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Abstract Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Mid-
dle East that harms both human health and livestock production. It is believed that
RVF in Egypt has been repeatedly introduced by the importation of infected animals
from Sudan. In this paper, we propose a three-patch model for the process by which
animals enter Egypt from Sudan, are moved up the Nile, and then consumed at pop-
ulation centers. The basic reproduction number for each patch is introduced and then
the threshold dynamics of the model are established. We simulate an interesting sce-
nario showing a possible explanation of the observed phenomenon of the geographic
spread of RVF in Egypt.

Keywords Rift Valley fever · Patch model · Egypt · Basic reproduction number ·
Threshold dynamics

1 Introduction

Rift Valley fever (RVF) is a viral zoonosis of domestic animals (such as cattle,
sheep, camels, and goats) and humans caused by the RVF virus (RVFV), a mem-
ber of the genus Phlebovirus in the Bunyaviridae family. Initially identified in the
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Rift Valley of Kenya in 1931 (Daubney et al. 1931), outbreaks of RVF have been
reported in sub-Saharan Africa, Egypt, Saudi Arabia, and Yemen (Abdo-Salem
et al. 2011b). These result in significant economic losses due to high mortality
and abortion in livestock. The virus is transmitted primarily by the bites of in-
fected female mosquitoes. Several mosquito species of the genera Culex or Aedes are
known vectors and some Aedes spp. can also transmit the virus vertically (mother-
to-offspring). Humans can also become infected by direct/indirect contact with the
blood or organs of infected animals, but they cannot transmit it (WHO 2010). To
date, two types of vaccines are available for veterinary use (Ikegami and Maki-
nob 2009), but there is no licensed vaccine for humans. Outbreaks of RVF in
East Africa are typically associated with rainfall events (Linthicum et al. 1999;
Anyamba et al. 2009). Heavy rainfall is believed to induce outbreaks by raising wa-
ter levels in low-lying areas sufficiently to allow the hatching of Aedes spp. eggs,
which can persist during dry periods. Since Aedes mosquitoes can transmit RVF
vertically, the newly hatched mosquitoes can induce an outbreak once they mature
(Favier et al. 2006). However, vertical transmission has not been demonstrated in
some countries with substantial outbreaks of RVF. For example, the study of field-
collected mosquitoes suggests that Culex pipiens is the main vector of RVFV in Egypt
(Meegan et al. 1980). An alternative hypothesis is that in such regions outbreaks may
occur when the disease is introduced by the importation of infected animals (Gad
et al. 1986; Abdo-Salem et al. 2011a, 2011b) or by the use of live virus vaccines
(Kamal 2011) together with suitable conditions for transmission, specifically high
mosquito densities and the presence of large numbers of host animals (Abdo-Salem
et al. 2011a, 2011b).

Mathematical models have become an important tool in identifying disease trans-
mission processes, assessing infection risk and prevalence, and optimizing control
strategies. However, so far little has been done to model and analyze the RVF trans-
mission dynamics (Métras et al. 2011). Gaff et al. (2007) proposed a compartmen-
tal model to explore the mechanisms of RVFV circulation including Aedes and
Culex mosquitoes and livestock population, in which each adult mosquito popula-
tion is divided into classes containing susceptible, exposed and infectious individ-
uals and the livestock population is classified as susceptible, exposed, infectious,
and recovered. To account for vertical transmission in Aedes mosquitoes, compart-
ments for uninfected and infected eggs are also included. Meanwhile, only uninfected
eggs are included for Culex mosquitoes. They derived the basic reproduction num-
ber to assess the stability of the disease-free equilibrium and performed sensitivity
analysis to determine the most significant model parameters for disease transmis-
sion. Mpheshe et al. (2011) modified the model in Gaff et al. (2007) to reduce egg
classes of mosquitoes, include human population and exclude vertical transmission in
mosquitoes. They gave conditions for the stability of the disease-free equilibrium and
persistence of the disease. Sensitivity indices of the basic reproduction number and
the endemic equilibrium were evaluated to study the relative importance of different
factors responsible for RVF transmission and prevalence. It is believed that RVFV
is introduced to a disease-free area by insects carried by wind and animal move-
ments through trade (Métras et al. 2011). Xue et al. (2012) presented a network-
based metapopulation model incorporating Aedes and Culex mosquitoes, livestock
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and human populations. They tested the model with data from an outbreak of RVF
in South Africa and analyzed the sensitivity of the model to its parameters. Recently,
Chamchod et al. (2012) proposed a simple but innovative model to investigate the
emergence of RVF outbreaks, and epizootic and enzootic cycles of RVFV. Many as-
pects of their investigation have not been addressed in previous modeling studies.
For example, they considered the effect of vaccination on the transmission dynam-
ics of RVFV. However, these models either do not include spatial effects or are too
complicated for rigorous mathematical analysis.

The main purpose of this paper is to propose a mathematically tractable model
with spatial dynamics that can capture the hypothesis that Rift Valley fever outbreaks
in Egypt might arise when the importation of large numbers of animals from Sudan
coincides with high mosquito densities and there is an introduction of the infection
during that period through importation of infected animals, use of live virus vaccines,
or some other mechanism. In the next section, we develop a three-patch epidemic
model to describe the spatial spread of RVF in Egypt. In Sect. 3, the basic reproduc-
tion number for each patch is calculated and the threshold dynamics of the model will
be established. Moreover, the existence and stability of the endemic equilibrium are
discussed. In Sect. 4, we simulate an interesting scenario showing possible explana-
tion to the observed phenomenon of the geographic spread of RVF in Egypt. A brief
discussion is given in Sect. 5.

