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Abstract
Based on a Ross–Macdonald type model with a number of identical patches, we study
the role of the movement of humans and/or mosquitoes on the persistence of malaria
and many other vector-borne diseases. By using a theorem on line-sum symmetric
matrices, we establish an eigenvalue inequality on the product of a class of nonneg-
ative matrices and then apply it to prove that the basic reproduction number of the
multipatch model is always greater than or equal to that of the single patch model.
Biologically, this means that habitat fragmentation or patchiness promotes disease
outbreaks and intensifies disease persistence. The risk of infection is minimized when
the distribution of mosquitoes is proportional to that of humans. Numerical examples
for the two-patch submodel are given to investigate how the multipatch reproduction
number varies with human and/or mosquito movement. The reproduction number can
surpass any given value whenever an appropriate travel pattern is chosen. Fast human
and/or mosquito movement decreases the infection risk, but may increase the total
number of infected humans.
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1 Introduction

Vector-borne diseases are illness caused by pathogens, which are transmitted to
humans or animals by the bites of infected vectors such as mosquitoes (e.g., malaria,
dengue fever, Rift Valley fever, and Zika virus disease), ticks (e.g., Lyme disease and
babesiosis), aquatic snails (e.g., schistosomiasis), fleas (e.g., plague), bugs (e.g., Cha-
gas disease), and sandflies (e.g., onchocerciasis). They are responsible for over 17%
of the estimated global burden of all infectious diseases (World Health Organization
2017). For example, malaria alone caused an estimated 219 million cases and approx-
imately 435,000 deaths worldwide in 2017, though the mortality rates have reduced
by about 60% since 2000 (World Health Organization 2018). Rift Valley fever results
in significant economic costs through human morbidity and loss of livestock. The
2015-16 Zika virus outbreak caused up to one million suspected cases and thou-
sands of confirmed microcephaly cases in Brazil (Pan American Health Organization
2017).

Mathematical modeling and analysis of vector-borne diseases, with a long history
of development and application, have attracted considerable attention among gov-
ernmental agencies and institutional researchers (Mandal et al. 2011; Reiner et al.
2013). The original mathematical model for malaria transmission was proposed by
Ross (1911) and later extended by Macdonald (1957) in the 1950s. In this seminal
work, the malaria transmission cycle is depicted in Fig. 1.

Both humans andmosquitoes are either susceptible or infectious and their respective
total population sizes, H and V , are constant. The rates of change of the number of
infectious humans and infectious mosquitoes, h(t) and v(t), are described by a system
of two ordinary differential equations as follows:

Humans H − h

ab
v

H
(H − h)

h
γh

Mosquitoes
μV

μ(V − v)
V − v

ac
h

H
(V − v)

v
μv

Fig. 1 Flowchart of the Ross–Macdonald model for malaria. The variables and parameters are defined in
the text
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dh

dt
= ab

v

H
(H − h) − γ h,

dv

dt
= ac

h

H
(V − v) − μv,

(1)

where H − h and V − v are respectively the number of susceptible humans and
susceptible mosquitoes, a is the rate of biting on humans by a single mosquito, γ is
the rate at which infectious humans recover, μ is the birth rate and the mortality rate
of mosquitoes, b and c are the transmission probabilities from an infectious mosquito
to a susceptible human and from an infectious human to a susceptible mosquito per
bite, respectively. The reader may refer to the paper by Smith and McKenzie (2004)
for a detailed derivation and some results on the model.

Obviously the origin is the disease-free equilibrium of the so called Ross–
Macdonald model (1).We can use the next generation matrix method (Diekmann et al.
1990; van den Driessche and Watmough 2002) to define a basic reproduction number
for the average number of secondary infections produced by a typical infectious indi-
vidual (human or mosquito) during the entire infectious period provided that everyone
else of both populations is susceptible. The disease will disappear if the reproduction
number is less than or equal to unity and will eventually stabilize at an endemic equi-
librium if the reproduction number is greater than one. The Ross–Macdonald model
reflects the essential feature of the malaria transmission process, namely, the trans-
mission from infected mosquitoes to susceptible humans and from infected humans
to susceptible mosquitoes. The model and its threshold quantity play a critical role in
theWorldHealthOrganization’s GlobalMalaria Eradication Programme (1955–1969)
(Smith et al. 2012). It is now widely accepted as a solid framework for the study of
the transmission dynamics of malaria and many other mosquito-borne or vector-borne
diseases like West Nile virus (Bowman et al. 2005; Chen et al. 2016), dengue fever
(Abdelrazec et al. 2016; Feng and Velasco-Hernández 1997), yellow fever (Codeço
et al. 2007), and Zika (Gao et al. 2016; Kucharski et al. 2016). Interestingly, Ross
received a Nobel Prize in Physiology or Medicine for his discovery of the life cycle
of the malarial parasite in 1902, but he considered his epidemiological mathematics
as his greatest contribution.

Since the Ross–Macdonald model is the earliest and simplest malaria model, it
inevitably has some major limitations due to failure to take many ecological and
epidemiological factors into account. Over the last few decades, a large number of
studies on mathematical models of malaria have been done by adding factors such
as superinfection, age structure (children are more susceptible than adults), acquired
immunity and vital dynamics in humans, extrinsic incubation period of malaria para-
sites in mosquitoes (10 days or longer), environmental factors (temperature, humidity
and rain are important for the survival of mosquitoes and the development of par-
asites), treatment and drug resistance, a hypothetical vaccine to the model (Mandal
et al. 2011; Reiner et al. 2013; Smith et al. 2012). Among these extensions, a few
efforts have been made to incorporate spatial heterogeneity in discrete or continuous
space (Arino et al. 2012; Auger et al. 2008; Bai et al. 2018; Cosner et al. 2009; Gao
and Ruan 2012; Lou and Zhao 2011). Both observation data and theoretical research
suggest that human movement may strengthen the spread and persistence of malaria
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around the world (Cosner et al. 2009; Gao and Ruan 2012; Khuu et al. 2017). We
refer the readers to two review articles by Cosner (2015) and Gao and Ruan (2014).

In this paper, we will study the effect of human and/or mosquito movement on the
persistence of malaria in a fragmented environment with identical patches, i.e., there
is no epidemiological or demographic difference among patches in case they are iso-
lated. Such a tough restriction enables us to exclusively focus on the movement itself
with no interference from spatial heterogeneities. In the next section, we present a gen-
eralized Ross–Macdonald model where population dispersal among identical patches
is considered and we summarize the global stability result on it. Section 3 is devoted
to the main results and their proofs for comparing the basic reproduction numbers of
the single patch model and the multipatch model. Some numerical examples are given
in Sect. 4. Finally we discuss the biological meaning of our results, their relevance to
other studies, and future research questions.

