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Abstract
The 2014–2015 Ebola outbreak is the largest and most widespread to date. In order to esti-

mate ongoing transmission in the affected countries, we estimated the weekly average

number of secondary cases caused by one individual infected with Ebola throughout the

infectious period for each affected West African country using a stochastic hidden Markov

model fitted to case data from the World Health Organization. If the average number of

infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and

cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriti-

cality at some point during the epidemic; the epidemic in Guinea is ongoing with no evi-

dence that it is subcritical. Response efforts to control the epidemic should continue in order

to eliminate Ebola cases in West Africa.

Introduction
The 2014–2015 Ebola outbreak in West Africa is already the largest on record. Beginning with
a case in Guinea in December 2013 [1], the outbreak extended to Liberia, Sierra Leone, Nigeria,
and Senegal [2]. Activities, such as early diagnosis, patient isolation and care, contact tracing,
infection control practices, and safe burials, are recommended strategies to reduce transmis-
sion and control the epidemic [3] and have been implemented in the affected countries.
Although there have been reports citing evidence for a decrease in transmission of Ebola virus
after the implementation of prevention and response measures [4–6], the precise time when
control of an epidemic has been achieved is difficult to determine during the course of the epi-
demic. A degree of control has been achieved when, on average, one infectious case does not
produce another infectious case. That is, the disease has become subcritical and can no longer
sustain itself in the population [7].
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We examined international reported Ebola case data to determine if and when the Ebola
epidemic became subcritical in Liberia, Sierra Leone, or Guinea. Using a stochastic hidden
Markov model to simulate the epidemic through time, we estimated the weekly average num-
ber of infections caused by one Ebola infection within each of the three affected countries in
West Africa using country and sub-country confirmed case counts available from the World
Health Organization (WHO).

Methods

Data Sources
Weekly country- and subcountry-specific confirmed case count data were obtained from the
WHO Global Health Observatory's patient database [8]. The number of confirmed cases using
standard surveillance definitions [9] were given by week for Liberia, Sierra Leone, and Guinea
from January 5, 2014 to July 29, 2015, if available. We used the data released by the World
Health Organization on July 29, 2015 for the final analysis.

Model Details
The basic reproduction number, R0, the average number of secondary cases caused by one
infected individual throughout the infectious period in a completely susceptible population,
has been used to monitor epidemics of infectious diseases [10] including Ebola, with particular
interest in when it decreases below 1.0 [11]. Time-varying estimates of the reproduction num-
ber R for the epidemics in Liberia, Sierra Leone, and Guinea were calculated using a stochastic
hidden Markov model. To assess the ongoing weekly transmission potential of Ebola in the
three most intensely affected countries, we analyzed a simple mathematical transmission
model based on previously published simple models [11]. The model consists of SEIR-type
state spaces with two sequential exposure classes with progression rates chosen to provide a
gamma-distributed incubation period of 10 days with a shape parameter of 2 (to be consistent
with a previous WHOmodel [2]). The model distinguishes diagnosed from undiagnosed (and
unknown) infectious cases with undiagnosed cases becoming diagnosed at a given rate. The
transmission rates for undiagnosed and diagnosed cases are assumed to be different with diag-
nosed cases having a lower transmission rate due to case recognition and implementation of
control measures. The number of confirmed cases is a counting process and is represented by a
component of the state vector. Specifically, the states of the model are (1) uninfected individu-
als, (2, 3) latent or exposed individuals (infected, but who have not shown symptoms yet), (4)
undiagnosed cases, (5) diagnosed cases, (6) removed individuals (died or recovered), and (7)
confirmed cases. A full specification of the model is given in the S1 Appendix.