2 The Model

The first outbreak of RVF in Egypt occurred in the Nile Valley and Delta in 1977
(Hoogstraal et al. 1979). This was the first RVF outbreak recorded outside tradition-
ally affected areas in sub-Saharan Africa. Due to a combination of a lack of experi-
ence in dealing with RVF patients and insufficient public health programs, the out-
break caused at least thousands of human infections and hundreds of human deaths
(Meegan 1979). Since then, Egypt has been experiencing continued RVF outbreaks
among domestic animals, which indicates that the RVFV has become enzootic in
Egypt. The imported animals from Sudan and the Horn of Africa were usually not
vaccinated against RVFV. Travel time from north-central Sudan, where RVF was
epizootic, to livestock markets in southern Egypt (Aswan Province), is less than
5 days, approximating the incubation period of RVFV in sheep (Gad et al. 1986;
Abd el Rahim et al. 1999). So it is hypothesized that the recurrence of epizootics
is mainly caused by the continuous importation of infected animals from Sudan and
failure of the locally applied RVF vaccination program (Kamal 2011).

Egypt is an arid country with most of the population concentrated along the Nile,
in the Delta and near the Suez Canal. The imported animals enter southern Egypt
from northern Sudan, are moved up the Nile, and then consumed at population cen-
ters. At certain times, large numbers of animals are imported for holiday feasts. Verti-
cal transmission of RVF has not been shown to occur in Egypt (Meegan et al. 1980).
For simplicity, we restrict our focus to the disease transmission between domestic
animals and mosquitoes, and ignore the age-dependent differential susceptibility and
mortality in livestock. To capture the idea that more mosquitoes lead to more trans-
mission, it seems most natural to use mass-action transmission terms. The movement
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timescale of animals is relatively short, so we assume that there is no host reproduc-
tion during the journey. Therefore, the density of hosts is determined by movement,
mortality, and the rate at which they are introduced, which could be set to depend
on demand. We assume that there is no movement for the vector population because
of their limited mobility. We assume also that the mosquito population has logistic
growth to maintain an equilibrium vector population. For epidemiology, we use a
simple SIRS model for hosts and an SI model for vectors.

Based on the above assumptions, we propose a three-patch model (Sudan-Nile-
feast) with animals movement from patch 1 to patch 2 and then from patch 2 to
patch 3:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1

dt
= r − α1S1V1 − μS1 + ζR1 − c

d1
S1,

dI1

dt
= α1S1V1 − (μ + γ + δ)I1 − c

d1
I1,

dR1

dt
= γ I1 − (μ + ζ )R1 − c

d1
R1,

dU1

dt
= ξ1(U1 + V1) − ξ1 − ν1

M1
(U1 + V1)

2 − ν1U1 − β1I1U1,

dV1

dt
= −ν1V1 + β1I1U1,

(1a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS2

dt
= c

d1
S1 − α2S2V2 − μS2 + ζR2 − c

d2
S2,

dI2

dt
= c

d1
I1 + α2S2V2 − (μ + γ + δ)I2 − c

d2
I2,

dR2

dt
= c

d1
R1 + γ I2 − (μ + ζ )R2 − c

d2
R2,

dU2

dt
= ξ2(U2 + V2) − ξ2 − ν2

M2
(U2 + V2)

2 − ν2U2 − β2I2U2,

dV2

dt
= −ν2V2 + β2I2U2,

(1b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS3

dt
= c

d2
S2 − α3S3V3 − μS3 + ζR3 − c

d3
S3,

dI3

dt
= c

d2
I2 + α3S3V3 − (μ + γ + δ)I3 − c

d3
I3,

dR3

dt
= c

d2
R2 + γ I3 − (μ + ζ )R3 − c

d3
R3,

dU3

dt
= ξ3(U3 + V3) − ξ3 − ν3

M3
(U3 + V3)

2 − ν3U3 − β3I3U3,

dV3

dt
= −ν3V3 + β3I3U3.

(1c)

The state variables and parameters used in model (1a)–(1c) and their descriptions
are presented in Tables 1 and 2, respectively.
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Table 1 The state variables in
model (1a)–(1c) and their
descriptions

Symbol Description

Si Number of susceptible animals in patch i at time t

Ii Number of infectious animals in patch i at time t

Ri Number of recovered animals in patch i at time t

Ui Number of susceptible mosquitoes in patch i at time t

Vi Number of infectious mosquitoes in patch i at time t

Table 2 The parameters in
model (1a)–(1c) and their
descriptions

Symbol Description

r Recruitment rate of animals

c Movement speed of animals

di The length of journey for animals within patch i

μ Natural death rate for animals

δ Disease-induced death rate for animals

γ Recovery rate for animals

ζ Rate of loss of immunity for animals

ξi Growth rate of mosquitoes in patch i

νi Natural death rate for mosquitoes in patch i

Mi Carrying capacity for mosquitoes in patch i

αi Transmission rate from vector to host in patch i

βi Transmission rate from host to vector in patch i

The total number of mosquitoes in patch i at time t , denoted by Nv
i (t), satisfies

dNv
i

dt
= (ξi − νi)N

v
i − ξi − νi

Mi

(
Nv

i

)2
, i = 1,2,3,

and it converges to Mi as t → ∞ for any positive initial value. Let 1/pi = di/c be the
average time an animal spent in patch i. Therefore, we may consider the following
reduced system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1