2 Model Formulation

We begin by formulating a simple multipatch malaria model where the model of each
patch in isolation is exactly the same as the Ross–Macdonald model (1) and humans
and mosquitoes move between n identical patches. In patch i , let Hi (t) and Vi (t) be
the total human and mosquito populations at time t , respectively; hi (t) and vi (t) be
the numbers of infectious humans and infectious mosquitoes at time t , respectively.
Then the multipatch Ross–Macdonald model takes the form

dHi

dt
=

∑n

j=1
ci j Hj , 1 ≤ i ≤ n,

dVi
dt

=
∑n

j=1
di j Vj , 1 ≤ i ≤ n,

dhi
dt

= ab
vi

Hi
(Hi − hi ) − γ hi +

∑n

j=1
ci j h j , 1 ≤ i ≤ n,

dvi

dt
= ac

hi
Hi

(Vi − vi ) − μvi +
∑n

j=1
di jv j , 1 ≤ i ≤ n,

(2)

with nonnegative initial conditions

(H1(0), . . . , Hn(0), V1(0), . . . , Vn(0), h1(0), . . . , hn(0), v1(0), . . . , vn(0))

satisfying
∑n

i=1 Hi (0) = H > 0 and
∑n

i=1 Vi (0) = V > 0.
The parameters ci j ≥ 0 and di j ≥ 0 are the movement rate of humans and

mosquitoes from patch j to patch i for i �= j , respectively; −cii = ∑n
j=1, j �=i c ji

and−dii = ∑n
j=1, j �=i d ji are the emigration rates of humans and mosquitoes in patch

i , respectively. Thus the human and mosquito travel rate matrices C = (ci j )n×n

and D = (di j )n×n are Laplacian matrices. Unless otherwise indicated, we assume
throughout this paper that C and D are irreducible such that n patches cannot be sepa-
rated into two disconnected parts. A square matrix is called quasi-positive, Metzler or
essentially nonnegative if all its off-diagonal entries are nonnegative. The assumptions
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on the signs of ci j and di j for i �= j mean that matrices C and D are quasi-positive,
and the assumptions on cii and dii mean that C and D have zero column sums. The
following lemma is part of Corollary 4.3.2 in Smith (1995) and Theorem 6.2.7 in
Berman and Plemmons (1979). It guarantees the existence and uniqueness of positive
equilibrium for the human and mosquito movement models and the validity of the
definition of the multipatch basic reproduction number.

Lemma 1 Let C = (ci j )n×n be an irreducible quasi-positive matrix satisfying∑n
i=1 ci j = 0 for j = 1, . . . , n andC = (δi jγi )n×n −C with γi > 0 for i = 1, . . . , n.

Here δi j is the Kronecker delta, i.e., 1 when i = j and 0 otherwise. Then C has a
simple positive right eigenvector corresponding to the eigenvalue zero; C−1 exists
and is positive.

The equations for the total human andmosquito populations inmodel (2) are decou-
pled from the remaining equations. It follows from Lemma 1 that the model (2) has a
unique disease-free equilibrium

E0 = (H∗
1 , . . . , H∗

n , V ∗
1 , . . . , V ∗

n , 0, . . . , 0, 0, . . . , 0),

where (H∗
1 , . . . , H∗

n ) and (V ∗
1 , . . . , V ∗

n ) are the unique positive solutions to

n∑

j=1

ci j Hj = 0, i = 1, . . . , n,

n∑

i=1

Hi =
n∑

i=1

Hi (0) = H ,

and

n∑

j=1

di j Vj = 0, i = 1, . . . , n,

n∑

i=1

Vi =
n∑

i=1

Vi (0) = V ,

respectively; see Lemma 1 in Cosner et al. (2009). It is worth noting that
(H∗

1 , . . . , H∗
n )T and (V ∗

1 , . . . , V ∗
n )T are respectively the positive right eigenvectors

of C and D corresponding to the zero eigenvalue. Indeed, they are respectively a
positive multiple of the positive vectors

(−1)n−1(C11, . . . ,Cnn)
T and (−1)n−1(D11, . . . , Dnn)

T ,

normalized by the total human and mosquito population sizes, where Cii and Dii

denote the (i, i) cofactor of C and D, respectively (Gao and Dong 2019). Explicit
expressions forCii and Dii can be obtained through Kirchhoff’sMatrix Tree Theorem
(see Moon 1970).

Using the next generation matrix method (Diekmann et al. 1990; van den Driessche
and Watmough 2002), the new infection and disease transition matrices of the model
(2) are respectively

F =
(
0 A
B 0

)
and V =

(
C 0
0 D

)
,
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2260 D. Gao et al.

where A = abIn , B = ac(δi j V ∗
i /H∗

i )n×n , C = γ In − C , and D = μIn − D. The
n × n identity matrix is denoted by In . It follows from Proposition 2.1 in Iggidr et al.
(2016) that the next generation matrix

FV−1 =
(

0 AD−1

BC−1 0

)

is irreducible if and only if AD−1BC−1 and BC−1AD−1 are irreducible. By
Lemma 1, the irreducibilities of C and D imply that both C−1 and D−1 exist and
are positive. Thus,AD−1BC−1 andBC−1AD−1 are positive and irreducible. The
basic reproduction number of the n-patch model (2) is

R0(n) = ρ(FV−1) = ρ

(
0 AD−1

BC−1 0

)
=

√
ρ(AD−1BC−1), (3)

where ρ is the spectral radius of a square matrix. In particular, if n = 1 then the basic
reproduction number of the single patch model (1) is

R0(1) =
√
a2bcV

γμH
. (4)

By the theory of monotone dynamical systems (Smith 1995), it is shown that the
disease dynamics of system (2) are completely determined by its basic reproduction
number even if the model parameters a, b, c, γ and μ are location-dependent.

Theorem 1 (Cosner et al. 2009) For system (2), if R0(n) ≤ 1 then the disease-free
equilibrium, E0, is globally stable among nonnegative solutions; if R0(n) > 1 then
there is a unique positive equilibriumwhich is globally stable amongpositive solutions.

In order to eradicate malaria, it follows that we need to reduceR0(n) to be less than
one by implementing suitable control measures such as vector control and insecticide-
treated bednets that increase or decrease certain parameter values. Obviously, R0(n)

is monotone increasing in terms of a, b and c, and monotone decreasing with respect
to γ and μ. The classification of the relationship between R0(n) and travel rate ci j
or di j is a challenging question. We will investigate the effect of population dispersal
or patchiness on disease persistence by comparing the basic reproduction numbers of
the single patch model (1) and the n-patch model (2), i.e.,R0(1) versus R0(n).

For model (2) with two identical patches connected by human movement, Gao and
Ruan (2014) explicitly solved R0(2) and showed that R0(2) ≥ R0(1). This implies
that human movement always facilitates malaria transmission in an environment with
two identical patches. However, solving R0(n) or the spectral radius of the n × n
matrix AD−1BC−1 becomes extremely difficult or even impossible when three or
more identical patches are concerned. In what follows, we show that the inequality
R0(n) ≥ R0(1) still holds for themultipatchRoss–Macdonaldmodelwith an arbitrary
number of patches connected by movement of humans, mosquitoes or both.
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3 Main results

Before stating the main results and their proofs, we prove a lemma and establish a
general result on the spectral radius of a class of nonnegative matrices.

A square matrix A = (ai j )n×n is called line-sum-symmetric if for every 1 ≤ i ≤ n,
the sum of the entries in the i th row of A equals the sum of the entries in the i th column
of A, i.e.,

∑n
j=1 ai j = ∑n

j=1 a ji for 1 ≤ i ≤ n. The following result will be used to
prove the second lemma below.

