reproduction number of model (2.3) is defined as the spectral radius of
the next generation matrix FV  - 1, that is,

\scrR 0 = \rho (FV  - 1).

Note that \scrR 0 depends on all model parameters. In particular, \scrR 0 constantly increases
in transmission rates \beta uu

i , \beta uf
i , \beta fu

i , and \beta ff
i , but decreases in recovery rates \gamma ui and

\gamma fi . The dependence of \scrR 0 on other parameters is more complicated and will be
explored later in a numerical way. The inverse of the two-by-two block matrix V is

V  - 1 =

\biggl( 
(V11  - V12V

 - 1
22 V21)

 - 1 V  - 1
11 V12(V22  - V21V

 - 1
11 V12)

 - 1

V  - 1
22 V21(V11  - V12V

 - 1
22 V21)

 - 1 (V22  - V21V
 - 1
11 V12)

 - 1

\biggr) 
.

Denoting the diagonal blocks of V  - 1 by V \ast 
11 and V \ast 

22, the matrix FV  - 1 takes the form\biggl( 
(F11 + F12V

 - 1
22 V21)V

\ast 
11 (F11V

 - 1
11 V12 + F12)V

\ast 
22

(F21 + F22V
 - 1
22 V21)V

\ast 
11 (F21V

 - 1
11 V12 + F22)V

\ast 
22

\biggr) 
.

However, it is generally difficult to solve\scrR 0 explicitly and write it concisely in terms of
model parameters even for the two-patch case. Hence, some mathematically tractable
and biologically meaningful bounds on the value of \scrR 0 are desirable [2, 18, 24].

Theorem 3.1. Define

\scrR uu
i =

\beta uu
i

\gamma ui + \mu u
i

, \scrR uf
i =

\beta uf
i

\gamma fi + \mu f
i

, \scrR fu
i =

\beta fu
i

\gamma ui + \mu u
i

, \scrR ff
i =

\beta ff
i

\gamma fi + \mu f
i

as the average number of secondary cases produced by a typical unfrequent/frequent
traveler in a completely unfrequent/frequent susceptible population during the entire
infection period of the person. For system (2.3), the inequality

min
1\leq i\leq p

\Bigl\{ 
\scrR uu

i ,\scrR uf
i ,\scrR fu

i ,\scrR ff
i

\Bigr\} 
\leq \scrR 0 \leq max

1\leq i\leq p

\Bigl\{ 
\scrR uu

i ,\scrR uf
i ,\scrR fu

i ,\scrR ff
i

\Bigr\} 
holds.

Proof. Without loss of generality, we assume that

\scrR uu
1 = min

1\leq i\leq p

\Bigl\{ 
\scrR uu

i ,\scrR uf
i ,\scrR fu

i ,\scrR ff
i

\Bigr\} 
and \scrR ff

p = max
1\leq i\leq p

\Bigl\{ 
\scrR uu

i ,\scrR uf
i ,\scrR fu

i ,\scrR ff
i

\Bigr\} 
.

Let \alpha u
i = \gamma ui + \mu u

i and \alpha f
i = \gamma fi + \mu f

i for 1 \leq i \leq p and

\~F11 = diag

\biggl\{ 
\alpha u
1

Nu\ast 
1

N\ast 
1

, . . . , \alpha u
p

Nu\ast 
p

N\ast 
p

\biggr\} 
, \~F12 = diag

\biggl\{ 
\alpha f
1

Nu\ast 
1

N\ast 
1

, . . . , \alpha f
p

Nu\ast 
p

N\ast 
p

\biggr\} 
,

\~F21 = diag

\Biggl\{ 
\alpha u
1

Nf\ast 
1

N\ast 
1

, . . . , \alpha u
p

Nf\ast 
p

N\ast 
p

\Biggr\} 
, \~F22 = diag

\Biggl\{ 
\alpha f
1

Nf\ast 
1

N\ast 
1

, . . . , \alpha f
p

Nf\ast 
p

N\ast 
p

\Biggr\} 
.
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It follows from

\^F := \scrR uu
1

\biggl( 
\~F11

\~F12

\~F21
\~F22

\biggr) 
\leq F =

\biggl( 
F11 F12

F21 F22

\biggr) 
\leq \~F := \scrR ff

p

\biggl( 
\~F11

\~F12

\~F21
\~F22

\biggr) 
and

(1, . . . , 1) \^F = \scrR uu
1 (\alpha u

1 , . . . , \alpha 
u
p , \alpha 

f
1 , . . . , \alpha 

f
p) = \scrR uu

1 (1, . . . , 1)V,

(1, . . . , 1) \~F = \scrR ff
p (\alpha u

1 , . . . , \alpha 
u
p , \alpha 

f
1 , . . . , \alpha 

f
p) = \scrR ff

p (1, . . . , 1)V

that \^FV  - 1 \leq FV  - 1 \leq \~FV  - 1 and \rho ( \^FV  - 1) = \scrR uu
1 , \rho ( \~FV  - 1) = \scrR ff

p . So, \rho ( \^FV  - 1) =

\scrR uu
1 \leq \scrR 0 = \rho (FV  - 1) \leq \rho ( \~FV  - 1) = \scrR ff

p .

3.2. Threshold dynamics. It follows from Theorem 2 in van den Driessche
and Watmough [43] that the disease-free equilibrium E0 of system (2.3) is locally
asymptotically stable if \scrR 0 < 1 and unstable otherwise. Furthermore, similar to the
proof of Theorem 2.5 in Gao and Ruan [18], we can use the persistence theory [52] to
show the uniform persistence of the disease and the existence of at least one endemic
equilibrium when \scrR 0 > 1. In particular, the global dynamics of the model system are
completely governed by the reproductive number as population dispersal is unaffected
by the disease by applying the theory of monotone dynamical systems [27, 36, 52].

Theorem 3.2. For model (2.3) with dS = dI , the disease-free equilibrium E0 is
globally asymptotically stable on the nonnegative orthant \BbbR 4p

+ if \scrR 0 \leq 1, and there is a

unique endemic equilibrium E\ast = (\bfitS u\ast ,\bfitS f\ast , \bfitI u\ast , \bfitI f\ast ) which is globally asymptotically
stable on the nonnegative orthant minus the set of all disease-free states if \scrR 0 > 1.

Proof. Since the coefficient matrix of the linear system (3.1), i.e.,  - A, is strictly
diagonally dominant, by the Gershgorin circle theorem, all eigenvalues of  - A have
negative real parts. Hence the equilibrium (\bfitN u\ast ,\bfitN f\ast ) of system (3.1) is globally

asymptotically stable on \BbbR 2p
+ . Since Nu

i (t) \rightarrow Nu\ast 
i and Nf

i (t) \rightarrow Nf\ast 
i as t \rightarrow \infty for

i = 1, . . . , p, system (2.3) gives the limiting system (1 \leq i \leq p):

(3.3)

dIui
dt

=\lambda u\ast i (Nu\ast 
i  - Iui ) - (\gamma ui + \mu u

i )I
u
i  - \phi ui I

u
i + \phi fi I

f
i + dI

p\sum 
j=1

cuijI
u
j ,

dIfi
dt

=\lambda f\ast i (Nf\ast 
i  - Ifi ) - (\gamma fi + \mu f

i )I
f
i + \phi ui I

u
i  - \phi fi I

f
i + dI

p\sum 
j=1

cfijI
f
j ,

where \lambda u\ast i = (\beta uu
i Iui + \beta uf

i Ifi )/N
\ast 
i and \lambda f\ast i = (\beta fu

i Iui + \beta ff
i Ifi )/N

\ast 
i .