dt
= r − α1S1V1 − μS1 + ζR1 − p1S1,

dI1

dt
= α1S1V1 − (μ + γ + δ)I1 − p1I1,

dR1

dt
= γ I1 − (μ + ζ )R1 − p1R1,

dV1

dt
= −ν1V1 + β1I1(M1 − V1),

(2a)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS2

dt
= p1S1 − α2S2V2 − μS2 + ζR2 − p2S2,

dI2

dt
= p1I1 + α2S2V2 − (μ + γ + δ)I2 − p2I2,

dR2

dt
= p1R1 + γ I2 − (μ + ζ )R2 − p2R2,

dV2

dt
= −ν2V2 + β2I2(M2 − V2),

(2b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS3

dt
= p2S2 − α3S3V3 − μS3 + ζR3 − p3S3,

dI3

dt
= p2I2 + α3S3V3 − (μ + γ + δ)I3 − p3I3,

dR3

dt
= p2R2 + γ I3 − (μ + ζ )R3 − p3R3,

dV3

dt
= −ν3V3 + β3I3(M3 − V3).

(2c)

Theorem 2.1 All forward solutions in R
12+ of (2a)–(2c) eventually enter Ω = Ω1 ×

Ω2 × Ω3, where Ωi = {(Si, Ii,Ri,Vi) ∈ R
4+ : Si + Ii + Ri ≤ r

∏i
j=1

pj−1
μ+pj

,Vi ≤
Mi}, i = 1,2,3, and p0 = 1, and Ω is positively invariant for (2a)–(2c).

Proof Let Nh
i (t) be the total host population in patch i at time t . Then we have

dNh
1

dt
= r − (μ + p1)N

h
1 − δI1 ≤ r − (μ + p1)N

h
1

and

dNh
i

dt
= pi−1N

h
i−1 − (μ + pi)N

h
i − δIi ≤ pi−1N

h
i−1 − (μ + pi)N

h
i , i = 2,3.

By a simple comparison theorem (Smith and Waltman 1995), the proof is complete. �

3 Mathematical Analysis

It is easy to see that (2a)–(2c) has a unique disease-free equilibrium

E0 = (
S0

1 , I 0
1 ,R0

1,V 0
1 , S0

2 , I 0
2 ,R0

2,V 0
2 , S0

3 , I 0
3 ,R0

3,V 0
3

)

=
(

r

μ + p1
,0,0,0,

rp1

(μ + p1)(μ + p2)
,0,0,0,

rp1p2

(μ + p1)(μ + p2)(μ + p3)
,

0,0,0

)

.
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Note that system (2a)–(2c) is in a block-triangular form, the dynamics of patch 1 are
independent of patch 2 and patch 3 while the dynamics of patch 2 are independent of
patch 3.

3.1 The First Patch

Obviously, E0
1 = (S0

1 ,0,0,0) is the unique disease-free equilibrium of subsys-
tem (2a). To calculate the basic reproduction number corresponding to (2a), we order
the infected state variables by (I1,R1,V1). Following the method and notations of
van den Driessche and Watmough (2002), the linearization of (2a) at E0

1 gives

F =
⎡

⎣
0 0 α1S

0
1

0 0 0
β1M1 0 0

⎤

⎦ and V =
⎡

⎣
μ + γ + δ + p1 0 0

−γ μ + ζ + p1 0
0 0 ν1

⎤

⎦ .

Direct calculation yields

V −1 =
⎡

⎣
(μ + γ + δ + p1)

−1 0 0
γ (μ + γ + δ + p1)

−1(μ + ζ + p1)
−1 (μ + ζ + p1)

−1 0
0 0 ν−1

1

⎤

⎦

and the basic reproduction number for the first patch equals

R10 = ρ
(
FV −1) =

√

α1S
0
1

ν1
· β1M1

μ + γ + δ + p1
=

√
α1r

(μ + p1)ν1
· β1M1

μ + γ + δ + p1
,

which depends on all parameters except ζ , the rate of loss of immunity for animals.
(R10)

2 is proportional to S0
1 and M1, so more mosquitoes and more animals lead to

more disease transmission.

Theorem 3.1 The disease-free equilibrium E0
1 of (2a) is globally asymptotically sta-

ble in Ω1 if R10 ≤ 1 and unstable if R10 > 1.

Proof It is easy to show the local stability or instability of E0
1 by verifying (A1)–(A5)

in van den Driessche and Watmough (2002).
Consider a Lyapunov function L1 = ν1(μ + p1)I1 + α1rV1 on Ω1. Then

L′
1 = ν1(μ + p1)I

′
1 + α1rV

′
1

= ν1(μ + p1)α1S1V1 − ν1(μ + p1)(μ + γ + δ + p1)I1 − α1rν1V1

+ α1rβ1I1(M1 − V1)

= [
ν1(μ + p1)α1S1 − α1rν1

]
V1

+ [
α1rβ1(M1 − V1) − ν1(μ + p1)(μ + γ + δ + p1)

]
I1

= ν1(μ + p1)α1
(
S1 − S0

1

)
V1

+ [
α1rβ1(M1 − V1) − ν1(μ + p1)(μ + γ + δ + p1)

]
I1
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≤ [
α1rβ1(M1 − V1) − ν1(μ + p1)(μ + γ + δ + p1)

]
I1 in Ω1

≤ [
α1rβ1M1 − ν1(μ + p1)(μ + γ + δ + p1)

]
I1

= [(
R2

10 − 1
)
ν1(μ + p1)(μ + γ + δ + p1)

]
I1

≤ 0 if R10 ≤ 1.

The largest compact invariant set, denoted by Γ1, in {(S1, I1,R1,V1) ∈ Ω1 : L′
1 = 0}

is the singleton {E0
1}.