The number of susceptible individuals, exposed individuals of different classes, undiagnosed
cases, diagnosed cases, and removed individuals together determine the counting process for
the number of confirmed cases, which is all that is assumed to be observed. The model is simu-
lated as a continuous-time Markov chain. Based on the state of the system at the beginning of
any given week (X(t)), the model is projected forward with the SEIR model, yielding the state at
the end of the week X(t+1). The number of new confirmed cases predicted by the model is com-
puted for that week (see S1 Appendix for details). This procedure is repeated n times, yielding

a simulation-based estimate of the number Ĉ t of new cases predicted, given the state and
parameter values. We use a simple nonlinear particle filtering method to fit the simulated
results to the WHO data (similar to the basic particle filter but using the resample/move
method to prevent particle diversity depletion [12]). A Monte Carlo likelihood of the observed

data given parameter values is calculated according to a Poisson distribution with Ĉ t as the rate
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parameter. An alternate likelihood was derived by directly estimating the probability that the
simulated number of confirmed cases exactly matched the observed number (the relative fre-
quency of exact matches in the number of replications, listed as Bernoulli in the table in the S1
Appendix). This procedure, in turn, is repeated for each of P particles, consisting of state and
parameter values. Each particle yields a Monte Carlo likelihood Lj,t of the observed data given a
set of parameters at time t. Importance resampling is then used, wherein the particles are

resampled with weight wj;t ¼ Lj;t=
X
j0

Lj0;t [13, 14] to choose the parameter values that most

likely fit the data. To prevent depletion of particle diversity over time due to successive resam-
pling, the resample/move method [15] is used. After resampling, the parameter values for each
particle are perturbed using a symmetric transition kernel. Then, the original values of X(t) for
that particle are used and the projection recomputed with new particles, leading to a new value
for the Monte Carlo likelihood, L'. The perturbed values are accepted with probability r = min
(1,L0/L) (i.e., a single step of the Metropolis algorithm). The procedure is iteratively repeated at
each time point. Once a fitted set of parameters are obtained, an estimated R can be calculated
(see below).

Previous authors have observed the non-identifiability of specific parameter sets for the
Ebola process [16, 17], and our model is not identifiable either. We assign values for all param-
eters except for the transmission coefficient β, and conduct the fitting algorithm (see Shaman
[18]). Of particular importance is the fraction of unconfirmed cases since an arbitrarily chang-
ing pattern of incomplete reporting is indistinguishable from changes in transmission. Note
that if transmission increases or decreases over time, the resample/move procedure introduces
perturbations in the parameters and provides the ability to track changes dynamically. Given
the parameter choices, we then compute the instantaneous reproduction number (R) implied
by the model, which for our simple model, is given by

R ¼ b
1

mþ rþ s
þ k
mþ r

� �

where κ is the relative infectivity of diagnosed cases, μ is the mortality rate, ρ is the recovery
rate, σ is the diagnosis rate, and β is a transmission coefficient. More generally, we should esti-
mate the effective reproductive number by multiplying this quantity by the fraction of the pop-
ulation who are susceptible. However, by assumption, in this model, all immune individuals
are former cases, and yet the cumulative incidence is small compared to the total population of
each country, and we assume the susceptible fraction is essentially 1. Thus, assessment of con-
trol using this estimated R is somewhat pessimistic, since it is quite possible for the effective
reproduction number to be less than one while our estimated R>1.

Ethics Statement
For this study, we used weekly country- and subcountry-specific confirmed case count data
that were obtained from the WHO Global Health Observatory's patient database available on
the Internet [8]. Since the research only involved unidentifiable summary data (i.e., case counts
by week), the research did not require review by the Committee on Human Research at the
University of California, San Francisco.

Results
There were 3,897 Ebola confirmed cases in Liberia as of July 26, 2015 (Fig 1). The weekly num-
ber of incident confirmed cases ranged from 0 to 364; 364 incident cases were reported during
the week of September 1 to September 7, 2014. Montserrado County had the largest number of
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Fig 1. Cumulative number of confirmed cases in Liberia, March 23, 2014 to July 26, 2015. The cumulative numbers of confirmed cases over time for
each of the 15 counties are shown using different colors. The cumulative number of confirmed cases over time for all 15 counties of the country is shown by
the black line in the figure inset.

doi:10.1371/journal.pone.0140651.g001

Fig 2. Cumulative number of confirmed cases in Sierra Leone, May 25, 2014 to July 5, 2015. The cumulative numbers of cases over time for each of the
14 districts are shown using different colors. The black line in the figure inset shows the cumulative number of cases over time for all 14 districts of the
country.

doi:10.1371/journal.pone.0140651.g002
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cumulative confirmed cases in the country (1,978 cases). In Sierra Leone, there were 9,896 con-
firmed cases as of July 5, 2015 (Fig 2). The weekly number of incident confirmed cases ranged
from 3 to 578 with the largest number reported during the week of November 24 to November
30, 2014. The capital city of Freetown (Western Area Urban District) had the largest number
of cumulative confirmed cases (2,508 cases). Guinea had 3,325 confirmed cases as of July 26,
2015 (Fig 3). The weekly number of incident confirmed cases ranged from 1 to 171, with the
largest number of reports occurred during the week of December 15 to December 21, 2014.
The Macenta prefecture had the highest number of reported cumulative confirmed cases (713
cases).