Lemma 2 (Eaves et al. 1985) Let A = (ai j )n×n be an n× n nonnegative matrix. Then
A is line-sum-symmetric if and only if

n∑

i, j=1

ai j
xi
x j

≥
n∑

i, j=1

ai j

for all xi > 0 and 1 ≤ i ≤ n. Moreover, if A is irreducible and line-sum-symmetric,
equality holds if and only if all the coordinates of x = (x1, . . . , xn) coincide, i.e.,
xi = x j for any 1 ≤ i, j ≤ n.

Lemma 3 Let A = (ai j )n×n be an irreducible quasi-positive matrix satisfying∑n
i=1 ai j = 0 for j = 1, . . . , n; (w1, . . . , wn)

T be a right positive eigenvector of
A corresponding to the eigenvalue zero; w̄ = 1

n

∑n
i=1 wi , the average of w1, . . . , wn;

M = diag{w1, . . . , wn} and N = r In− A with r > 0. Assume that x = (x1, . . . , xn)T

and y = (y1, . . . , yn)T are two positive vectors, and λ is a positive constant. The fol-
lowing statements are valid:

(1) if M−1N−1x = λ y then λ ≥ 1

nrw̄

n∑
i=1

xi
yi

with equality if and only if

y1 = · · · = yn and
x1
y1

1

w1
= · · · = xn

yn

1

wn
= rλ; (5)

(2) if MN−1x = λ y then λ ≥ 1

nrw̄

n∑
i=1

xi
yi

w2
i with equality if and only if

y1
w2
1

= · · · = yn
w2
n

and
x1
y1

w1 = · · · = xn
yn

wn = rλ; (6)

(3) if N−1M−1x = λ y then λ ≥ 1

nrw̄

n∑
i=1

xi
yi

with equality if and only if

y1
w1

= · · · = yn
wn

and
x1
y1

1

w1
= · · · = xn

yn

1

wn
= rλ; (7)
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(4) if N−1Mx = λ y then λ ≥ 1

nrw̄

n∑
i=1

xi
yi

w2
i with equality if and only if

y1
w1

= · · · = yn
wn

and
x1
y1

w1 = · · · = xn
yn

wn = rλ. (8)

Proof The first equation M−1N−1x = λ y is equivalent to− 1
λ
x = −NM y, or explic-

itly,

−1

λ

⎛

⎜⎜⎝

x1
...

xn

⎞

⎟⎟⎠ =

⎡

⎢⎢⎣−r

⎛

⎜⎜⎝

w1 · · · 0

...
. . .

...

0 · · · wn

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

a11w1 · · · a1nwn

...
. . .

...

an1w1 · · · annwn

⎞

⎟⎟⎠

⎤

⎥⎥⎦

⎛

⎜⎝
y1
...

yn

⎞

⎟⎠ . (9)

Since both the row sums and column sums of AM = (ai jw j )n×n are zero, adding k In
with k sufficiently large to that matrix gives a nonnegative irreducible and line-sum-
symmetric matrix. The i th row of (9) can then be written as

−1

λ
xi + kyi = −rwi yi +

n∑

j=1

(ai jw j + δi j k)y j

or

−1

λ

xi
yi

+ k + rwi =
n∑

j=1

(ai jw j + δi j k)
y j
yi

, (10)

for i = 1, . . . , n. It follows from Lemma 2 that summing (10) over i gives

− 1

λ

n∑

i=1

xi
yi

+ nk + r
n∑

i=1

wi =
n∑

i, j=1

(ai jw j + δi j k)
y j
yi

≥
n∑

i, j=1

(ai jw j + δi j k) =
n∑

i, j=1

ai jw j +
n∑

i, j=1

δi j k = nk.

So

λ ≥ 1

nrw̄

n∑

i=1

xi
yi

with equality if and only if y1 = · · · = yn . But then (10) gives

−1

λ

xi
yi

+ k + rwi =
n∑

j=1

(ai jw j + δi j k) = k,

123



Habitat fragmentation promotes malaria persistence 2263

which is impossible unless

x1
y1

1
w1

= · · · = xn
yn

1
wn

= rλ. (11)

On the other hand, (11) implies that

1

nrw̄

n∑

i=1

xi
yi

= 1

nrw̄

n∑

i=1

(rλwi ) = rλ

nrw̄

n∑

i=1

wi = rλ

nrw̄
nw̄ = λ,

proving the equality case and completing the proof of part (1).
The three equations

MN−1x = λ y, N−1M−1x = λ y, and N−1Mx = λ y

can be rewritten respectively as

M−1N−1 x̃ = λ ỹ, M−1N−1 x̂ = λ ŷ, and M−1N−1 x̆ = λ y̆,

where

x̃ = x, ỹ = M−2 y, x̂ = M−1x, ŷ = M−1 y, x̆ = Mx, and y̆ = M−1 y.

Using these, parts (2)–(4) can be deduced from part (1). ��
Theorem 2 For k = 1, . . . , p, let Ak = (ai jk)n×n be an irreducible quasi-positive
matrix satisfying

∑n
i=1 ai jk = 0 for j = 1, . . . , n; (w1k, . . . , wnk)

T be a right pos-
itive eigenvector of Ak corresponding to the eigenvalue zero; w̄k = 1

n

∑n
i=1 wik ,

the average of w1k, . . . , wnk; Mk = diag{w1k, . . . , wnk} and Nk = rk In − Ak with
rk > 0; Wk = M−1

k N−1
k or N−1

k M−1
k . Then

ρ

( p∏

k=1

Wk

)
≥

p∏

k=1

1

rkw̄k

with equality if and only if w1k = · · · = wnk for k = 1, . . . , p, or equivalently,∑n
j=1 ai jk = 0 for i = 1, . . . , n and k = 1, . . . , p.

Additionally, if W̃1 = M1N
−1
1 or N−1

1 M1, and W2 = M−1
2 N−1

2 or N−1
2 M−1

2 , then
we have

ρ(W̃1W2) = ρ(W2W̃1) ≥ w̄1

r1r2w̄2

with equality if and only if

(i) w11/w12 = · · · = wn1/wn2, or equivalently, the right positive eigenvectors
associated with the eigenvalue zero of A1 and A2 are proportional, provided that
W̃1 = M1N

−1
1 and W2 = N−1

2 M−1
2 , or W̃1 = N−1

1 M1 and W2 = M−1
2 N−1

2 ;
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(ii) w1k = · · · = wnk for k = 1, 2, or equivalently,
∑n

j=1 ai jk = 0 for i = 1, . . . , n

and k = 1, 2, provided that W̃1 = M1N
−1
1 and W2 = M−1

2 N−1
2 , or W̃1 =

N−1
1 M1 and W2 = N−1

2 M−1
2 .

Proof Since (w1k, . . . , wnk)
T and N−1

k are positive by Lemma 1, it follows that Wk

is positive and the pn × pn matrix

W =

⎛

⎜⎜⎜⎜⎜⎝

0 W1 0 0 · · · 0
0 0 W2 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · Wp−1
Wp 0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

is nonnegative and irreducible (Iggidr et al. 2016). By the Perron–Frobenius theorem
(Horn and Johnson 2013), the spectral radius of matrix W is a simple eigenvalue
of matrix W associated with a positive eigenvector v = (vT1 , . . . , vTp )T with vk =
(v1k, . . . , vnk)

T for k = 1, . . . , p. That is,

Wv = λv and λ ≡ ρ(W ),

or explicitly,

Wkvk+1 = λvk, for k = 1, . . . , p, where v p+1 = v1. (12)

Thus

( p∏

k=1

Wk

)
v1 =

( p∏

k=1

Wk

)
v p+1 = λpv1 and ρ

( p∏

k=1

Wk

)
= λp.