Case 1: R10 < 1 The preceding calculation shows that I1 ≡ 0. So,

dV1

dt
= −ν1V1 and

dR1

dt
= −(μ + ζ + p1)R1.

Backward continuation of a compact invariant set indicates that V1 = 0 and R1 = 0.
Thus,

dS1

dt
= r − (μ + p1)S1.

This means that S1 = S0
1 and hence Γ1 = {E0

1}.

Case 2: R10 = 1 The preceding calculation gives either V1 ≡ 0 or I1 ≡ 0. The latter
case proceeds as before. Suppose V1 ≡ 0, then dV1

dt
= β1I1M1 ≡ 0 which implies

I1 = 0. Once again this can proceed as before.
By LaSalle’s invariance principle (LaSalle 1976), E0

1 is globally asymptotically
stable in Ω1. �

Theorem 3.2 If R10 > 1, then system (2a) has a unique endemic equilibrium, de-
noted by E∗

1 = (S∗
1 , I ∗

1 ,R∗
1 ,V ∗

1 ), which is locally asymptotically stable. Moreover,
the disease is uniformly persistent in Ω0

1 , the interior of Ω1, i.e., there is a constant
ε > 0 such that any solution of (2a) starting at a point of Ω0

1 satisfies

lim inf
t→∞

(
I1(t),R1(t),V1(t)

)
> (ε, ε, ε).

Proof If E∗
1 = (S∗

1 , I ∗
1 ,R∗

1 ,V ∗
1 ) is a positive equilibrium of (2a), then it satisfies the

following system of algebraic equations:

r − α1S1V1 − μS1 + ζR1 − p1S1 = 0,

α1S1V1 − (μ + γ + δ)I1 − p1I1 = 0,

γ I1 − (μ + ζ )R1 − p1R1 = 0,

− ν1V1 + β1I1(M1 − V1) = 0.

(3)

Solving for S1, R1, and V1 in terms of I1 from the last three equations of (3), that is,

S1 = (μ + γ + δ + p1)(ν1 + β1I1)

α1β1M1
, R1 = γ I1

μ + ζ + p1
, V1 = β1I1M1

ν1 + β1I1
,
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and substituting them into the first equation, we obtain

r −(μ+γ +δ+p1)I1 −(μ+p1)
μ + γ + δ + p1

α1β1M1
(β1I1 +ν1)+ζ

γ

μ + ζ + p1
I1 = 0,

which can be simplified to a linear equation

[

(μ + γ + δ + p1) + (μ + p1)
μ + γ + δ + p1

α1M1
− ζγ

μ + ζ + p1

]

I1

+
[

(μ + p1)
μ + γ + δ + p1

α1β1M1
ν1 − r

]

= 0.

The coefficient of I1 is always positive and the constant part is negative if and only if
R10 > 1. Hence, system (2a) has a unique endemic equilibrium if and only if R10 >

1.
Next we study the local stability of E∗

1 by using the Routh–Hurwitz criterion. The
Jacobian matrix of system (2a) at the endemic equilibrium E∗

1 is

J
(
S∗

1 , I ∗
1 ,R∗

1 ,V ∗
1

) =

⎛

⎜
⎜
⎝

−α1V
∗
1 − ρ 0 ζ −α1S

∗
1

α1V
∗
1 −(ρ + γ + δ) 0 α1S

∗
1

0 γ −(ρ + ζ ) 0
0 β1(M1 − V ∗

1 ) 0 −ν1 − β1I
∗
1

⎞

⎟
⎟
⎠ ,

where ρ = μ + p1 and the corresponding characteristic equation is

P1(λ) = (λ + ρ + ζ )
(
λ3 + b2λ

2 + b1λ + b0
) − ζα1V

∗
1 γ

(
λ + ν1 + β1I

∗
1

) = 0,

where

b2 = α1V
∗
1 + 2ρ + γ + δ + ν1 + β1I

∗
1 > 0,

b1 = (
α1V

∗
1 + ρ

)
(ρ + γ + δ) + (

α1V
∗
1 + 2ρ + γ + δ

)(
ν1 + β1I

∗
1

)

− α1β1S
∗
1

(
M1 − V ∗

1

)
,

b0 = (
α1V

∗
1 + ρ

)
(ρ + γ + δ)

(
ν1 + β1I

∗
1

) − α1β1S
∗
1ρ

(
M1 − V ∗

1

)
.

It follows from the second and fourth equations of (3) that

(ρ + γ + δ)ν1 = α1β1S
∗
1

(
M1 − V ∗

1

)

and hence

b1 = (
α1V

∗
1 + ρ

)
(ρ + γ + δ + ν1) + (

α1V
∗
1 + 2ρ + γ + δ

)
β1I

∗
1 > 0,

b0 = (ρ + γ + δ)
(
α1ν1V

∗
1 + α1β1V

∗
1 I ∗

1 + ρβ1I
∗
1

)
> 0 and b1b2 > b0.

Then

P1(λ) = λ4 + c3λ
3 + c2λ

2 + c1λ + c0 = 0,
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where

c3 = ρ + ζ + b2 > 0, c2 = (ρ + ζ )b2 + b1 > 0,

c1 = (ρ + ζ )b1 + b0 − ζα1V
∗
1 γ = ρb1 + b0 + ζ

(
b1 − α1V

∗
1 γ

)
> 0,

c0 = (ρ + ζ )b0 − ζα1V
∗
1 γ

(
ν1 + β1I

∗
1

) = ρb0 + ζ
(
b0 − α1V

∗
1 γ

(
ν1 + β1I

∗
1

))
> 0.