Let h be the vector field described by (3.3), with \psi t the corresponding flow.
Obviously, system (3.3) is cooperative and irreducible on the order interval

\BbbD = \{ (Iu1 , . . . , Iup , I
f
1 , . . . , I

f
p ) \in \BbbR 2p

+ : 0 \leq Iui \leq Nu\ast 
i , 0 \leq Ifi \leq Nf\ast 

i , i = 1, . . . , p\} .

For any \alpha \in (0, 1) and any \bfitx = (Iu1 , . . . , I
u
p , I

f
1 , . . . , I

f
p ) \in \BbbD with \bfitx \gg 0, the fact

hi(\alpha \bfitx ) - \alpha hi(\bfitx ) =

\biggl\{ 
\alpha (1 - \alpha )\lambda u\ast i Iui > 0, i = 1, . . . , p,

\alpha (1 - \alpha )\lambda f\ast i Ifi > 0, i = p+ 1, . . . , 2p,

implies that h is strongly sublinear on \BbbD . In addition, the set \BbbD is positively invariant
with respect to (3.3) due to hi(\bfitx ) \geq 0 for \bfitx \in \BbbD with xi = 0, i = 1, . . . , 2p, and

hi(\bfitx ) \leq 0 for \bfitx \in \BbbD with xi = Nu\ast 
i , i = 1, . . . , p, and xi = Nf\ast 

i , i = p+ 1, . . . , 2p.
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The proof of Theorem 2 in van den Driessche and Watmough [43] indicates that
s(Dh(0)) = s(F  - V ) \leq 0 \leftrightarrow \scrR 0 = \rho (FV  - 1) \leq 1 and s(Dh(0)) > 0 \leftrightarrow \scrR 0 > 1.
By Corollary 3.2 in Zhao and Jing [53] or Theorem 2.3.4 in Zhao [52], if \scrR 0 \leq 1,
then \bfitx = 0 is globally asymptotically stable with respect to \BbbD , and if \scrR 0 > 1, then
(3.3) admits a unique positive equilibrium \bfitx \ast = (\bfitI u\ast , \bfitI f\ast ) \in \BbbD , which is globally
asymptotically stable with respect to \BbbD \setminus \{ 0\} .

The strong monotonicity of \psi t on \BbbD implies that (\bfitI u\ast , \bfitI f\ast ) \ll (\bfitN u\ast ,\bfitN f\ast ), or
equivalently, (\bfitS u\ast ,\bfitS f\ast ) = (\bfitN u\ast  - \bfitI u\ast ,\bfitN f\ast  - \bfitI f\ast ) \gg 0. Thus (2.3) has a unique
endemic equilibrium E\ast = (S\ast 

1 , S
\ast 
2 , . . . , S

\ast 
p , I

\ast 
1 , I

\ast 
2 , . . . , I

\ast 
p ) provided that \scrR 0 > 1. With

the application of the theory of asymptotically autonomous systems or internally chain
transitive sets [5, 17, 52], the conclusion of the theorem follows.

3.3. Single patch model. In the case where human movement disappears or
only one patch is considered, the transmission dynamics of a given patch are described
by the following differential equations:

(3.4)

dSu
i

dt
= (1 - \theta i)\varepsilon i  - (\beta uu

i Iui + \beta uf
i Ifi )

Su
i

Ni
+ \gamma ui I

u
i  - \mu u

i S
u
i  - \phi ui S

u
i + \phi fi S

f
i ,

dSf
i

dt
= \theta i\varepsilon i  - (\beta fu

i Iui + \beta ff
i Ifi )

Sf
i

Ni
+ \gamma fi I

f
i  - \mu f

i S
f
i + \phi ui S

u
i  - \phi fi S

f
i ,

dIui
dt

= (\beta uu
i Iui + \beta uf

i Ifi )
Su
i

Ni
 - (\gamma ui + \mu u

i )I
u
i  - \phi ui I

u
i + \phi fi I

f
i ,

dIfi
dt

= (\beta fu
i Iui + \beta ff

i Ifi )
Sf
i

Ni
 - (\gamma fi + \mu f

i )I
f
i + \phi ui I

u
i  - \phi fi I

f
i .

Direct calculation yields the disease-free equilibrium of the above system,

E
(i)
0 = (Nu\ast 

i , Nf\ast 
i , 0, 0) =

\varepsilon i
\Delta i

\Bigl( 
(1 - \theta i)\mu 

f
i + \phi fi , \theta i\mu 

u
i + \phi ui , 0, 0

\Bigr) 
,

where \Delta i = (\mu u
i + \phi ui )(\mu 

f
i + \phi fi )  - \phi ui \phi 

f
i > 0. Let N\ast 

i = Nu\ast 
i + Nf\ast 

i . The basic
reproduction number of patch i in isolation is

\scrR (i)
0 = \rho (FiV

 - 1
i ),

where

Fi =
1

N\ast 
i

\biggl( 
\beta uu
i Nu\ast 

i \beta uf
i Nu\ast 

i

\beta fu
i Nf\ast 

i \beta ff
i Nf\ast 

i

\biggr) 
and Vi =

\biggl( 
\gamma ui + \mu u

i + \phi ui  - \phi fi
 - \phi ui \gamma fi + \mu f

i + \phi fi

\biggr) 
.

Note that Fi is independent of \varepsilon i, and so is \scrR (i)
0 . The single patch reproduction

number \scrR (i)
0 is explicitly solvable, but in a rather complicated form. The radical

sign in \scrR (i)
0 can be removed if \beta uu

i = \beta fu
i and \beta uf

i = \beta ff
i . Particularly, \scrR (i)

0 equals

\beta i/(\gamma i+\mu i) for any \phi 
u
i > 0 and \phi fi > 0 in a homogeneous setting: \beta uu

i = \beta uf
i = \beta fu

i =

\beta ff
i = \beta i, \gamma 

u
i = \gamma fi = \gamma i and \mu 

u
i = \mu f

i = \mu i.

We can similarly establish the estimation of the lower and upper bounds on \scrR (i)
0 .

Corollary 3.3. For system (3.4), the inequality

min
\Bigl\{ 
\scrR uu

i ,\scrR uf
i ,\scrR fu

i ,\scrR ff
i

\Bigr\} 
\leq \scrR (i)

0 \leq max
\Bigl\{ 
\scrR uu

i ,\scrR uf
i ,\scrR fu

i ,\scrR ff
i

\Bigr\} 
holds.
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Again by the theory of monotone dynamical systems [36] and asymptotically
autonomous systems [5], we obtain a threshold dynamics result.

Corollary 3.4. For single patch model (3.4), the disease-free equilibrium E
(i)
0

is globally asymptotically stable on \BbbR 4
+ if \scrR (i)

0 \leq 1, and the endemic equilibrium

E\ast 
i = (Su\ast 

i , Sf\ast 
i , Iu\ast i , If\ast i ) exists and is globally asymptotically stable on \BbbR 4

+ minus the

set of all disease-free states if \scrR (i)
0 > 1.