Since by assumption Wk = M−1
k N−1

k or N−1
k M−1

k , it follows from part (1) or (3)
of Lemma 3 that (12) implies

λ ≥ 1

nrkw̄k

n∑

i=1

vi(k+1)

vik

with equality if and only if

v1k = · · · = vnk or
v1k

w1k
= · · · = vnk

wnk
, (13)

and

v1(k+1)

v1k

1

w1k
= · · · = vn(k+1)

vnk

1

wnk
= rkλ, (14)
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for k = 1, . . . , p. Therefore, by a generalized Hölder inequality (Evans 1998),

λp ≥
p∏

k=1

(
1

nrkw̄k

n∑

i=1

vi(k+1)

vik

)
=

( p∏

k=1

1

nrkw̄k

) p∏

k=1

(
n∑

i=1

vi(k+1)

vik

)

≥
( p∏

k=1

1

nrkw̄k

)(
n∑

i=1

(
vi2

vi1
× · · · × vi(k+1)

vik
× · · · × vi p

vi(p−1)
× vi1

vi p

)1/p
)p

=
( p∏

k=1

1

nrkw̄k

)(
n∑

i=1

(1)1/p
)p

=
( p∏

k=1

1

nrkw̄k

)
n p =

p∏

k=1

1

rkw̄k
,

proving the inequality statement of the theorem. The second inequality above is an
equality if and only if there exist positive constants m1, . . . ,mp such that

m1
vi2

vi1
= · · · = mk

vi(k+1)

vik
= · · · = mp−1

vi p

vi(p−1)
= mp

vi1

vi p
, (15)

for i = 1, . . . , n.
Suppose that λp = ∏p

k=1
1

rk w̄k
. Then (13)–(15) hold. We claim that

v1k = · · · = vnk, for k = 1, . . . , p

and hence it follows from (14) that w1k = · · · = wnk = w̄k for k = 1, . . . , p, which
means that 1 = (1, . . . , 1)T is a right eigenvector of Ak associated with the eigenvalue
zero. In fact, assume from (13) that

v1k0

w1k0
= · · · = vnk0

wnk0
(16)

for some k0 ∈ {1, . . . , p}, then (15) gives

vi(k0+1)

vik0
= mk0−1

mk0

vik0

vi(k0−1)
, i = 1, . . . , n, with m0 = mp and v0 = v p

implying from (14) that

mk0−1

mk0

v1k0

v1(k0−1)

1

w1k0
= · · · = mk0−1

mk0

vnk0

vn(k0−1)

1

wnk0

and hence by (16), v1(k0−1) = · · · = vn(k0−1). The proof is complete if v1k/w1k
= · · · = vnk/wnk holds for all k. Otherwise, without loss of generality, suppose that
v11 = · · · = vn1 and p ≥ 3. If v13 = · · · = vn3, then by (15),

m1
vi2

vi1
= m2

vi3

vi2
, i = 1, . . . , n
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implies that v12 = · · · = vn2; else by (13), v13/w13 = · · · = vn3/wn3 and by (16),
this also implies that v12 = · · · = vn2. The case p = 2 can be similarly proved.

On the other hand, if
∑n

j=1 ai jk = 0 for i = 1, . . . , n and k = 1, . . . , p, then 1 is
a right eigenvector of matrices Ak and Nk corresponding to the eigenvalues zero and
rk , respectively, and Mk = w̄k In . Thus,

( p∏

k=1

Wk

)
1 =

( p∏

k=1

(
1

w̄k
N−1
k

))
1 =

( p∏

k=1

1

w̄k

)( p∏

k=1

N−1
k

)
1

=
( p∏

k=1

1

w̄k

) ⎛

⎝
p−1∏

k=1

N−1
k

⎞

⎠ (N−1
p 1) =

( p∏

k=1

1

w̄k

) ⎛

⎝
p−1∏

k=1

N−1
k

⎞

⎠
(

1

rp
1
)

= · · · =
( p∏

k=1

1

w̄k

) ( p∏

k=2

1

rk

)(
1

r1
1
)

=
( p∏

k=1

1

rkw̄k

)
1,

which means that ρ(
∏p

k=1 Wk) = ∏p
k=1

1
rk w̄k

, completing the equality statement.

Now consider the case p = 2. If W̃1 = M1N
−1
1 or N−1

1 M1, and W2 = M−1
2 N−1

2
or N−1

2 M−1
2 , then using the same approach as above and Lemma 3,

λ ≥ 1

nr1w̄1

n∑

i=1

(
vi2

vi1

)
(wi1)

2 and λ ≥ 1

nr2w̄2

n∑

i=1

vi1

vi2
,

which imply that

λ2 ≥
(

1

nr1w̄1

n∑

i=1

(
vi2

vi1

)
(wi1)

2

) (
1

nr2w̄2

n∑

i=1

vi1

vi2

)

= 1

n2r1r2w̄1w̄2

(
n∑

i=1

(
vi2

vi1
w2
i1

)) (
n∑

i=1

vi1

vi2

)

≥ 1

n2r1r2w̄1w̄2

(
n∑

i=1

(√
vi2

vi1
w2
i1

√
vi1

vi2

))2

= 1

n2r1r2w̄1w̄2

(
n∑

i=1

wi1

)2

= 1

n2r1r2w̄1w̄2
(nw̄1)

2 = w̄1

r1r2w̄2

by theCauchy–Schwarz inequality. The equality conditions are proved in the following
two cases.

If λ2 = w̄1
r1r2w̄2

then the multiplication of the second conditions in (5)–(8) gives

w11

w12
= · · · = wn1

wn2
= r1r2λ

2 = w̄1

w̄2
⇔ M1M

−1
2 = w̄1

w̄2
In . (17)
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(i) Let W̃1 = M1N
−1
1 and W2 = N−1

2 M−1
2 , or W̃1 = N−1

1 M1 and W2 = M−1
2 N−1

2 .
Suppose that wi1/wi2 = w̄1/w̄2 for i = 1, . . . , n. Then w1 = (w11, . . . , wn1) is
a right eigenvector ofmatrices A1, A2, N1 and N2, associatedwith the eigenvalues
zero, zero, r1, and r2, respectively. It follows from N−1

1 N−1
2 w1 = 1

r1r2
w1 and

(17) that λ2 ≡ ρ(W̃1W2) = w̄1
r1r2w̄2

.