To be conservative, we considered an epidemic to be subcritical when the upper bound of
the 95% credible interval for R dropped below 1.0. In Liberia, the median R ranged from 0.9 to
4.6 between March 23, 2014 and October 5, 2014 (Fig 4). The estimate of R was subcritical on
October 26, 2014; although the median R estimates after November 30, 2014 are below 1.0, the
upper bound is greater than 1.0. In Sierra Leone, the median R ranged from 0.6 to 5.9 between
May 25, 2014 and January 18, 2015 (Fig 5). The time-varying estimates of R reached subcriti-
cality in Sierra Leone during the week ending on January 18, 2015 to February 1, 2015. These
estimates are consistent with a previous report that the epidemic in Sierra Leone was subcritical
as of January 18, 2015 [19]. In Guinea, the epidemic was not subcritical fromMarch 2, 2014
through July 19, 2015 (Fig 6).

Discussion
This study suggests that the epidemics in Liberia and Sierra Leone may have reached subcriti-
cality in October 2014 and late January and early February 2015 respectively. As the number of

Fig 3. Cumulative number of confirmed cases in Guinea, March 2, 2014 to July 26, 2015. The cumulative number of cases over time for each of the 25
prefectures that reported data are shown using different colors. The black line in the figure inset shows the cumulative number of cases over time for 25
prefectures in the country.

doi:10.1371/journal.pone.0140651.g003
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cases declined and the concerns of its implications for vaccine studies grew [20], our results
showed that the latest median estimate of R for Liberia was less than 1.0 with the last confirmed
case reported during the week ending March 22, 2015 in the patient database. Similarly, the
estimates of R for Sierra Leone may be declining as of late June 2015. Interventions and
response efforts to control the disease must continue to make the epidemic subcritical in the
two affected countries with reported cases, despite previous observations that transmission
may be decreasing. However, we recognize that epidemic outcomes depend on individual
behaviors as well as hospital capacities to care for sick, infectious, and dying individuals [21]; a
multi-faceted control approach is most certainly warranted [22].

Other researchers have published estimated transmission characteristics at various time
points in the epidemic. A three-month ensemble forecast produced estimates of the basic
reproduction number between 1.5 and 2.0 using data from July 6, 2014 to August 9, 2014 and a
stochastic, individual-based model that provided estimates for the local transmission of Ebola
virus [23]. Using a set of ordinary differential equations, basic reproduction numbers were esti-
mated to be 1.6 for Liberia, 2.5 for Sierra Leone, and 1.5 for Guinea using data as of August 20,
2014 [24], which are consistent with other R0 estimates between 1.6 and 2.0 for the same time
period [25]. With control measures, the effective reproductive number dropped to around 1.0
in Guinea and Sierra Leone by the end of May and July 2014, respectively using different meth-
ods. In Liberia, the effective reproductive number remained unchanged suggesting that there
was no evidence of outbreak control during the same period of time [24]. Subsequently, the

Fig 4. Estimated Reproduction Number over calendar time for Liberia. The quantiles of the reproduction number are displayed on the last day for each
week. From bottom to top, the quantiles are 0.025, 0.10, 0.25, 0.50 (black line), 0.75, 0.90, and 0.975. The black horizontal line shows the threshold for
subcriticality, i.e., the reproduction number equal to 1.0. We analyzed data through June, 2015; we did not include 6 cases that were reported in the situation
reports during the weeks ending on July 5, 2015 and July 12, 2015.

doi:10.1371/journal.pone.0140651.g004
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WHO Ebola Response Team estimated the basic reproduction numbers as 1.8 for Liberia, 2.0
for Sierra Leone, and 1.7 for Guinea using data as of September 14, 2014 [2]. Using data from
July to September, 2014, the average number of secondary infections per infected individual
was estimated to be 1.73, with survivors having a different estimate in comparison with non-
survivors (0.66 and 2.36 respectively) in Montserrado County, Liberia [26]. Additional effective
R estimates for the same time period ranged from 1.3 to 2.7 among the three west African
countries [27].