Now it suffices to show that c1c2c3 > c2
1 + c2

3c0. In fact,

c1c2c3 − c2
1 − c2

3c0

= c1(c2c3 − c1) − c2
3c0

= c1
[
c3(ρ + ζ )b2 + (b1b2 − b0) + ζα1V

∗
1 γ

] − c2
3c0

> c1c3(ρ + ζ )b2 − c2
3c0 = c3

[
c1(ρ + ζ )b2 − c3c0

]

= c3
[
(ρ + ζ )2(b1b2 − b0) − ζα1V

∗
1 γ

(
(ρ + ζ )b2 − (ρ + ζ + b2)

(
ν1 + β1I

∗
1

))]

> c3
[
(ρ + ζ )ζ(b1b2 − b0) − ζα1V

∗
1 γ (ρ + ζ )b2

]

= c3(ρ + ζ )ζ
(
b1b2 − b0 − α1V

∗
1 γ b2

)
> 0.

Thus, the Routh–Hurwitz criterion implies that all eigenvalues of the characteristic
equation have negative real parts. Hence, the endemic equilibrium is locally asymp-
totically stable.

Finally, the uniform persistence of system (2a) in Ω0
1 can be proved by applying

Theorem 4.6 in Thieme (1993). We omit the proof here, since it is similar to that of
Theorem 2.5 in Gao and Ruan (2011). �

Remark 3.3 It is worth mentioning that Yang et al. (2010) studied a similar vector-
host epidemic model with an SIR structure for the host population and without
disease-induced host deaths. They used the method of the second additive compound
matrix (see Li and Muldowney 1996 and references therein) to establish the global
stability of the endemic equilibrium when it exists. Unfortunately, we cannot use that
approach to establish the global result because of the higher complexity in our model.

3.2 The Second Patch

By a simple comparison theorem, we conclude that the disease is uniformly persistent
in Ω0 if it is uniformly persistent in Ω0

1 . Namely, the disease will persist in all three
patches if R10 > 1. Indeed, it follows from Theorem 3.2 that for any fixed initial data
we have

dI2

dt
≥ p1ε − (μ + γ + δ + p2)I2

for t large enough. So, lim inft→∞ I2(t) ≥ p1ε/(μ + γ + δ + p2). Similarly, we can
find positive lower limits for all other variables. If the disease dies out in patch 1, i.e.,
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R10 ≤ 1, then each solution of (2a) with nonnegative initial data converges to E0
1 and

the limiting system of (2b) is

dS2

dt
= p1S

0
1 − α2S2V2 − μS2 + ζR2 − p2S2,

dI2

dt
= α2S2V2 − (μ + γ + δ)I2 − p2I2,

dR2

dt
= γ I2 − (μ + ζ )R2 − p2R2,

dV2

dt
= −ν2V2 + β2I2(M2 − V2).

(4)

Comparing (4) with (2a), we immediately find that (4) possesses a unique disease-
free equilibrium E0

2 = (S0
2 , I 0

2 ,R0
2,V 0

2 ) = (p1S
0
1/(μ + p2),0,0,0) = (rp1/((μ +

p1)(μ + p2)),0,0,0) and obtain the basic reproduction number of patch 2 as

R20 =
√

α2S
0
2

ν2
· β2M2

μ + γ + δ + p2
=

√
α2rp1

(μ + p1)(μ + p2)ν2
· β2M2

μ + γ + δ + p2
.

If R10 ≤ 1 and R20 ≤ 1, then the disease goes extinct in the first two patches; if
R10 ≤ 1 and R20 > 1, then the disease dies out in the first patch but persists in the
last two patches.

3.3 The Third Patch

Similarly, if R10 ≤ 1 and R20 ≤ 1, we obtain a limiting system of (2c) as follows:

dS3

dt
= p2S

0
2 − α3S3V3 − μS3 + ζR3 − p3S3,

dI3

dt
= α3S3V3 − (μ + γ + δ)I3 − p3I3,

dR3

dt
= γ I3 − (μ + ζ )R3 − p3R3,

dV3

dt
= −ν3V3 + β3I3U3.

(5)

System (5) has a unique disease-free equilibrium E0
3 = (S0

3 , I 0
3 ,R0

3,V 0
3 ) = (p2S

0
2/

(μ + p3),0,0,0) = (rp1p2/((μ + p1)(μ + p2)(μ + p3)),0,0,0) and the basic re-
production number of patch 3 is given by

R30 =
√

α3S
0
3

ν3
· β3M3

μ + γ + δ + p3

=
√

α3rp1p2

(μ + p1)(μ + p2)(μ + p3)ν3
· β3M3

μ + γ + δ + p3
.
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If R10 ≤ 1, R20 ≤ 1, and R30 ≤ 1, then the disease goes extinct in all three
patches; if R10 ≤ 1, R20 ≤ 1, and R30 > 1, then the disease dies out in the first
two patches, but persists in the third patch. So, we have the following result.

Theorem 3.4 For the full model (2a)–(2c), if R10 > 1, the disease persists in all three
patches; if R10 ≤ 1 and R20 > 1, the disease dies out in the first patch but persists in
the remaining two patches; if R10 ≤ 1, R20 ≤ 1, and R30 > 1, the disease dies out in
the first two patches, but persists in the last patch; if R10 ≤ 1, R20 ≤ 1, and R30 ≤ 1,
the disease dies out in all three patches and E0 is globally asymptotically stable.