Remark 3.5. In the absence of population dispersal and disease, the fraction of
frequent travelers with patch i converges to

Nf\ast 
i

Nu\ast 
i +Nf\ast 

i

=
\phi ui + \theta i\mu 

u
i

\phi ui + \phi fi + \theta i\mu u
i + (1 - \theta i)\mu 

f
i

\approx \phi ui

\phi ui + \phi fi
,

when \mu u
i and \mu f

i are relatively small. When travelers disperse between patches, by

the first equation of (3.1) at the equilibrium (\bfitN u\ast ,\bfitN f\ast ), the fraction also tends to

Nf\ast 
i

Nu\ast 
i +Nf\ast 

i

=1 - \phi fiN
u\ast 
i

\phi fiN
u\ast 
i  - ((1 - \theta i)\varepsilon i  - (\mu u

i + \phi ui )N
u\ast 
i + dS

\sum 
j c

u
ijN

u\ast 
j )

=1 - \phi fi

\phi fi + \phi ui  - ((1 - \theta i)\varepsilon i  - \mu u
iN

u\ast 
i + dS

\sum 
j c

u
ijN

u\ast 
j )/Nu\ast 

i

\approx \phi ui

\phi ui + \phi fi

if the per capita change rate of the population of unfrequent travelers is small.

Roughly speaking, the fraction of frequent travelers of the ith patch is primarily
determined by the frequency exchange rates \phi ui and \phi fi . Moreover, both the size and
fraction of frequent travelers of patch i at the disease-free equilibrium are increasing in
\phi ui but decreasing in \phi fi by applying the following result to (3.2), which can be viewed
as a simple 2p-patch population model. Symmetrically, both the size and fraction of
unfrequent travelers of patch i are decreasing in \phi ui but increasing in \phi fi .

Proposition 3.6. Consider a single species population model,

dNi

dt
= \varepsilon i  - \mu iNi +

p\sum 
j=1

cijNj , 1 \leq i \leq p,

where (\varepsilon 1, . . . , \varepsilon p) > 0 and (\mu 1, . . . , \mu p) \gg 0, and C = (cij) is an irreducible and quasi-
positive matrix with zero column sums. Then there exists a unique positive equilibrium
\bfitN \ast = (N\ast 

1 , . . . , N
\ast 
p ) which is globally asymptotically stable on the nonnegative orthant.

Furthermore, we have
\partial N\ast 

i

\partial cij
> 0 and

\partial N\ast 
j

\partial cij
< 0

for i, j = 1, . . . , p and i \not = j.

Proof. The first part follows from the argument on the equilibrium solution of
(3.1). Without loss of generality we only consider \partial N\ast 

1 /\partial c21 and \partial N\ast 
2 /\partial c21. Since

\bfitN \ast is the solution of the linear equations

(3.5) \varepsilon i  - \mu iN
\ast 
i +

p\sum 
j=1

cijN
\ast 
j = 0, 1 \leq i \leq p,
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it follows from the implicit function theorem that \partial N\ast 
i /\partial c21 exists for i = 1, . . . , p.

Differentiating (3.5) with respect to c21 yields

B

\biggl( 
\partial N\ast 

1

\partial c21
,
\partial N\ast 

2

\partial c21
,
\partial N\ast 

3

\partial c21
, . . . ,

\partial N\ast 
p

\partial c21

\biggr) T

= ( - N\ast 
1 , N

\ast 
1 , 0, . . . , 0)

T

with B = diag\{ \mu 1, . . . , \mu p\}  - C a diagonally dominant matrix. Note that B has a
positive inverse B - 1 = B\ast /| B| with B\ast and | B| denoting the adjoint matrix and the
determinant of B, respectively. Thus,\biggl( 

\partial N\ast 
1

\partial c21

\partial N\ast 
2

\partial c21

\biggr) T

=
1

| B| 

\biggl( 
b11  - b21
 - b12 b22

\biggr) \biggl( 
 - N\ast 

1

N\ast 
1

\biggr) 
=
N\ast 

1

| B| 

\biggl( 
 - b11  - b21
b12 + b22

\biggr) 
,

where

b11 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\mu 2  - c22  - c23 \cdot \cdot \cdot  - c2p
 - c32 \mu 3  - c33 \cdot \cdot \cdot  - c3p
...

...
. . .

...
 - cp2  - cp3 \cdot \cdot \cdot \mu p  - cpp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ,

b21 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
 - c12  - c13 \cdot \cdot \cdot  - c1p
 - c32 \mu 3  - c33 \cdot \cdot \cdot  - c3p
...

...
. . .

...
 - cp2  - cp3 \cdot \cdot \cdot \mu p  - cpp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ,

b22 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\mu 1  - c11  - c13 \cdot \cdot \cdot  - c1p
 - c31 \mu 3  - c33 \cdot \cdot \cdot  - c3p
...

...
. . .

...
 - cp1  - cp3 \cdot \cdot \cdot \mu p  - cpp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ,

b12 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
 - c21  - c23 \cdot \cdot \cdot  - c2p
 - c31 \mu 3  - c33 \cdot \cdot \cdot  - c3p
...

...
. . .

...
 - cp1  - cp3 \cdot \cdot \cdot \mu p  - cpp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Hence,

b11 + b21 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\mu 2  - c22  - c12  - c23  - c13 \cdot \cdot \cdot  - c2p  - c1p

 - c32 \mu 3  - c33 \cdot \cdot \cdot  - c3p
...

...
. . .

...
 - cp2  - cp3 \cdot \cdot \cdot \mu p  - cpp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| > 0,

b12 + b22 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\mu 1  - c11  - c21  - c13  - c23 \cdot \cdot \cdot  - c1p  - c2p

 - c31 \mu 3  - c33 \cdot \cdot \cdot  - c3p
...

...
. . .

...
 - cp1  - cp3 \cdot \cdot \cdot \mu p  - cpp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| > 0.

The last step follows from the Gershgorin circle theorem.

Remark 3.7. When three or more patches are concerned, the impact of increasing
movement from patch j to patch i on the population size of patch k is uncertain with
distinct i, j, k. In fact, the population size of patch k at the positive equilibrium, N\ast 

k ,
could be increasing or decreasing or even nonmonotonic in cij . The above proposition
fails if the population growth model of each patch in isolation is changed to the logistic
model.
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3.4. Traditional model versus new model. To compare the traditional model
(2.2) with the new model (2.3) in terms of their respective basic reproduction numbers,
we put them on the same baseline from a biological and epidemiological perspective.
Suppose all parameter values of the new model are given and those of the traditional
model are to be determined. First, the two models are used to describe the same
patchy environment, so their numbers of within-patch residents and between-patch
travelers must be consistent at their disease-free equilibria. The numbers of unfre-
quent and frequent residents of the new model are given by the unique equilibrium
(\bfitN u\ast ,\bfitN f\ast ) of system (3.1), so the numbers of residents in each patch and travelers
from one patch to another are determined. More precisely,

N\ast 
j = Nu\ast 

j +Nf\ast 
j , 1 \leq j \leq p,

dScijN
\ast 
j = dSc

u
ijN

u\ast 
j + dSc

f
ijN

f\ast 
j , 1 \leq i, j \leq p,

where \bfitN \ast = (N\ast 
1 , . . . , N

\ast 
p ) is the unique equilibrium of system

dNi

dt
= \varepsilon i  - \mu iNi + dS

p\sum 
j=1

cijNj , 1 \leq i \leq p.

Hence the movement rate from patch j to patch i is determined, i.e.,

(3.6) cij =
cuijN

u\ast 
j + cfijN

f\ast 
j

Nu\ast 
j +Nf\ast 

j

.

In particular, if cuij \leq cfij , then

cuij \leq cij \leq cfij ,

that is, the movement rate of the traditional model lies between the movement rates
of unfrequent and frequent travelers.