By mid-October 2014, there were suggestions of a change in the growth of the epidemic in
Liberia [17]; one model showed that the exponential growth phase that was observed in Liberia
previously was over, an observation that was consistent with epidemiologic data known at that
time [17]. Using different methods, our results suggest that R became subcritical in Liberia in
late October 2014. In Sierra Leone, R became subcritical in late January to early February 2015,
confirming a previous R estimate [19]. Driving R to be less than 1.0 would certainly control the
epidemic, but epidemics often fade out stochastically even when R is approximately 1.0 [28]. In
order to control the epidemic, a combined approach involving different control strategies (i.e.,
case isolation, contact-tracing with quarantine, and safe funeral and burial practices) must be
implemented [22]. It is not possible, however, to disentangle changes in reporting from
changes in transmission. We also note that the wide credible limits on the reproduction num-
ber seen near the end of the time series may reflect, in part, low power resulting from small
case counts.

Fig 5. Estimated Reproduction Number over calendar time for Sierra Leone. The quantiles of the reproduction number are displayed on the last day of
each week. From bottom to top, the quantiles are 0.025, 0.10, 0.25, 0.50 (black line), 0.75, 0.90, and 0.975. The black horizontal line shows the threshold for
subcriticality, i.e., the reproduction number equal to 1.0.

doi:10.1371/journal.pone.0140651.g005
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An R estimate below 1.0 for any of the three epidemics would suggest the possibility of elim-
ination, but certainly would not imply that no further cases will occur [29]. In addition, our
analyses incorporated data that were available on July 29, 2015. If the last few weeks of data
change retrospectively due to reporting delays, i.e., more cases are added to the last few weeks
of the closing date of the data, our estimates of R during this time period will change. An
important limitation of the simple model we have chosen is that geographic heterogeneity has
not been explicitly represented; ongoing transmission in specific regions or “hot spots” could
be occurring even though the basic reproduction number estimated from a simple homoge-
neous model is less than 1.0. Further work is therefore needed to include the effects of geo-
graphic heterogeneity as has been published previously [30, 31], including an assessment of the
time to complete elimination. Also, our model also does not account for clustered transmission
as has been noted to occur [32] or account for the effects of ring vaccination [33].

Conclusions
In summary, subcriticality of an epidemic is an important indicator that a degree of control has
been achieved before the absence of Ebola cases. The epidemics in Liberia and Sierra Leone
have approached subcriticality at some point during the epidemic; the epidemic in Guinea is
ongoing with no evidence that it is subcritical. In our view, this suggests that the national and
international responses must continue if true elimination is to occur throughout West Africa.

Supporting Information
S1 Appendix. Details of the Model.
(DOCX)

Fig 6. Estimated Reproduction Number over calendar time for Guinea. The quantiles of the reproduction number are displayed on the last day of each
week. From bottom to top, the quantiles are 0.025, 0.10, 0.25, 0.50 (black line), 0.75, 0.90, and 0.975. The black horizontal line shows the threshold for
subcriticality, i.e., the reproduction number equal to 1.0.

doi:10.1371/journal.pone.0140651.g006

Evaluating Subcriticality during the Ebola Epidemic in West Africa

PLOS ONE | DOI:10.1371/journal.pone.0140651 October 20, 2015 8 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140651.s001


Acknowledgments
This study was funded by a Models of Infectious Disease Agent Study (MIDAS) grant from the
National Institute of General Medical Sciences at the National Institutes of Health to the Uni-
versity of California, San Francisco (Award Number U01GM087728). The content is solely the
responsibility of the authors and does not necessarily represent the official views of the
National Institute of General Medical Sciences or the University of California at San Francisco.
The data utilized in this study are publicly available at http://apps.who.int/gho/data/node.
ebola-sitrep.ebola-country?lang = en. The authors are grateful to the MIDAS Computing
Resource at the University of Pittsburgh.