Theorem 3.5 System (2a)–(2c) has a unique endemic equilibrium, denoted E∗ =
(S∗

1 , I ∗
1 ,R∗

1 ,V ∗
1 , S∗

2 , I ∗
2 ,R∗

2 ,V ∗
2 , S∗

3 , I ∗
3 ,R∗

3 ,V ∗
3 ), if and only if R10 > 1 and it is lo-

cally asymptotically stable when it exists.

Proof The necessity is a straightforward consequence of Theorem 3.1. To prove the
existence and uniqueness of an endemic equilibrium as R10 > 1, it suffices to show
that the system

dSi

dt
= pi−1S

∗
i−1 − αiSiVi − μSi + ζRi − piSi,

dIi

dt
= pi−1I

∗
i−1 + αiSiVi − (μ + γ + δ)Ii − piIi,

dRi

dt
= pi−1R

∗
i−1 + γ Ii − (μ + ζ )Ri − piRi,

dVi

dt
= −νiVi + βiIi(Mi − Vi),

(6)

has a unique positive equilibrium for i = 2,3. To compute the constant solution of (6),
we set the right-hand side of each of the four equations equal to zero and direct
calculations yield

pi−1S
∗
i−1 + pi−1I

∗
i−1 − (μ + γ + δ + pi)Ii

−(μ + pi)
(μ + γ + δ + pi)Ii − pi−1I

∗
i−1

αi

· βiIi + νi

βiMiIi

+ ζ
pi−1R

∗
i−1 + γ Ii

μ + ζ + pi

= 0,

which can be reduced to a quadratic equation

f (Ii) ≡ a2I
2
i + a1Ii + a0 = 0, (7)

where a2 = −(1 + μ+pi

αiMi
)(μ + γ + δ + pi) + ζ

γ
μ+ζ+pi

< 0, a1 = pi−1S
∗
i−1 +

pi−1I
∗
i−1 − μ+pi

αiβiMi
((μ + γ + δ + pi)νi − pi−1I

∗
i−1βi) + ζ

pi−1R
∗
i−1

μ+ζ+pi
and a0 =

μ+pi

αiβiMi
pi−1I

∗
i−1νi > 0.

Thus, (7) has exactly one positive root, I ∗
i . To check the positivity of other vari-

ables, we need to verify that I ∗
i > pi−1I

∗
i−1/(μ + γ + δ + pi), or equivalently,



Modeling the Spatial Spread of Rift Valley Fever in Egypt

f (pi−1I
∗
i−1/(μ + γ + δ + pi)) > 0. In fact, f (pi−1I

∗
i−1/(μ + γ + δ + pi)) equals

ζγp2
i−1(I

∗
i−1)

2

(μ + ζ + pi)(μ + γ + δ + pi)2
+ p2

i−1S
∗
i−1I

∗
i−1

μ + γ + δ + pi

+ ζp2
i−1R

∗
i−1I

∗
i−1

(μ + ζ + pi)(μ + γ + δ + pi)
> 0.

The local stability of the endemic equilibrium (S∗
i , I ∗

i ,R∗
i , V ∗

i ) of system (6) can be
proved in a way similar to that of E∗

1 in Theorem 3.2. �

3.4 Model with Permanent Immunity

Research in RVF indicates that an infection leads to a durable, probably life-long,
immunity in animals (Paweska et al. 2005). In any event, the immunity period is
relatively longer than the duration of movement. We may assume that the rate of loss
of immunity ζ equals zero and use an SIR model for the host population. In this case,
since Ri does not appear in other equations of (2a)–(2c), system (2a)–(2c) can be
reduced to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS1

dt
= r − α1S1V1 − μS1 − p1S1,

dI1

dt
= α1S1V1 − (μ + γ + δ)I1 − p1I1,

dV1

dt
= −ν1V1 + β1I1(M1 − V1),

(8a)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS2

dt
= p1S1 − α2S2V2 − μS2 − p2S2,

dI2

dt
= p1I1 + α2S2V2 − (μ + γ + δ)I2 − p2I2,

dV2

dt
= −ν2V2 + β2I2(M2 − V2),

(8b)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS3

dt
= p2S2 − α3S3V3 − μS3 − p3S3,

dI3

dt
= p2I2 + α3S3V3 − (μ + γ + δ)I3 − p3I3,

dV3

dt
= −ν3V3 + β3I3(M3 − V3).

(8c)

The following result can be proved in a way similar to that of Theorem 4.3 in Yang
et al. (2010). Consequently, the disease dynamics of (8a)–(8c) are completely deter-
mined by the basic reproduction numbers Ri0 for i = 1,2,3.

Theorem 3.6 For system (8a)–(8c), if R10 > 1, then the disease persists at an en-
demic equilibrium level in all three patches; if R10 ≤ 1 and R20 > 1, then the disease
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dies out in the first patch but persists at an endemic equilibrium level in the remaining
two patches; if R10 ≤ 1, R20 ≤ 1, and R30 > 1, then the disease dies out in the first
two patches, but persists at an endemic equilibrium level in the last patch; if R10 ≤ 1,
R20 ≤ 1, and R30 ≤ 1, then the disease dies out in all three patches.

3.5 The Relation Between Ri0 and Model Parameters

It follows from Theorem 3.4 that the disease dies out in all patches if and only if
Ri0 ≤ 1 for i = 1,2,3. In other words, to eliminate the disease from the whole sys-
tem, all three threshold parameters R10, R20, and R30 must be reduced to be less
than 1. To do so, we should study how the basic reproduction numbers vary with the
model parameters, which can help us design highly efficient control strategies. Recall
that

R2
i0 = αir

νi

i∏

j=1

pj−1

μ + pj

· βiMi

μ + γ + δ + pi

, pi = c

di

, i = 1,2,3, and p0 = 1.