Clearly, the two models have the same recruitment rate \varepsilon i. The natural death
rate, transmission rate, and recovery rate in patch i of model (2.2) are, respectively,
given by

\mu i =
\mu u
iN

u\ast 
j + \mu f

iN
f\ast 
j

Nu\ast 
i +Nf\ast 

i

=
\varepsilon i + dS

\sum p
j=1(c

u
ijN

u\ast 
j + cfijN

f\ast 
j )

Nu\ast 
i +Nf\ast 

i

,

\beta i =
\beta uu
i (Nu\ast 

i )2 + \beta uf
i Nu\ast 

i Nf\ast 
i + \beta fu

i Nf\ast 
i Nu\ast 

i + \beta ff
i (Nf\ast 

i )2

(N\ast 
i )

2
,

\gamma i =
N\ast 

i

Nu\ast 
i /\gamma ui +Nf\ast 

i /\gamma fi
.

Remark 3.8. An alternative and possibly more reasonable way to derive the pa-
rameters \beta i and \gamma i of model (2.2) is to use the weights of both susceptible and infected
populations instead of these of the total populations, namely,

\beta i =
\beta uu
i Su\ast 

i Iu\ast i + \beta uf
i Su\ast 

i If\ast i + \beta fu
i Sf\ast 

i Iu\ast i + \beta ff
i Sf\ast 

i If\ast i

S\ast 
i I

\ast 
i

,

\gamma i =
I\ast i

Iu\ast i /\gamma ui + If\ast i /\gamma fi
,
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which agree with the above formulae if and only if Iu\ast i /Nu\ast 
i = I\ast i /N

\ast 
i . In reality,

the unfrequent travelers in the high transmission patch may suffer a higher risk of
infection, leading to Iu\ast i /Nu\ast 

i > I\ast i /N
\ast 
i . We will explore this point in the next section.

Recall that the basic reproduction number of model (2.2) is defined as \=\scrR 0 =
\rho ( \=F \=V  - 1), where \=F = diag\{ \beta 1, . . . , \beta p\} and \=V = diag\{ \gamma 1 + \mu 1, . . . , \gamma p + \mu p\}  - dIC.
The model system (2.2) obeys the same threshold dynamics as the new model [18].

When two homogeneous patches, i.e., \beta uu
i = \beta uf

i = \beta fu
i = \beta ff

i , \gamma ui = \gamma fi , \mu 
u
i = \mu f

i

for i = 1, 2, without vital dynamics connected only by the movement of frequent
travelers, are considered, the traditional model underestimates the risk of infection.

Theorem 3.9. Consider a two-patch submodel of (2.3) with \varepsilon i = 0, \mu u
i = \mu f

i = 0,

\beta uu
i = \beta uf

i = \beta fu
i = \beta ff

i = \beta i, \gamma 
u
i = \gamma fi = \gamma i for i = 1, 2, and cu12 = cu21 = 0. Then

the reproduction number of the new model, denoted by \scrR 4, is always no less than that

of the traditional model, denoted by \scrR 2, with equality if and only if \scrR (1)
0 = \scrR (2)

0 , or
explicitly, \beta 1/\gamma 1 = \beta 2/\gamma 2.

Proof. Under the above assumption, it follows from the first equation of (3.2) or
Remark 3.5 or direct calculation of the disease-free equilibrium that

p1 :=
Nu\ast 

1

N\ast 
1

=
\phi f1

\phi u1 + \phi f1
,

Nf\ast 
1

N\ast 
1

= 1 - p1, p2 :=
Nu\ast 

2

N\ast 
2

=
\phi f2

\phi u2 + \phi f2
,

Nf\ast 
2

N\ast 
2

= 1 - p2.

The incidence and transition matrices of the new model and traditional model are

F4 =

\left( 
 

\beta 1p1 0 \beta 1p1 0
0 \beta 2p2 0 \beta 2p2

\beta 1(1 - p1) 0 \beta 1(1 - p1) 0
0 \beta 2(1 - p2) 0 \beta 2(1 - p2)

\right) 
,

V4 =

\left( 
\gamma 1 + \phi u1 0  - \phi f1 0

0 \gamma 2 + \phi u2 0  - \phi f2
 - \phi u1 0 \gamma 1 + \phi f1 + dIc

f
21  - dIcf12

0  - \phi u2  - dIcf21 \gamma 2 + \phi f2 + dIc
f
12

\right) 
,

and

F2 =

\biggl( 
\beta 1 0
0 \beta 2

\biggr) 
and V2 =

\biggl( 
\gamma 1 + (1 - p1)dIc

f
21  - (1 - p2)dIc

f
12

 - (1 - p1)dIc
f
21 \gamma 2 + (1 - p2)dIc

f
12

\biggr) 
,

respectively. Under a permutation transformation, F4 is similar to

\=F4 =

\left(   \beta 1p1 \beta 1p1 0 0
\beta 1(1 - p1) \beta 1(1 - p1) 0 0

0 0 \beta 2p2 \beta 2p2
0 0 \beta 2(1 - p2) \beta 2(1 - p2)

\right) 
.

Note that rank(F4V
 - 1
4 ) = rank(F4) = rank( \=F4) = 2. The characteristic equations of

the next generation matrices F4V
 - 1
4 and F2V

 - 1
2 are, respectively,

(a4\lambda 
2  - b4\lambda + c4)\lambda 

2 = 0 and a2\lambda 
2  - b2\lambda + c2 = 0,
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where

a4 = dIc
f
12\gamma 1(\gamma 1 + \phi f1 + \phi u1 )(\gamma 2 + \phi u2 )

+ \gamma 2(dIc
f
21(\gamma 1 + \phi u1 ) + \gamma 1(\gamma 1 + \phi f1 + \phi u1 ))(\gamma 2 + \phi f2 + \phi u2 ),

b4 =((\beta 1\gamma 2 + \beta 2\gamma 1)(\gamma 1 + \phi f1 + \phi u1 ) + dIc
f
21(p1\beta 1\gamma 2 + \beta 2(\gamma 1 + \phi u1 )))(\gamma 2 + \phi f2 + \phi u2 )

+ dIc
f
12(\gamma 1 + \phi f1 + \phi u1 )(p2\beta 2\gamma 1 + \beta 1(\gamma 2 + \phi u2 )),

c4 =\beta 1\beta 2(p2dIc
f
12(\gamma 1 + \phi f1 + \phi u1 ) + (p1dIc

f
21 + \gamma 1 + \phi f1 + \phi u1 )(\gamma 2 + \phi f2 + \phi u2 ))

and
a2 = (1 - p2)dIc

f
12\gamma 1 + (1 - p1)dIc

f
21\gamma 2 + \gamma 1\gamma 2,

b2 = (1 - p2)dIc
f
12\beta 1 + (1 - p1)dIc

f
21\beta 2 + \beta 1\gamma 2 + \beta 2\gamma 1,

c2 = \beta 1\beta 2

are positive. Thus, the basic reproduction numbers of the new model and the tradi-
tional model are, respectively,

\scrR 4 =
b4 +

\sqrt{} 
b24  - 4a4c4
2a4

and \scrR 2 =
b2 +

\sqrt{} 
b22  - 4a2c2
2a2

.