(ii) Let W̃1 = M1N
−1
1 and W2 = M−1

2 N−1
2 . Then the equality λ2 = w̄1

r1r2w̄2
implies

v11

w2
11

= · · · = vn1

w2
n1

and
v12

v11
w11 = · · · = vn2

vn1
wn1 = r1λ, (18a)

v12 = · · · = vn2 and
v11

v12

1

w12
= · · · = vn1

vn2

1

wn2
= r2λ, (18b)

m1
vi2

vi1
w2
i1 = m2

vi1

vi2
⇔ vi1

vi2

1

wi1
=

√
m1

m2
, i = 1, . . . , n. (18c)

The first equations in (18a) and (18b) give

v11

v12

1

w2
11

= · · · = vn1

vn2

1

w2
n1

,

which implies w11 = · · · = wn1 by (18c) and therefore by the second equations
in (18a) and (18b), w12 = · · · = wn2.
Let W̃1 = N−1

1 M1 and W2 = N−1
2 M−1

2 . Then by (17),

w̄1/(r1r2w̄2) = λ2 ≡ ρ(W̃1W2) = ρ(N−1
1 M1N

−1
2 M−1

2 )

= ρ(M1N
−1
2 M−1

2 N−1
1 ) = (w̄1/w̄2)

2ρ(M2N
−1
2 M−1

1 N−1
1 )

implies that ρ(M2N
−1
2 M−1

1 N−1
1 ) = w̄2/(r1r2w̄1). This case can then proceed as

above.
On the other hand, suppose that wik = w̄k for i = 1, . . . , n and k = 1, 2; it
follows from N−1

1 N−1
2 1 = 1

r1r2
1 that λ2 ≡ ρ(W̃1W2) = w̄1

r1r2w̄2
.

��
Now let us return to the multipatch Ross–Macdonald model (2) in an environment

with n identical patches formulated in Sect. 2, using the notation and definition of
R0(n) and R0(1) given there in (3) and (4).

Theorem 3 Consider model (2) with n identical patches connected by human and
mosquito movement, i.e., C = (ci j )n×n and D = (di j )n×n are irreducible. Then the
basic reproduction numberR0(n) for the n-patch model (2) can be estimated against
the basic reproduction number R0(1) for the single patch model (1) according to

R0(n) ≥ R0(1)

with equality if and only if the mosquito to human ratio in each patch remains the
same under movement, i.e., V ∗

i /H∗
i = V /H for i = 1, . . . , n, or equivalently, human
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and mosquito movement rate matrices C and D have the same eigenspace associated
with the eigenvalue zero.

Proof With the irreducibilities of travel rate matrices C and D, we have

R2
0(n) = a2bc · ρ(D−1B1B

−1
2 C−1),

where B1 = (δi j V ∗
i )n×n ,B2 = (δi j H∗

i )n×n , C = γ In − C , and D = μIn − D.
Take W̃1 = N−1

1 M1 and W2 = M−1
2 N−1

2 where M1 = B1, N1 = D , M2 = B2
and N2 = C . Then by Theorem 2 for p = 2,

R2
0(n) = a2bc · ρ(W̃1W2) ≥ a2bc · V /n

γμH/n
= a2bcV

γμH
= R2

0(1).

The equality case is immediately proved by using the second case of (i) in Theorem 2.
��

Remark 1 The equalities H∗
i = H/n and V ∗

i = V /n for 1 ≤ i ≤ n hold if and
only if the human and mosquito travel rate matrices C and D are line-sum symmetric.
A square matrix is line-sum symmetric if it is symmetric, but not vice versa. Thus
R0(n) = R0(1) whenever both C and D are symmetric.

In what follows, we show that the estimation R0(n) ≥ R0(1) remains valid when
only humans or mosquitoes move between patches.

Corollary 1 For model (2), the following statements are valid:

(1) If the n identical patches are connected by human movement (i.e., C = (ci j )n×n

is irreducible and D = (di j )n×n = 0n×n) and mosquitoes are initially present in
all patches (i.e., Vi (0) > 0 for i = 1, . . . , n), then

R0(n) ≥ R0(1)

with equality if and only if (V1(0), . . . , Vn(0))T is a right positive eigenvector of
C associated with the zero eigenvalue.

(2) If the n identical patches are connected by mosquito movement (i.e., C =
(ci j )n×n = 0n×n and D = (di j )n×n is irreducible) and humans are initially
present in all patches (i.e., Hi (0) > 0 for i = 1, . . . , n), then

R0(n) ≥ R0(1)

with equality if and only if (H1(0), . . . , Hn(0))T is a right positive eigenvector
of D associated with the zero eigenvalue.

Proof Suppose only humans move. It follows D = μIn,B1 = (δi j Vi (0))n×n and
B2 = (δi j H∗

i )n×n and hence

R2
0(n) = ρ(AD−1BC−1) = a2bc/μ · ρ(B1B

−1
2 C−1).
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By the Perron–Frobenius theorem, the positivematrixB1B
−1
2 C−1 has a positive right

eigenvector, denoted byw, corresponding to the spectral radius ρ(B1B
−1
2 C−1), i.e.,

B1B
−1
2 C−1w = ρ(B1B

−1
2 C−1)w ⇔ B−1

2 C−1w = ρ(B1B
−1
2 C−1)B−1

1 w.

Using the first part of Lemma 3, we have

ρ(B1B
−1
2 C−1) ≥ 1

γ
∑n

i=1 H
∗
i

n∑

i=1

wi

wi/Vi (0)
= V

γ H

with equality if and only if

w1

V1(0)
= · · · = wn

Vn(0)
and

V1(0)

H∗
1

= · · · = Vn(0)

H∗
n

= γρ(B1B
−1
2 C−1).

Now suppose only mosquitoes move. If follows C = γ In,B1 = (δi j V ∗
i )n×n and

B2 = (δi j Hi (0))n×n and hence

R2
0(n) = ρ(AD−1BC−1) = a2bc/γ · ρ(D−1B1B

−1
2 ).

Again by the Perron–Frobenius theorem, the positive matrix D−1B1B
−1
2 has a

positive right eigenvector, denoted by w, corresponding to the spectral radius
ρ(D−1B1B

−1
2 ), i.e.,

D−1B1B
−1
2 w = D−1B1(B

−1
2 w) = ρ(D−1B1B

−1
2 )w.

Applying the fourth part of Lemma 3 and the Cauchy–Schwarz inequality, we obtain

ρ(D−1B1B
−1
2 ) ≥ 1

μ
∑n

i=1 V
∗
i

n∑

i=1

wi/Hi (0)

wi
(V ∗

i )2 ≥
∑n

i=1 V
∗
i

μ
∑n

i=1 Hi (0)
= V

μH

with equality if and only if

w1

V ∗
1

= · · · = wn

V ∗
n

and
w1/H1(0)

w1
V ∗
1 = · · · = wn/Hn(0)

wn
V ∗
n = μρ(D−1B1B

−1
2 ).

The proofs for the estimation R0(n) ≥ R0(1) and the condition for equality are
complete. ��

Remark 2 The lower bound of R0(n) is always achievable. In fact, given a positive
vector x = (x1, . . . , xn)T , there exist some travel rate matrices, e.g.,
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−
n∑

i=1

xi In +

⎛

⎜⎜⎜⎝

x1 x1 · · · x1
x2 x2 · · · x2
...