Obviously, Ri0 is strictly increasing in αi , βi , Mi , r , or di , and strictly decreasing
in νi , μ, γ , δ, or dj , j = 1, . . . , i − 1. An increase in the movement speed, c, will
decrease R10. The dependence of Ri0 on c, becomes more complicated if i > 1,
since c appears in both the numerator and denominator of the formula for R2

i0.

Proposition 3.7 For i > 1, there exists some c∗
i such that the basic reproduction

number Ri0 is strictly increasing in c if c ∈ (0, c∗
i ) and strictly decreasing if c ∈

(c∗
i ,∞). Furthermore, (i − 1)μdi/2 < c∗

i < (i − 1)μd̄i , where di = min1≤j≤i dj

and d̄i = max1≤j≤i dj .

Proof Let gi(c) be the partial derivative of R2
i0 with respect to c. Then

gi(c) = αirβiMi

νi

· ∂

∂c

(
i∏

j=1

pj−1

μ + pj

· 1

μ + γ + δ + pi

)

= αirβiMi

νi

· ∂

∂c

(
i∏

j=1

1

μdj + c
· ci−1d2

i

(μ + γ + δ)di + c

)

= αirβiMi

νi

· ci−2d2
i · (i − 1)D(c) − c · D′(c)

D2(c)

= αirβiMi

νi

· ci−2d2
i ·

(

(i − 1)D(c) − c

(
i∑

j=1

D(c)

μdj + c
+ D(c)

(μ + γ + δ)di + c

))

/
D2(c)

= αirβiMi

νi

· ci−2d2
i ·

(

(i − 1) − c

(
i∑

j=1

1

μdj + c
+ 1

(μ + γ + δ)di + c

))

/
D(c),
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where Di(c) = ((μ + γ + δ)di + c)
∏i

j=1(μdj + c) and the sign of gi(c) is the same
as that of

hi(c) = (i − 1) − c

(
i∑

j=1

1

μdj + c
+ 1

(μ + γ + δ)di + c

)

.

Since hi(0) = (i − 1) > 0, h(∞) = −2 and h′(c) < 0 for c ≥ 0, the equation
hi(c) = 0 has exactly one positive root, denoted by c∗

i , satisfying hi(c) > 0 if c ∈
(0, c∗

i ) and hi(c) < 0 if c ∈ (c∗
i ,∞). Note that

hi(kμd) = (i − 1) −
i∑

j=1

kd

dj + kd
− kμd

(μ + γ + δ)di + kμd
for k > 0 and d > 0.

In particular, we have

hi

(
(i − 1)μd̄i

) ≤ (i − 1) − i · i − 1

1 + (i − 1)
− (i − 1)μd̄i

(μ + γ + δ)di + (i − 1)μd̄i

< 0,

hi

(
(i − 1)μdi/2

)
> (i − 1) − i · i − 1

i + 1
− i − 1

i + 1
= 0, i > 1,

which implies c∗
i ∈ ((i − 1)μdi/2, (i − 1)μd̄i). �

Remark 3.8 The duration of movement in each patch, 1/pi = di/c, is about a few
weeks or months, while the life span of an animal, 1/μ, could be a couple of years
or even longer. Namely, the timescale of the movement is very short relative to the
host population dynamic timescale. So generally speaking, Ri0 is decreasing in c and
shortening the duration of host movement could reduce the possibility of a disease
spread.

Now we perform a sensitivity analysis of the basic reproduction number Ri0 to
model parameters to determine how best to reduce initial disease transmission. The
normalized forward sensitivity index (Chitnis et al. 2008) or elasticity of Ri0 to a
parameter p is defined as

Υ i
p = ∂Ri0

∂p
× p

Ri0
.

For i = 1,2,3, we find that Υ i
αi

= Υ i
βi

= Υ i
Mi

= Υ i
r = 1

2 , Υ i
νi

= − 1
2 , Υ i

γ =
− γ

2(μ+γ+δ+pi)
> − 1

2 and Υ i
δ = − δ

2(μ+γ+δ+pi)
> − 1

2 . In addition, if c 
 μd̄i then

Υ i
μ = −1

2

(
i∑

j=1

μdj

μdj + c
+ μdi

(μ + γ + δ)di + c

)

> −1

2
,

Υ i
dj

= −1

2

μdj

(μdj + c)
> −1

2
, for j = 1, . . . , i − 1,
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Fig. 1 The curves of the basic reproduction number of patch i, Ri0, versus c

Υ i
di

= 1

2
c

(
1

μdi + c
+ 1

(μ + γ + δ)di + c

)

>
1

2
, and Υ i

c = 1

2
hi(c) < −1

2
.

It follows from Υ i
di

> −Υ i
c that Ri0 is most sensitive to the travel distance in the ith

patch, di . However, the travel route is usually fixed, and thus the most feasible way
for fast reducing Ri0 is to accelerate livestock transport.

4 Numerical Simulations

In this section, we conduct numerical simulations to confirm our analytical results.
The model uses a daily time step and some of the parameter values are chosen from
the data in Gaff et al. (2007) and the references therein.