Direct calculation yields

a2b4  - a4b2 =
cf12\beta 2\gamma 

2
1(\phi 

f
1 + \phi u1 )\phi 

u
2 + cf21\beta 1\gamma 

2
2(\phi 

f
2 + \phi u2 )\phi 

u
1

(\phi f1 + \phi u1 )
2(\phi f2 + \phi u2 )

2
\rho > 0

and

(a2b4  - a4b2)(b2c4  - b4c2) - (a2c4  - a4c2)
2 =

cf12c
f
21\beta 1\beta 2\phi 

u
1\phi 

u
2 (\beta 1\gamma 2  - \beta 2\gamma 1)

2

(\phi f1 + \phi u1 )
3(\phi f2 + \phi u2 )

3
\rho 2 \geq 0

with \rho = d2Ic
f
12\phi 

f
2 (\phi 

f
1 +\phi 

u
1 )(\gamma 1+\phi 

f
1 +\phi 

u
1 )+d

2
Ic

f
21\phi 

f
1 (\phi 

f
2 +\phi 

u
2 )(\gamma 2+\phi 

f
2 +\phi 

u
2 ). Therefore,

(a2b4  - a4b2)(b2c4  - b4c2) \geq (a2c4  - a4c2)
2

\leftrightarrow (b22  - 4a2c2)(b
2
4  - 4a4c4) \geq (b2b4  - 2a4c2  - 2a2c4)

2

\Rightarrow 
\sqrt{} 
b22  - 4a2c2

\sqrt{} 
b24  - 4a4c4 \geq b2b4  - 2a4c2  - 2a2c4

\leftrightarrow (a2b4  - a4b2)
2 \geq 

\biggl( 
a4

\sqrt{} 
b22  - 4a2c2  - a2

\sqrt{} 
b24  - 4a4c4

\biggr) 2

\Rightarrow a2b4  - a4b2 \geq a4

\sqrt{} 
b22  - 4a2c2  - a2

\sqrt{} 
b24  - 4a4c4,

the last inequality being equivalent to \scrR 4 \geq R2.

The above result fails to hold in a heterogeneous setting, but extensive numerical
calculations suggest that it mostly remains true when parameter values are reasonably
chosen. Biologically, these mean that the traditional model underestimates the risk
of infection and the new model has some advantages in describing the spread of
infectious diseases in discrete space. In other words, the new model differs from
the traditional model even if there is no epidemiological or demographical difference
between unfrequent and frequent travelers within the patch.
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Remark 3.10. The inequality min1\leq i\leq p \scrR (i)
0 \leq \scrR 0 \leq max1\leq i\leq p \scrR (i)

0 generally fails
for the new model (2.3) even if dS = dI , which is different from the traditional model
[18]. Thus heterogeneity in travel frequency is a mechanism to intensify or weaken
the disease persistence among patches.

We will numerically compare the traditional model and the new model through
the risk of infection and disease prevalence in the next section.

4. Numerical simulations. In the two-patch case, we numerically investigate
the importance of addressing travel differences and the influence of changes in global
travel on the geographic spread of infectious diseases. Due to economic development
and technological progress, human travel and tourism are experiencing unprecedented
changes in both global and regional scales:

(1) more people move from unfrequent traveler group to frequent traveler group,

i.e., increase \phi ui or decrease \phi fi , which leads to a higher proportion of frequent
travelers within patch i as a result of Proposition 3.6;

(2) travelers move more frequently than ever before, which can be achieved by
increasing the diffusion coefficients dS and dI ;

(3) travelers move more rapidly, which means the duration of travel from one
patch to another is sharply shortened.

We focus on the first two changes but skip the last one since our model does not
consider the infection during transport [9, 30]. The parameter ranges in Table 1 are
primarily based on the transmission and epidemiology of the common cold with per
day as the default time unit [35, 37, 41, 42].

Table 1
The parameters for the model (2.3) and their ranges.

Description Range

\varepsilon i recruitment rate 1--10
\theta i proportion of recruited susceptibles being frequent travelers 0--0.5
\beta kl
i transmission rate between Sk

i and Ili with k, l = u or f 0.05--0.3
\gamma k
i recovery rate of infectious unfrequent and infectious 0.05--0.15

frequent travelers with k = u and f , respectively
\mu k
i mortality rate of unfrequent and frequent travelers 3.2\times 10 - 5

with k = u and f , respectively --5.5\times 10 - 5

\phi f
i exchange rate from frequent group to unfrequent group 2.7\times 10 - 4

--9\times 10 - 4

\tau i relative transfer rate of unfrequent group to frequent group 0.1-0.5

\phi u
i exchange rate from unfrequent group to frequent group \phi u

i = \tau i\phi 
f
i

cfij movement rate of frequent group from patch j to patch i 0.03--0.1

\tau ij relative travel rate of unfrequent group to frequent group 0--0.4

cuij movement rate of unfrequent group from patch j to patch i cuij = \tau ijc
f
ij

dS diffusion coefficient of the susceptible subpopulation 1
dI diffusion coefficient of the infected subpopulation 0--1

Example 4.1 (underestimate or overestimate the risk of infection). Consider
the new model (2.3) with the parameter setting \varepsilon 1 = 5, \varepsilon 2 = 2, \theta 1 = 0.3, \theta 2 = 0.1,

\beta uu
1 = \beta uf

1 = \beta fu
1 = \beta ff

1 = 0.07, \beta uu
2 = \beta uf

2 = \beta fu
2 = \beta ff

2 = 0.143, \gamma u1 = \gamma f1 =

\gamma u2 = \gamma f2 = 0.12, \mu u
1 = \mu f

1 = 3.5 \times 10 - 5, \mu u
2 = \mu f

2 = 4 \times 10 - 5, \phi u1 = 1.2 \times 10 - 4, \phi f1 =

5 \times 10 - 4, \phi u2 = 1.5 \times 10 - 4, \phi f2 = 5 \times 10 - 4, dS = dI = 1. The parameter values of
the corresponding traditional model are \beta 1 = 0.07, \beta 2 = 0.143, \mu 1 = 3.5\times 10 - 5, \mu 2 =
4 \times 10 - 5, \gamma 1 = \gamma 2 = 0.12. The respective basic reproduction numbers of the disease
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in patches 1 and 2 are \scrR (1)
0 = 0.5832 and \scrR (2)

0 = 1.1913. Thus, the disease goes
extinct in patch 1 but persists in patch 2. When the two patches are connected
by human movement with cf12 = 0.08, cf21 = 0.04 and cu12 = \tau 12c

f
12, c

u
21 = \tau 21c

f
21 for

\tau 12, \tau 21 \in [0, 1], the difference between the reproduction numbers of the new model
and the traditional model, \scrR 0  - \=\scrR 0, versus \tau 12 and \tau 21 is plotted in Figure 2. For
example, if \tau 12 = \tau 21 = 0.25, then cu12 = 0.02 and cu21 = 0.01 so that \scrR 0 = 1.0052,
that is, human movement promotes the disease spread in low transmission regions.
Meanwhile, direct computation gives

(Nu\ast 
1 , Nu\ast 

2 , Nf\ast 
1 , Nf\ast 

2 ) \approx (100796, 50341, 26513, 13264)

and hence it follows from (3.6) that c12 = 0.0325 and c21 = 0.0162. So the repro-
duction number of the traditional model is \=\scrR 0 = 0.9897. In the current parameter
setting, \scrR 0 is no less than \=\scrR 0 with equality if and only if \tau 12 = \tau 21 = 1 (under which
the new model can be reduced to the traditional model). This suggests that ignoring
travel differences leads to underestimation of the risk of infection.

Fig. 2. The contour plot of the difference of the reproduction numbers of the new model and
that of the corresponding traditional model, \scrR 0  - \=\scrR 0, with respect to relative travel rates \tau 12 and
\tau 21.