Author Contributions
Conceived and designed the experiments: WTAE TML TCP. Performed the experiments: TCP.
Analyzed the data: WTAE TCP. Contributed reagents/materials/analysis tools: FL SA LW.
Wrote the paper: WTAE LW FL DZG SA JS MD EMWI TML TCP.

References
1. Ebola: a failure of international collective action. Lancet. 2014; 384: 637. PMID: 25150744

2. WHOEbola Response Team. Ebola Virus Disease in West Africa—The First 9 Months of the Epidemic
and Forward Projections. N Engl J Med. 2014;. 371(16): 1481–95. doi: 10.1056/NEJMoa1411100
PMID: 25244186

3. World Health Organization. “Ebola Response Roadmap,” (available at http://apps.who.int/iris/
bitstream/10665/131596/1/EbolaResponseRoadmap.pdf?ua=1).

4. Sharma A, Heijenberg N, Bolongei J, Reeder B, Alpha T, Sterk E, et al. Evidence for a decrease in
transmission of Ebola virus—Lofa County, Liberia, June 8-November 1, 2014. Morb Mortal Wkly Rep.
2014; 63: 1067–1071.

5. Nyenswah TG, Westercamp M, Kamali AA, Quin J, Zielinski-Gutierrez E, Amegashie F, et al. Evidence
for declining numbers of Ebola cases—Montserrado County, Liberia, June-October 2014. Morb Mortal
Wkly Rep. 2014; 63:1072–1076.

6. Nyenswah T, Fahnbulleh M, Massaquoi M, Nagbe T, Bawo L, Falla JD, et al. Ebola epidemic—Liberia,
March-October 2014. Morb Mortal Wkly Rep. 2014; 63: 1082–1086.

7. Halloran ME, Concepts of transmission and dynamics. In: Thomas JC, Weber DJ, editors. Epidemiolog-
ical Methods for the Study of Infectious Diseases. Oxford: Oxford Press; 2001.

8. World Health Organization Global Health Observatory. Ebola data and statistics. 2014. Available at
http://apps.who.int/gho/data/node.ebola-sitrep.ebola-country?lang = en.

9. World Health Organization. Case definition recommendations for Ebola or Marburg virus diseases.
2014. Available at http://www.who.int/csr/resources/publications/ebola/ebola-case-definition-contact-
en.pdf?ua=1.

10. Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar
impacts of control measures. Am J Epidemiol. 2004; 160: 509–516. PMID: 15353409

11. Chowell G, Nishiura H, Transmission dynamics and control of Ebola virus disease (EVD): a review.
BMCMed. 2014; 12: 196. doi: 10.1186/s12916-014-0196-0 PMID: 25300956

12. YangW, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective
forecasting of influenza epidemics. PLoS Comput Biol. 2014; 10: e1003583. doi: 10.1371/journal.pcbi.
1003583 PMID: 24762780

13. Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayesian state elimi-
nation. IEEE Proceedings-F. 1993; 140: 107–113.

14. Kitagawa G. A self-organizing state-space model. J Am Stat Assoc. 1998; 93: 1203–1215.

15. Gilks WR, Berzuini C. Following a moving target—Monte Carlo inference for dynamic Bayesian models.
J R Stat Soc Ser B (Statistical Methodol). 2001; 63: 127–146.

16. Weitz JS, Dushoff J. Modeling post-death transmission of Ebola: challenges for inference and opportu-
nities for control. Sci Rep. 2015; 5: 8751. doi: 10.1038/srep08751 PMID: 25736239