Firstly, we explore the relation between Ri0 and the travel speed c. We use the
following set of parameter values: r = 300, μ = 1.2 × 10−3, δ = 0.1, γ = 0.4,
ζ = 5 × 10−3, M1 = 1000, M2 = 8000, M3 = 1500, d1 = 100, d2 = 800, d3 = 200,
νi = 0.06, αi = 3 × 10−5, and βi = 8 × 10−5 for i = 1,2,3. Figure 1 shows how
the basic reproduction number varies as a function of the livestock movement rate c,
in the range c ∈ [0,40]. As predicted by Proposition 3.7, the curve of R10 is con-
stantly decreasing, and the curves of R20 and R30 are increasing for small c and then
decreasing.

Now we fix c at 25 and the respective basic reproduction numbers are R10 =
0.2522 < 1, R20 = 2.352 > 1, and R30 = 0.4672 < 1. To consider a hypothetical
disease invasion scenario, we set the initial data of patches 2 and 3 to zero such
that there are no infected animals or mosquitoes in patches 2 and 3 at the beginning
of travel. The disease dies out in patch 1, but persists in patches 2 and 3, which is
consistent with Theorem 3.4 (see Figs. 2 and 3). This may represent an interesting
phenomenon regarding the role that animal movement plays in the spatial spread of
RVF from Sudan to Egypt. Though the disease is introduced to patch 2 from patch 1,
it goes extinct in its origin because of lower mosquito density in patch 1. Patch 2 (the
Nile) has high mosquito population density and the disease will reach an endemic
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Fig. 2 Numerical simulations of system (2a) showing Ii vs. t . Initial conditions: S1(0) = 1800,
I1(0) = 50, R1(0) = 100, V1(0) = 0, and S2(0) = I2(0) = R2(0) = V2(0) = S3(0) = I3(0) =
R3(0) = V3(0) = 0. R10 < 1, R20 > 1, and R30 > 1

Fig. 3 Numerical simulations of system (2a) showing Vi vs. t . Initial conditions: S1(0) = 1800,
I1(0) = 50, R1(0) = 100, V1(0) = 0, and S2(0) = I2(0) = R2(0) = V2(0) = S3(0) = I3(0) =
R3(0) = V3(0) = 0. R10 < 1, R20 > 1, and R30 > 1

level once it appears. Patch 3 cannot sustain a disease alone, but this becomes possible
because of continuous immigration of infected animals from patch 2.

5 Discussion

In this paper, we have formulated a simple epidemic patch model aimed at capturing a
scenario where animals are imported into Egypt from the south and taken north along
the Nile for human consumption, with the risk of a RVF outbreak if some of them
are infected. A similar model might apply to Saudi Arabia and Yemen based on some
descriptions (Abdo-Salem et al. 2011b). We have evaluated the basic reproduction
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number for each patch and established the threshold dynamics of the model. It is sug-
gested that a small number of imported infectious animals from Sudan could result in
an outbreak of RVF in Egypt. Increasing the recruitment rate of animals, r , or the car-
rying capacity of mosquitoes, Mi , will increase the basic reproduction number, Ri0.
So the likelihood of a RVF outbreak is higher when both r and Mi are large. The rate
r at which animals are fed in might be determined by demand, which would be large
during Muslim festival periods. For example, millions of animals are imported and
slaughtered as each devout Muslim must traditionally slaughter one animal during
the celebration of Eid al-Adha (also known as the Feast of Sacrifice). The date of
Eid al-Adha varies from year to year as it is linked to the Islamic calendar and more
attention should be paid to the transmission of RVFV when the rainy season (more
mosquitoes) corresponds to the time of the occurrence of festivals (Abdo-Salem et al.
2011b).

We may assume that some animals starting the journey are recovered. It might be
that way even if no sick animals are starting the journey, since recovered ones could
be healthy. If this happens, the subsystem (2a) will become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1

dt
= r − α1S1V1 − μS1 + ζR1 − c

d1
S1,

dI1

dt
= α1S1V1 − (μ + γ + δ)I1 − c

d1
I1,

dR1

dt
= rR + γ I1 − (μ + ζ )R1 − c

d1
R1,

dV1

dt
= −ν1V1 + β1I1(M1 − V1),

(9)

where rR is a constant recruitment of recovered individuals into patch 1. Let R̃1 =
R1 − rR/(μ+ ζ + c/d1) and r̃ = r + ζ rR/(μ+ ζ + c/d1). Then (9) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1

dt
= r̃ − α1S1V1 − μS1 + ζ R̃1 − c

d1
S1,

dI1

dt
= α1S1V1 − (μ + γ + δ)I1 − c

d1
I1,

dR̃1

dt
= γ I1 − (μ + ζ )R̃1 − c

d1
R̃1,

dV1

dt
= −ν1V1 + β1I1(M1 − V1),

(10)

which is qualitatively equivalent to (2a). Therefore, all of the aforementioned results
still hold for system (10) or (9) and its associated new full system.

The work presented in this paper enables us to gain useful insights into the spread
of RVF among different regions. Its framework could be applied to study transmission
of other vector-borne diseases in systems with directional host movement. However,
there are other aspects we have not considered in this study. Can we simplify our
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SIRS model to an SI/SIR model for hosts? Do we need more detailed epidemiologi-
cal models, for example, SEIR for hosts, SEI for vectors? What if we use frequency-
dependent transmission rather than mass-action? We may want to think about extend-
ing the model to a larger and more realistic patch network, for example if we want to
study how changing the network affects disease spread, but we would need to know
at least something qualitative about movement patterns of herds to set the movement
coefficients. Seasonal effects on mosquito population and time-dependence of animal
importation may also be incorporated. For the numerical simulations, the parameter
values taken from Gaff et al. (2007) require more careful modifications for change
in transmission to be applicable. Data for disease, vector, and animal migration from
RVF endemic regions need to be collected so that we can further test the validity of
our model.
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