Moreover, under the homogeneous assumption and the biologically reasonable
restriction \phi ui = \tau i\phi 

f
i and cuij = \tau ijc

f
ij for i, j = 1, 2 and i \not = j, we use the Latin

hypercube sampling (LHS) method to randomly generate 105 parameter sets with
the parameter ranges in Table 1. We find 238 scenarios where the traditional model
overestimates the infection risk with the maximum difference less than 3.6 \times 10 - 5.
Surprisingly, under a weakly homogeneous assumption, i.e., the assumption \beta uu

i =

\beta uf
i = \beta fu

i = \beta ff
i is weakened to \beta uf

i = \beta fu
i , only nine scenarios have \scrR 0 less

than \=\scrR 0, with the maximum difference being around 4.2 \times 10 - 5. Even if we set



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TRAVEL FREQUENCY AND INFECTIOUS DISEASES 1597

\tau i \in [0, 1] and \tau ij \in [0, 1], there are only 734 scenarios where \=\scrR 0  - \scrR 0 is positive
with the maximum difference less than 1.1 \times 10 - 4. Therefore, the traditional model
tends to underestimate the disease transmission risk. However, when the assumption
\beta uu
i = \beta uf

i = \beta fu
i = \beta ff

i is removed, 26,922 scenarios are obtained with the maximum
difference being about 0.36.

In addition, under the homogeneous assumption, it follows from Proposition 2.2
in Gao and Ruan [18] and Theorem 3.1 that \scrR 0 and \=\scrR 0 satisfy

min
1\leq i\leq p

\scrR (i)
0 \leq \scrR 0 \leq max

1\leq i\leq p
\scrR (i)

0 and min
1\leq i\leq p

\scrR (i)
0 \leq \=\scrR 0 \leq max

1\leq i\leq p
\scrR (i)

0 ,

where \scrR (i)
0 = \scrR uu

i = \scrR uf
i = \scrR fu

i = \scrR ff
i . Nevertheless, the inequality for \scrR 0 does not

hold when the homogeneous assumption fails. For example, using the same parameter
setting for model (2.3) as the above specific example except that cu12 = 0.02, cu21 = 0.01

and the transmission rates, if \beta uu
1 = 0.116, \beta uf

1 = \beta fu
1 = 0.26, \beta ff

1 = 0.235, \beta uu
2 =

0.158, \beta uf
2 = \beta fu

2 = 0.213, and \beta ff
2 = 0.133, then \scrR 0 = 1.4735 > max\{ \scrR (1)

0 ,\scrR (2)
0 \} =

\{ 1.4678, 1.4692\} ; if \beta uu
1 = 0.23, \beta uf

1 = \beta fu
1 = 0.078, \beta ff

1 = 0.078, \beta uu
2 = 0.13, \beta uf

2 =

\beta fu
2 = 0.25, and \beta ff

2 = 0.27, then \scrR 0 = 1.5286 < min\{ \scrR (1)
0 ,\scrR (2)

0 \} = \{ 1.5802, 1.5549\} .
Example 4.2 (more frequent travelers). By choosing four parameter sets (see

the supplement material SM1) with ranges in Table 1 and under the homogeneous
assumption, we show their corresponding contour plots of \scrR 0 versus the relative
frequency exchange rates \tau 1 and \tau 2 in Figure 3. Note that an increase in \tau i, or
equivalently \phi ui , gives a higher fraction of frequent travelers of patch i provided that all
other parameters are fixed. In Figure 3a, increasing the exchange rate from unfrequent
group to frequent group in either patch produces a larger \scrR 0. Figure 3b illustrates
a scenario in which \scrR 0 is reduced by increasing any of \tau 1 and \tau 2. Figure 3c is the
scenario where a larger \scrR 0 is generated through decreasing \tau 1 or increasing \tau 2. The
last subfigure depicts the nonmonotonic dependence of \scrR 0 in \tau 1 and \tau 2. These suggest
that the influence of changes in the exchange rate and hence the fraction of frequent
travelers on the disease persistence can only be determined via a case-by-case study.

Example 4.3 (higher travel frequency). We examine the dependence of the re-
production number \scrR 0 on the diffusion coefficient of the infected subpopulation dI .
Under the homogeneous assumption and within parameter ranges in Table 1, we again
use the LHS method to generate 105 random parameter sets among which 99,796 sce-
narios have \scrR 0 decreasing in dI (see Figure 4a) and 204 scenarios have \scrR 0 initially
decreasing and then increasing in dI (see Figure 4b). The reason that no scenario
has \scrR 0 initially increasing in dI is that under the homogeneous assumption we have
min\{ \scrR uu

1 ,\scrR uu
2 \} \leq \scrR 0(dI) \leq max\{ \scrR uu

1 ,\scrR uu
2 \} = \scrR 0(0) by Theorem 3.1 and Corollary

3.3. However, under weakly homogeneous assumption, the numbers of decreasing,
increasing, and nonmonotonic scenarios become 43,906, 4, and 56,090, respectively.
An increasing scenario is plotted in Figure 4c, while three additional nonmonotonic
scenarios besides the one in Figure 4b are plotted in Figures 4d--4f. Moreover, over
90\% (50,885) of nonmonotonic scenarios have \scrR 0(0) greater than \scrR 0(100). Thus
sufficiently fast diffusion mostly alleviates the persistence of disease.

Allen et al. [1] conjectured that the basic reproduction number \=\scrR 0 of the tradi-
tional model (2.2) is a monotone decreasing function of the diffusion coefficient for
the infected subpopulation dI if the connectivity matrix C is quasi-positive, irreduc-
ible, and symmetric. In the appendix, we confirm the conjecture for an environment
with an arbitrary number of patches. Furthermore, the conjecture is still true even for
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(a) (b)

(c) (d)

Fig. 3. The contour plot of the reproduction number \scrR 0 under four different scenarios. The x-
and y- axes represent the relative frequency exchange rates \tau 1 and \tau 2, respectively. The color scheme
is the same as that of Figure 2 with color varying from purple to red. (Figure in color online.)

the model (2.2) with asymmetric connectivity matrix [16]. Particularly, the two-patch
case can be rigorously proved by direct algebraic manipulation. In contrast, the above
analysis finds that the decreasing monotonicity fails for the new model (2.3) even un-
der the homogeneous assumption, and the nonmonotonic dependence is very common
under the weakly homogeneous assumption. This difference again emphasizes the
importance of distinguishing travel frequency in spatial epidemic models.

Example 4.4 (implication for disease control). With limited health resources, an
allocation strategy that can minimize the disease burden is preferred. People who
have a higher risk of getting infections may require more preventive care. In our
model the question is: which is the high risk group, the unfrequent travelers Nu

i or
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(c)
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R0
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1.38
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(f)

Fig. 4. Relationship between the reproduction number \scrR 0 and the diffusion coefficient dI
under six different scenarios. The first two scenarios are under homogeneous assumption while
the remaining are under weakly homogeneous assumption. See SM2 for parameter values of each
scenario.

frequent travelers Nf
i ? Mathematically, we need to compare the disease prevalences

of the unfrequent and frequent groups within each patch or across both patches at
the endemic equilibrium,

Iu\ast i

Nu\ast 
i

:
If\ast i

Nf\ast 
i

for i = 1, 2 or

\sum 2
i=1 I

u\ast 
i\sum 2

i=1N
u\ast 
i

:

\sum 2
i=1 I

f\ast 
i\sum 2

i=1N
f\ast 
i

,

respectively. For the simplicity of solving the endemic equilibrium, we assume that
dS = dI = 1, which also agrees with the fact that the common cold is mostly not
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severe enough to impair mobility. However, similar conclusions can be drawn for
the case of dI < dS . Under the homogeneous assumption and within the parame-
ter ranges in Table 1, we randomly generate 105 parameter sets and obtain 94,080
scenarios whose reproduction numbers are greater than one. Among these qualified
scenarios, after performing the first comparison, 185 have frequent travelers of both
patches being high risk groups (maximum absolute difference in disease prevalence
less than 0.03), 54 have unfrequent travelers of both patches being high risk groups
(maximum absolute difference in disease prevalence near 0.0004), and the remaining
93,841 have unfrequent travelers of one patch and frequent travelers of the other patch
being high risk groups. More specifically, 93,818 of the 93,841 scenarios have unfre-
quent travelers in the high transmission patch (where the patch reproduction number
is bigger) and frequent travelers in the low transmission patch (where the patch re-
production number is smaller) being high risk groups. When the disease prevalences
of all four subpopulations are compared, the number of scenarios representing un-
frequent travelers in the high transmission patch being the highest risk group and
unfrequent travelers in the low transmission patch being the lowest risk group are,
respectively, 93,865 and 93,975. Therefore, in the case of two homogeneous patches,
the high risk group within a patch almost completely comes from unfrequent travelers
in high transmission regions and frequent travelers in low transmission regions; the
highest and lowest risk groups almost completely come from unfrequent travelers in
high and low transmission patches, respectively. It is understandable that leaving
high transmission regions or staying in low transmission regions are helpful in reduc-
ing infection risk. A comparison of the average disease prevalences of unfrequent and
frequent travelers across two patches finds the number of scenarios representing unfre-
quent and frequent traveler groups being at higher risk of infection are, respectively,
49,398 and 44,682. However, with the first comparison, both the percentage of sce-
narios that frequent or unfrequent travelers of both patches are high risk groups and
the maximum absolute difference in disease prevalence increase sharply under weakly
homogeneous assumption or within enlarged parameter ranges.

Without loss of generality, we now consider a two-patch environment where the

transmission risk of patch 1 is higher than that of patch 2, i.e., \scrR (1)
0 > \scrR (2)

0 . Health

campaigns reduce transmission rates \beta uu
1 and \beta uf

1 for unfrequent travelers in high

transmission regions, Nu\ast 
1 , \beta fu

1 and \beta ff
1 for frequent travelers in high transmission re-

gions, Nf\ast 
1 , \beta uu

2 and \beta uf
2 for unfrequent travelers in low transmission regions, Nu\ast 

2 , \beta fu
2

and \beta ff
2 for frequent travelers in low transmission regions, Nf\ast 

2 , respectively. Given
a fixed amount of health resources, we ask: which exclusive allocation approach can
produce the largest reduction in the number of infections or the reproduction number?
Suppose that the reduction in the amplitude of transmission rate is proportional to
the per capita resource availability regardless of travel frequency and residence. The
same amount of resources can be used to, respectively, reduce the transmission rates

\beta uu
1 and \beta uf

1 for Nu\ast 
1 to (1 - \delta m/Nu\ast 

1 )\beta uu
1 and (1 - \delta m/Nu\ast 

1 )\beta uf
1 ,

\beta fu
1 and \beta ff

1 for Nf\ast 
1 to (1 - \delta m/Nf\ast 

1 )\beta fu
1 and (1 - \delta m/Nf\ast 

1 )\beta ff
1 ,

\beta uu
2 and \beta uf

2 for Nu\ast 
2 to (1 - \delta m/Nu\ast 

2 )\beta uu
2 and (1 - \delta m/Nu\ast 

2 )\beta uf
2 ,

\beta fu
2 and \beta ff

2 for Nf\ast 
2 to (1 - \delta m/Nf\ast 

2 )\beta fu
2 and (1 - \delta m/Nf\ast 

2 )\beta ff
2 ,

where \delta \in [0, 1] represents the reduced fraction of the transmission rate due to med-

ical resources and m = min\{ Nu\ast 
1 , Nf\ast 

1 , Nu\ast 
2 , Nf\ast 

2 \} . Under homogeneous assumption
and within the parameter ranges in Table 1, we generate 104 random parameter sets
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leading to 8,710 scenarios whose reproduction numbers after resource allocation re-
main greater than one. Among these 8,710 scenarios, the number of scenarios wherein
allocation to Nu\ast 

1 , Nf\ast 
1 , Nu\ast 

2 , and Nf\ast 
2 constantly yields the largest reduction in in-

fections are, respectively, 166, 4,924, 197, and 416, and the second largest reductions
are, respectively, 3,856, 209, 369, and 145 (see Figure 5a). The number of scenarios

that allocation to Nu\ast 
1 , Nf\ast 

1 , Nu\ast 
2 , and Nf\ast 

2 constantly yields the largest reduction in
the reproduction number are, respectively, 6,787, 1, 0, and 196, and the second largest
reduction are, respectively, 1, 6,784, 168, and 0 (see Figure 5b). As \delta \rightarrow 1, the number

of scenarios wherein allocation to Nf\ast 
1 yields the largest reduction in infections and

to Nu\ast 
1 yields the largest reduction in reproduction number are, respectively, 6,618

and 6,902. So allocating resources towards frequent travelers in high transmission
regions and unfrequent travelers in high transmissions region are possibly the most
effective strategies in reducing infections and the reproduction number, respectively.
Nevertheless, targeting interventions to frequent travelers in low transmission regions
may work better in a few scenarios. Figures 5c--5d show that the optimal allocation
strategy in terms of infection size and reproduction number may vary with the per
capita resources availability.
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Fig. 5. Total number of infections and the reproduction number versus the reduced fraction of
transmission rate under four allocation strategies. See SM3 for parameter values of each scenario.

5. Discussion. In this paper, we proposed an epidemic patch model aimed at
capturing the fact that travel frequency varies widely from person to person. The
dynamics of each patch in isolation are described by a simple two-group SIS model,
incorporating unfrequent and frequent travelers. We derive the basic reproduction
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number \scrR 0 that completely determines the global dynamics of the model if the dif-
fusion coefficients for susceptible and infective individuals are the same. Namely, the
disease-free equilibrium is globally asymptomatically stable if \scrR 0 \leq 1, and the model
admits a unique endemic equilibrium which is globally asymptomatically stable if
\scrR 0 > 1. Mathematically tractable and biologically meaningful bounds on \scrR 0 are
established. We compared our model with the model that ignores the difference in
travel frequency through both analytical and numerical approaches and showed that
the latter usually underestimates the risk of infection when a homogeneous or weakly
homogeneous assumption and biologically reasonable parameter ranges are taken.

Three additional numerical examples were given to illustrate the impact of changes
in modern transportation on disease spread and control [39]. The first example focused
on the trend that more people are traveling frequently. We studied the dependence
of the reproduction number \scrR 0 on the relative frequency exchange rates \tau 1 and \tau 2 of
patches 1 and 2, respectively, and found that \scrR 0 could be simultaneously increasing
or decreasing, or inconsistently monotone, or nonmonotonic with respect to \tau 1 and
\tau 2. Thus, changes in the proportion of frequent travelers may affect the infection risk
in a complicated way. The second example treated the change that people are trav-
eling more often than ever before. Under the homogeneous assumption and proper
parameter ranges, we found that increasing the diffusion coefficient, dI , almost always
reduces \scrR 0 but occasionally first decreases then increases \scrR 0. Moreover, under the
weakly homogeneous assumption, the possibility of nondecreasing dependence is even
higher than that of decreasing dependence, and strictly increasing dependence could
happen. Furthermore, the nondecreasing dependence has at least five patterns (see
Figure 4b--4f). However, sufficiently fast diffusion mostly weakens the disease spread.
The last example considered the implication of the current study to disease control
in an environment with two homogeneous patches. On the one hand, the high risk
groups in high and low transmission regions are, respectively, the unfrequent and fre-
quent travelers, and individuals who travel less frequently in the high transmission
region suffer the highest risk of infection. On the other hand, possibly the best re-
source management to reduce infections and the reproduction number is to distribute
resources to frequent and unfrequent travelers in high transmission regions, respec-
tively. With regard to application, the subdivision of population in the new model
makes the recognition of individuals at high infection risk much easier and resource
management for disease control more efficient.