...
. . .

...

xn xn · · · xn

⎞

⎟⎟⎟⎠ and

⎛

⎜⎜⎜⎝

−x−1
1 x−1

2 0 · · · 0
0 −x−1

2 x−1
3 · · · 0

...
...

...
. . .

...

x−1
1 0 0 · · · −x−1

n

⎞

⎟⎟⎟⎠ ,

having x as its right eigenvector corresponding to the eigenvalue zero.

It follows from Theorem 3 and Corollary 1 that habitat fragmentation, e.g., a large
area of habitat split into some patches, may intensify malaria persistence and promote
disease outbreaks. The assumption that humans and mosquitoes are homogeneously
mixed or evenly distributed could underestimate the basic reproduction number. In
other words, the habitat connectivity of isolated identical patches with the same initial
number of humans and mosquitoes tends to increase the risk of infection. It is worth
pointing out that Dye and Hasibeder (1986) and Hasibeder and Dye (1988) established
similar results based on a spatial malaria model using a Lagrangian approach (mim-
icking commuting behavior) instead of an Eulerian approach (mimicking migration)
(Bichara and Castillo-Chavez 2016; Cosner et al. 2009).

The inequalityR0(n) ≥ R0(1) may fail when the incidence rates are not standard,
or some patches are host free (Auger et al. 2008), or the travel rates of the susceptible
and the infectious humans are not the same (see “Appendix”), or the model structure
is more complicated, or a directly transmitted disease is considered. More specifically,
Gao and Ruan (2012) proposed a multipatch malaria model with SEIRS structure for
humans and SEI structure for mosquitoes and presented a numerical example where
human movement leads to disease extinction in all identical patches, even though
the disease persists in each isolated patch. For an SIS patch model with standard
incidence, Gao and Ruan (2011) proved that themultipatch basic reproduction number
is between the maximum and minimum of the basic reproduction numbers of all
patches in isolation. Thus, the single patch andmultipatch basic reproduction numbers
for the SIS model are equal when all patches are identical.

Remark 3 Consider a malaria model with n identical patches similar to (2), but with
bilinear incidence α(Hi − hi )vi and β(Vi − vi )hi (see e.g., Gao et al. 2013) instead
of normalized incidence ab(Hi − hi )vi/Hi and ac(Vi − vi )hi/Hi , respectively. The
basic reproduction numbers of this newmultipatchmodel and the corresponding single
patch model are respectively

R̃0(n) =
√

ρ( ˜A D̃−1B̃C̃−1) and R̃0(1) = √
αβV H/(γμ),

where ˜A = (δi jαH∗
i )n×n, B̃ = (δi jβV ∗

i )n×n, C̃ = γ In −C , and D̃ = μIn − D. For
an example with two patches, setting α = β = γ = μ = H = V = 1, c12 = d21 = 1
and c21 = d12 = 2, it follows that R̃0(2) = 0.2073 < R̃0(1) = 1.

Remark 4 Considermodel (2) with 2 identical patches connected by humanmovement
and the second patch is vector free (i.e., V ∗

1 = V and V ∗
2 = 0, all vectors are confined

in the first patch), then
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R2
0(2) = a2bcV

γμH

(c12 + c21)(γ + c12)

c12(γ + c12 + c21)
> R2

0(1) = a2bcV

γμH
.

However, if 2 identical patches are connected by mosquito movement and the second
patch is host free (i.e., H∗

1 = H and H∗
2 = 0), then

R2
0(2) = a2bcV

γμH

d12(μ + d12)

(d12 + d21)(μ + d12 + d21)
< R2

0(1) = a2bcV

γμH
.

Thus, the impact of habitat fragmentation on disease spread becomes complicated
when hosts and/or vectors are not present in some patches.

So far, we have established a lower bound for the basic reproduction number of
model (2). An upper bound that depends on themaximal ratio ofmosquitoes to humans
in each patch can be obtained as follows.

Proposition 1 Consider model (2) with n identical patches connected by human and
mosquito movement, i.e., C = (ci j )n×n and D = (di j )n×n are irreducible. Then

a2bc

γμ
min
1≤i≤n

V ∗
i

H∗
i

≤ R2
0(1) ≤ R2

0(n) ≤ a2bc

γμ
max
1≤i≤n

V ∗
i

H∗
i

.

Proof Similar to the proof of Theorem 3.1 in Gao (2019), without loss of generality,
assume that V ∗

1 /H∗
1 ≤ · · · ≤ V ∗

n /H∗
n . Then

V ∗
1

H∗
1
In ≤ B1B

−1
2 ≤ V ∗

n

H∗
n
In

⇔ V ∗
1

H∗
1
C−1D−1 ≤ B1B

−1
2 C−1D−1 ≤ V ∗

n

H∗
n
C−1D−1

⇒ρ

(
V ∗
1

H∗
1
C−1D−1

)
= V ∗

1

γμH∗
1

≤ ρ(B1B
−1
2 C−1D−1)

≤ρ

(
V ∗
n

H∗
n
C−1D−1

)
= V ∗

n

γμH∗
n

,

due to the fact that ρ(C−1D−1) = 1/(γμ). ��
To what extent would human and/or mosquito movement increase the multipatch

basic reproduction number? In particular, does there exist an upper bound of R0(n)

that is independent of travel rate matrices C and D? We will consider this point in the
next section.

4 Numerical examples

In this section, we perform some numerical simulations for the model (2) with two
identical patches to explore how human and/or mosquito movement affects the basic
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reproduction number R0(2) and disease prevalence. For illustration, the choice of
parameter values does not strictly follow the epidemiology and ecology of malaria.

Example 1 Bound of the reproduction number. To see whether the multipatch repro-
duction number has a uniform bound from above for any travel pattern, we consider
a two-patch case where all parameters are set to one except human and mosquito
movement rates. Then

R0(2) =
√

ρ(B1B
−1
2 C−1D−1) and R0(1) = 1,

where B1 = (δi j V ∗
i )2×2,B2 = (δi j H∗

i )2×2,C = I2 − (ci j )2×2,D = I2 − (di j )2×2
and

H∗
1 = c12

c12 + c21
, H∗

2 = c21
c12 + c21

, V ∗
1 = d12

d12 + d21
, V ∗

2 = d21
d12 + d21

.

Case 1 We choose the travel rates as follows: c12 = 1, c21 = φ, d12 = 1 and
d21 = ψ with (φ,ψ) ∈ IntR2+. Denote Γ = ψ(1+ ψ) + φ(4+ 3ψ + ψ2). The basic
reproduction number of model (2) is

R0(2) =
√

(1 + φ)(Γ + √
Γ 2 − 4φ(2 + φ)ψ(2 + ψ))

2φ(2 + φ)(1 + ψ)(2 + ψ)
≥ 1

with equality if and only if φ = ψ . Denote Γ∞ = 4 + 3ψ + ψ2. Direct calculations
yield

lim
φ→0+R0(2) = +∞ and lim

φ→+∞R0(2) =
√

Γ∞ + √
Γ 2∞ − 4ψ(2 + ψ)

2(1 + ψ)(2 + ψ)
,

and

lim
ψ→0+R0(2) =

√
2 + 2φ

2 + φ
and lim

ψ→+∞R0(2) = 1 + φ√
φ(2 + φ)

.

Case 2 We choose the travel rates as follows: c12 = 1, c21 = φ, d12 = ψ and
d21 = 1 with (φ,ψ) ∈ IntR2+. Denote Λ = 1 + φ(1 + ψ)2. The basic reproduction
number of model (2) now becomes

R0(2) =
√

(1 + φ)(Λ + √
Λ2 − φ(2 + φ)ψ(2 + ψ))

φ(2 + φ)(1 + ψ)(2 + ψ)
≥ 1

with equality if and only if φψ = 1. Again direct calculations yield

lim
φ→0+R0(2) = +∞ and lim

φ→+∞R0(2) =
√

(1 + ψ)2 + √
(1 + ψ)4 − ψ(2 + ψ)

(1 + ψ)(2 + ψ)
,
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Fig. 2 The contour plot of the logarithm of the basic reproduction number, ln(R0(2)), with respect to φ

and ψ for Case 1 and Case 2. The black dashed curve is the contour of ln(R0(2)) = 0

and

lim
ψ→0+R0(2) = 1 + φ√

φ(2 + φ)
and lim

ψ→+∞R0(2) =
√
2 + 2φ

2 + φ
.

The changes ofR0(2) versus relative travel rates φ andψ for Case 1 and Case 2 are
plotted in Fig. 2. It is initially decreasing and then increasing in both φ and ψ . Both
analytical and numerical analyses show that R0(2) can surpass any given positive
number under appropriate human and mosquito movements such that the maximum
of R0(2) does not exist. Interestingly, although the limiting processes φ → 0+ and
φ → +∞ both result in the number of humans approaching H = 1 in one patch and
zero in the other patch, the limits are completely different even if the movement rate
matrix for mosquitoes is symmetric (ψ = 1) or there is no mosquito movement.

Example 2 Higher diffusion rates.By changing the travel ratematricesC and D todHC
anddV D, respectively,we consider the relation between the basic reproduction number
R0(2) and the diffusion coefficients of humans andmosquitoes, dH and dV . The travel
related parameters are set as c12 = 0.01, c21 = 0.05, d12 = 0.01, d21 = 0.02, other
parameters are fixed at one. Clearly, the ratios of mosquitoes to humans in patches 1
and 2 at the disease-free equilibrium are respectively 2 and 0.8 which are independent
of the diffusion coefficients. The dependence ofR0(2) on dH and dV is illustrated in
Fig. 3. Both numerical and analytical approaches demonstrate thatR0(2) is monotone
decreasing in both dH and dV if R0(2) �≡ R0(1). Namely, faster diffusion leads
to lower risk of infection when only two identical patches are considered. Further,
this result remains valid for an environment with an arbitrary number of identical or
nonidentical patches connected by either human or mosquito movement (Gao 2019;
Gao and Dong 2019). In addition, the limits of R0(2) as dH and dV go to zero and
infinity are respectively
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Fig. 3 The contour plot of the basic reproduction number R0(2) in terms of dH and dV

lim
dH→0+
dV →0+

R0(2) = max
1≤i≤2

√
a2bcV ∗

i

γμH∗
i

and lim
dH→∞R0(2) = R0(1)

and

lim
dV →∞R0(2) = R0(1)

√

1 + γ (c12d21 − c21d12)2

c12c21(d12 + d21)2(γ + (c12 + c21)dH )
≥ R0(1),

which again suggest that the effects of human and mosquito movements on malaria
spread are different.

For the same parameter setting, however, Fig. 4a indicates that the model (2) with
diffusion may constantly incur a larger number of infected humans than that without
diffusion (dH → 0+ and dV → 0+). The disease prevalence in humans over two
patches could be monotone or nonmonotone in dH and dV . There are inconsistent
consequences between the risk of infection and the disease prevalence as the diffusion
coefficients dH and dV vary. When we change the travel rates to c12 = 0.01, c21 =
0.009, d12 = 0.01 and d21 = 0.04, there is a dashed curve passing through the origin
as shown in Fig. 4b above which diffusion causes more infections and below which
diffusion causes less infections.

5 Discussion

It is well known that population dispersal can intensify or weaken disease spread like
diffusion-driven population persistence or extinction in population ecology. Wang
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Fig. 4 The contour plot of the difference of the overall disease prevalence in humans with and without
diffusion in terms of dH and dV under two travel patterns

and Zhao (2004) considered an SIS multipatch model with bilinear incidence and
gave two numerical examples: one showed that suitable dispersal rates lead to either
disease spread or disease extinction in both patches when a low transmission patch and
a high transmission patch are concerned, the other found that population dispersal can
result in the spread of disease in both patches even though the disease cannot spread
in each isolated patch. Jin and Wang (2005) further studied the model and showed
that population dispersal may result in disease extinction even though it cannot be
eradicated in each isolated patch. Wang and Mulone (2003) proposed a two-patch SIS
model with standard incidence and showed that the disease remains extinct/persistent
in both patches when population dispersal occurs if it disappears/spreads in each
isolated patch. Gao and Ruan (2011) drew the same conclusion for an n-patch SIS
model incorporating the impact of media coverage. Based on an SIS model with
two patches, Salmani and van den Driessche (2006) found that small and large travel
rates could aid disease persistencewhereas intermediate rates stabilize the disease-free
equilibrium.Gao andRuan (2012) considered a complicatedmultipatchmalariamodel
and numerically showed that human movement can help malaria become extinct or
persistent in two identical patches, even though the disease persists or dies out in each
isolated patch. Hsieh et al. (2007) proposed an SEIRP patch model and performed
numerical simulations under various travel policies.

In this paper, we considered a Ross–Macdonald typemodel with n identical patches
to address the impact of human and/or mosquito movement on malaria persistence.
We first proved a generalized eigenvalue inequality and used it to estimate the spectral
radius of the product of a class of nonnegative matrices. Then we showed that the basic
reproduction number of the multipatch Ross–Macdonald model is no less than that of
the single patch model. Biologically speaking, habitat fragmentation strengthens the
persistence of the disease. Ignorance of spatial structure could substantially underes-
timate the basic reproduction number such that more efforts are required to achieve
disease elimination or eradication. A similar result associated with the Lagrangian
approach was previously obtained by Dye and Hasibeder (1986) and Hasibeder and
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Dye (1988). The findings are in accordance with a recent study on pathogen dynamics
byWhite et al. (2018) using an individual-basedmodel integratedwithmovement ecol-
ogy approaches. The multipatch basic reproduction number equals that of the single
patch model if and only if all connected patches have the same ratio of mosquitoes to
humans at the disease-free equilibrium. The human population acts as a blood source
formosquitoes. In otherwords, once the distribution of humans is determined, the basic
reproduction number is minimized when the movement of the mosquito population
follows a strategy for which the resulting distribution of mosquitoes is proportional to
that of humans. A similar result holds if the distribution of the mosquito population is
fixed. This diffusion strategy is somewhat linked to the concept of the ideal free distri-
bution (IFD) in ecology, which states that the distribution of organisms should match
the distribution of resources (Cantrell et al. 2012a; Fretwell and Lucas 1969). Malaria
persistence is minimized when the distribution of mosquitoes obeys IFD. However, in
reality, mosquitoes are unevenly distributed due to their limitedmobility. For example,
an urban area with dense human population has less mosquitoes while a rural area with
sparse human population has more mosquitoes. To reduce the disease persistence, a
control strategy that makes the geographic distribution of hosts and vectors nearly
uniform may be desirable.