The study presented here is only a first step toward understanding the influence
of heterogeneity in travel frequency on the spatial and temporal spread of infectious
diseases. There are various directions to improve and generalize. The dependence
of the multipatch basic reproduction number \scrR 0 with respect to model parameters
such as the frequency exchange rate and the diffusion coefficient deserve detailed
study. Like the work of Allen et al. [1], it is necessary to analyze the asymptotic
profiles of the endemic equilibrium with respect to diffusion coefficients which have
important implications for disease control. We assumed a homogeneous mixing of the
population in each patch. However, in reality, frequent travelers often make more
contacts with each other than people outside their group and hence a heterogeneous
mixing population is more realistic [21, 23]. The model can be generalized to consist
of a finite number or even a continuum of travel frequencies, e.g., low, medium, and
high frequency. Some infectious diseases are fatal, or disproportionately impair the
mobility of infectives, or have complicated life cycles (induce more disease states),
or involve a vector population, or transmit via multiple routes. The difference in the
frequency and destination of local commutes also exists, that is, some people commute
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every business day while others stay home or nearby. This can be modeled by using
the so-called Lagrangian approach, in which movement to another patch does not
change the residence of an individual [8, 12, 22]. A change of residence has a high
potential to adjust a person's travel behavior, e.g., moving closer to the workplace. To
assess the validity of the model, we particularly need to conduct a systematic survey
on travel behavior and contact pattern to estimate the matrices for movement rates,
frequency exchange rates, and transmission rates.

Appendix A. Proof of the conjecture for model (2.2).

Theorem A.1. Let F = diag\{ \beta 1, . . . , \beta p\} and D = diag\{ \gamma 1, . . . , \gamma p\} be two pos-
itive diagonal matrices, and let L = (Lij)p\times p be a quasi-positive, irreducible, and
symmetric matrix with zero column sums. Then \scrR 0 := \rho (FV  - 1) with V = D - \tau L is
either constant or strictly decreasing in \tau \in [0,\infty ) and \scrR \prime 

0(\tau ) < 0 for \tau \in (0,\infty ).

Proof. If F = mD for some m > 0, then it is easy to see that \scrR 0 = m is constant.
So it suffices to consider the case where F is not a scalar multiple of D.

By the Perron--Frobenius theorem, there is a unique column vector \bfitv := \bfitv (\tau ) \gg 0
with \bfitv T\bfitv = 1 such that

V  - 1F\bfitv = \rho (V  - 1F )\bfitv = \rho (FV  - 1)\bfitv = \scrR 0\bfitv ,

which implies that (F  - \scrR 0V )\bfitv = 0, or equivalently,

((kIn + F  - \scrR 0D) + \tau \scrR 0L)\bfitv = k\bfitv for k \in \BbbR .

Choosing sufficiently large k gives a symmetric matrix

A := A(\tau ) = (kIn + F  - \scrR 0D) + \tau \scrR 0L

that is nonnegative and irreducible. Again by the Perron--Frobenius theorem, \rho (A) =
k is an algebraically simple eigenvalue for matrix A. Differentiating the equality

\bfitv TA\bfitv = \rho (A)\bfitv T\bfitv = k

with respect to \tau yields

0 =
d(\bfitv TA\bfitv )

d\tau 
=
d\bfitv T

d\tau 
A\bfitv + \bfitv T dA

d\tau 
\bfitv + \bfitv TA

d\bfitv 

d\tau 
=
d\bfitv T

d\tau 
\rho (A)\bfitv + \bfitv T dA

d\tau 
\bfitv + \rho (A)\bfitv T d\bfitv 

d\tau 

= \rho (A)

\biggl( 
d\bfitv T

d\tau 
\bfitv + \bfitv T d\bfitv 

d\tau 

\biggr) 
+ \bfitv T dA

d\tau 
\bfitv = \rho (A)

d(\bfitv T\bfitv )

d\tau 
+ \bfitv T dA

d\tau 
\bfitv = \bfitv T dA

d\tau 
\bfitv 

= \bfitv T

\biggl( 
 - d\scrR 0

d\tau 
D +

d\scrR 0

d\tau 
\tau L+\scrR 0L

\biggr) 
\bfitv = \bfitv T

\biggl( 
 - d\scrR 0

d\tau 
V +\scrR 0L

\biggr) 
\bfitv 

= \bfitv T

\biggl( 
 - d\scrR 0

d\tau 

1

\scrR 0
F +\scrR 0L

\biggr) 
\bfitv =  - d\scrR 0

d\tau 

1

\scrR 0
\bfitv TF\bfitv +\scrR 0\bfitv 

TL\bfitv .

Claim: \bfitv TL\bfitv < 0. Since L is a quasi-positive, irreducible, symmetric matrix with
zero column sums, by the Perron--Frobenius theorem, the spectrum of L is \sigma (L) =
\{ 0, \lambda 2, . . . , \lambda p\} with \lambda i < 0 for i = 2, . . . , p. Using the Gram--Schmidt process, there
exists an orthogonal matrix

Q =

\left(   q11 q12 . . . q1p
q21 q22 . . . q2p
...

...
. . .

...
qp1 qp2 . . . qpp

\right)   
=

\left( 
\bfitq T
1

\bfitq T
2
...
\bfitq T
p

\right) 



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1604 DAOZHOU GAO

such that
QLQT = diag\{ 0, \lambda 2, . . . , \lambda p\} ,

where \bfitq T
1 = 1\surd 

p (1, . . . , 1) is the normalized positive eigenvector of L corresponding to

the zero eigenvalue. A linear transformation \bfitu := \bfitu (\tau ) = Q\bfitv (\tau ) yields

\bfitv TL\bfitv = \bfitv TQT diag\{ 0, \lambda 2, . . . , \lambda p\} Q\bfitv = \bfitu T diag\{ 0, \lambda 2, . . . , \lambda p\} \bfitu =

p\sum 
i=2

\lambda iu
2
i \leq 0.

To prove the claim, now it remains to show that u2, . . . , up cannot be simultane-
ously zero. Suppose not, then for some positive \tau 0 we have

\bfitu T (\tau 0) = (u1(\tau 0), 0, . . . , 0) = (\pm 1, 0, . . . , 0)

due to the fact that
\bfitu T\bfitu = \bfitv TQTQ\bfitv = \bfitv T\bfitv = 1.

It follows from \bfitv (\tau ) = QTQ\bfitv (\tau ) = QT\bfitu (\tau ) that \bfitv (\tau 0) = QT\bfitu (\tau 0) = u1(\tau 0)\bfitq 
T
1 =

\bfitq T
1 \gg 0. Thus (F  - \scrR 0V )\bfitv = 0 implies

0 = (F  - \scrR 0(\tau 0)(D  - \tau 0L))\bfitv (\tau 0) = (F  - \scrR 0(\tau 0)(D  - \tau 0L))\bfitq 
T
1 = (F  - \scrR 0(\tau 0)D)\bfitq T

1

and hence \beta i = \scrR 0(\tau 0)\gamma i, i.e., \scrR 0(\tau 0) = \beta i/\gamma i for all i, a contradiction. Thus the
claim holds.

It follows from \bfitv TF\bfitv > 0 and \bfitv TL\bfitv < 0 that

d\scrR 0

d\tau 
= (\scrR 0)

2 \bfitv 
TL\bfitv 

\bfitv TF\bfitv 
< 0 for \tau \in (0,\infty ).

Therefore, \scrR 0 is a strictly decreasing function of \tau on the interval [0,\infty ).
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