Moreover, we numerically and analytically showed that the basic reproduction
number goes to infinity when one of the two human movement rates tends to zero and
the remaining one is fixed. The fact was observed by Auger et al. (2008) in case only
hosts migrate between patches. There is some inconsistency between the reproduction
number and the overall disease prevalence in response to increasing diffusion. That
is, fast host and/or vector diffusion decreases the disease transmission potential, but
may increase the number of infected humans. Dye and Hasibeder (1986) studied the
single patch case and they showed that the reproduction number is increasing in the
human population size H , but the number of infected hosts is initially increasing
then decreasing in H . The main conclusion that the multipatch basic reproduction
number is greater than or equal to the single patch reproduction number is generally
invalid if part of the model assumptions are not satisfied. Some mathematical results
like Lemma 3 and Theorem 2 are applicable to the proof of similar arguments for
multipatch epidemic models with different model structures or transmission modes.

Finally, we remark that current work can be extended in at least three possible ways.
The first is to study the malaria model in a temporal varying environment driven by
periodic human migration and seasonal changes in mosquito population and behavior.
The global dynamics for such a periodic multipatch malaria model established by Gao
et al. (2014) are a good first step. The second is to extend the multipatch ODE model
to the nonlocal model with integral kernel k(x, y) and diffusion-advection model
with diffusion rate d(x) and advection p(x) (Cosner 2015) where, for example, the
movement term

∑n
j=1 ci j Hj (t) is replaced by

∫

Ω

k(x, y)H(y, t)dy −
( ∫

Ω

k(y, x)dy

)
H(x, t)

and

∇ · [d(x)∇H − H p(x)],
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respectively. HereΩ is a bounded subset ofRN , and x, y ∈ Ω . The continuous version
of Lemma 2 in terms of integrals to nonlocal diffusion established by Cantrell et al.
(2012b) should be helpful in comparing the reproduction numbers of the model with
and without diffusion. The impact of the distribution of humans on malaria risk in
a continuous space was partially observed by Lou and Zhao (2011). The third is to
consider similar questions for epidemic models with different structures (e.g., SEIR
for humans and SEI formosquitoes) or different transmissionmodes (e.g., water-borne
diseases and sexually transmitted diseases). We leave these challenging problems for
future investigation.
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ments, and Drs. Linda Allen, Chao-Ping Dong, and Yang Kuang for helpful discussions.

Appendix: Unequal travel rates

Let Si , Ii , Xi , and Yi be the numbers of susceptible and infectious humans, suscep-
tible and infectious mosquitoes, respectively. Denote the total human and mosquito
populations in the i th patch by Hi = Si + Ii and Vi = Xi +Yi , respectively. Assuming
unequal travel rates for susceptible and infectious humans, the model equations are

dSi
dt

= −ab
Yi
Hi

Si + γ Ii +
n∑

j=1

c̃i j S j , 1 ≤ i ≤ n,

dXi

dt
= −ac

Ii
Hi

Xi + μYi +
n∑

j=1

di j X j , 1 ≤ i ≤ n,

d Ii
dt

= ab
Yi
Hi

Si − γ Ii +
n∑

j=1

ci j I j , 1 ≤ i ≤ n,

dYi
dt

= ac
Ii
Hi

Xi − μYi +
n∑

j=1

di jY j , 1 ≤ i ≤ n.

(A)

We assume that the travel rate matrices C̃ = (c̃i j )n×n,C = (ci j )n×n , and D =
(di j )n×n are irreducible. For any given nonnegative initial condition, the model (A)
has a unique disease-free equilibrium

E0 = (H∗
1 , . . . , H∗

n , V ∗
1 , . . . , V ∗

n , 0, . . . , 0, 0, . . . , 0),

where (H∗
1 , . . . , H∗

n ) and (V ∗
1 , . . . , V ∗

n ) are respectively the unique positive solution
to

n∑

j=1

c̃i j H j = 0, i = 1, . . . , n,

n∑

i=1

Hi =
n∑

i=1

Hi (0) = H > 0,
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and
n∑

j=1

di j Vj = 0, i = 1, . . . , n,

n∑

i=1

Vi =
n∑

i=1

Vi (0) = V > 0.

Following the next generation matrix method (Diekmann et al. 1990; van den
Driessche and Watmough 2002), we define the basic reproduction number of the
model (A) as

R̂0(n) =
√

ρ( ˆA D̂−1B̂Ĉ−1),

where ˆA = abIn , B̂ = ac(δi j V ∗
i /H∗

i )n×n , Ĉ = γ In − C , and D̂ = μIn − D. In
particular, the basic reproduction number of a single patch model is

R̂0(1) =
√
a2bcV

γμH
.

Claim: consider n identical patches connected by human movement (i.e., C̃ and C
are irreducible, and D = 0n×n) and mosquitoes are initially evenly distributed (i.e.,
V1(0) = · · · = Vn(0) = V /n), then th inequality R̂0(n) ≥ R̂0(1) may fail.

Under the above assumptions we actually have

R̂0(n) =
√
a2bcV /(nμ) ·

√
ρ(MN−1)

with M = diag{1/H∗
1 , . . . , 1/H∗

n } and N = γ In − C . Thus,

R̂0(n) ≥ R̂0(1) ⇔ ρ(MN−1) ≥ n/(γ H).

In particular, the above inequality for the two-patch case holds if and only if

e1 ≡ (c̃12 − c̃21)(c̃12γ − c̃21γ + 2c̃12c21 − 2c̃21c12) > 0

or

e2 ≡ c̃12c21(c̃12 − 3c̃21) + c̃21c12(c̃21 − 3c̃12) + γ (c̃12 − c̃21)
2 > 0.

However, even if a realistic restriction c̃i j ≥ ci j for i �= j is introduced, γ =
0.25, c̃12 = 0.5 > c12 = 0.125 and c̃21 = 1 > c21 = 0.5 giving e1 = −0.0625
and e2 = −0.625, a counterexample.

Nevertheless, consider model (A) with D = 0n×n and C = dI C̃ with dI ∈ (0, 1)
denoting the relative diffusion rate of infectious humans to susceptible humans, then
R̂0(n) ≥ R̂0(1) still holds. Moreover, R̂0(n) is strictly decreasing and strictly convex
in dI if R̂0(n) �≡ R̂0(1), i.e., (V1(0), . . . , Vn(0) � 0 is not a right eigenvector of C̃
associated with the eigenvalue zero (Gao and Dong 2019). Therefore, the assumption
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that susceptible and infectious individuals have identical travel rates can underestimate
the risk of infection.
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