Evaluating Subcriticality during the Ebola Epidemic in West Africa

PLOS ONE | DOI:10.1371/journal.pone.0140651 October 20, 2015 9 / 10

http://apps.who.int/gho/data/node.ebola-sitrep.ebola-country?lang�=�en
http://apps.who.int/gho/data/node.ebola-sitrep.ebola-country?lang�=�en
http://www.ncbi.nlm.nih.gov/pubmed/25150744
http://dx.doi.org/10.1056/NEJMoa1411100
http://www.ncbi.nlm.nih.gov/pubmed/25244186
http://apps.who.int/iris/bitstream/10665/131596/1/EbolaResponseRoadmap.pdf?ua=1
http://apps.who.int/iris/bitstream/10665/131596/1/EbolaResponseRoadmap.pdf?ua=1
http://apps.who.int/gho/data/node.ebola-sitrep.ebola-country?lang�=�en
http://www.who.int/csr/resources/publications/ebola/ebola-case-definition-contact-en.pdf?ua=1
http://www.who.int/csr/resources/publications/ebola/ebola-case-definition-contact-en.pdf?ua=1
http://www.ncbi.nlm.nih.gov/pubmed/15353409
http://dx.doi.org/10.1186/s12916-014-0196-0
http://www.ncbi.nlm.nih.gov/pubmed/25300956
http://dx.doi.org/10.1371/journal.pcbi.1003583
http://dx.doi.org/10.1371/journal.pcbi.1003583
http://www.ncbi.nlm.nih.gov/pubmed/24762780
http://dx.doi.org/10.1038/srep08751
http://www.ncbi.nlm.nih.gov/pubmed/25736239


17. Chowell G, Simonsen L, Viboud C, Kuang Y. Is west Africa approaching a catastrophic phase or is the
2014 Ebola epidemic slowing down? Different models yield different answers. PLoS Curr. 2014 Nov
20; 6. doi: 10.1371/currents.outbreaks.b4690859d91684da963dc40e00f3da81

18. Shaman J, YangW, Kandula S. Inference and forecast of the current west African Ebola outbreak in
Guinea, Sierra Leone and Liberia. PLoS Curr. 2014 Oct 31; 6. doi: 10.1371/currents.outbreaks.
3408774290b1a0f2dd7cae877c8b8ff6

19. Camacho A, Kucharski A, Aki-Sawyerr Y, White MA, Flasche S, Baguellin M, et al. Temporal changes
in Ebola transmission in Sierra Leone and implications for control requirements: a real-time modelling
study. PLoS Curr. 2015 Feb 10; 7. doi: 10.1371/currents.outbreaks.
406ae55e83ec0b5193e30856b9235ed2

20. Enserink M. The Ebola Epidemic. High hopes for Guinean vaccine trial. Science. 2015 Jan 16; 347
(6219): 219–20. doi: 10.1126/science.347.6219.219 PMID: 25593164

21. Drake JM, Kaul RB, Alexander L, O'Regan SM, Kramer AM, Pulliam JT, et al. Ebola cases and health
system demand in Liberia. PLoS Biol. 2015 Jan 13; 13(1): e1002056. doi: 10.1371/journal.pbio.
1002056 PMID: 25585384

22. Pandey A, Atkins KE, Medlock J, Wenzel N, Townsend JP, Childs JE, et al. Strategies for containing
Ebola in West Africa. Science. 2014; 346: 991–5. doi: 10.1126/science.1260612 PMID: 25414312

23. Gomes MFC, Pastore y Piontti A, Rossi L, Chao D, Longini I, Halloran ME, et al. Assessing the interna-
tional spreading risk associated with the 2014 west African ebola outbreak. PLoS Curr. 2014 Sep 2; 6.
doi: 10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5

24. Althaus CL. Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in
west Africa. PLoS Curr. 2014 Sep 2; 6. doi: 10.1371/currents.outbreaks.
91afb5e0f279e7f29e7056095255b288

25. Fisman D, Khoo E, Tuite A. Early epidemic dynamics of the west african 2014 ebola outbreak: esti-
mates derived with a simple two-parameter model. PLoS Curr. 2014 Sep 8; 6. doi: 10.1371/currents.
outbreaks.89c0d3783f36958d96ebbae97348d571

26. Yamin D, Gertler S, Ndeffo-Mbah ML, Skrip LA, Fallah M, Nyenswah TG, et al. Effect of Ebola progres-
sion on transmission and control in Liberia. Ann Intern Med. 2015; 162(1): 11–17. doi: 10.7326/M14-
2255 PMID: 25347321

27. Towers S, Patterson-Lomba O, Castillo-Chavez C. Temporal variations in the effective reproduction
number of the 2014West Africa Ebola outbreak. PLoS Curr. 2014 Sep 18; 6. doi: 10.1371/currents.
outbreaks.9e4c4294ec8ce1adad283172b16bc908

28. Bailey NTJ. The elements of stochastic processes with applications to the natural sciences. New York:
Wiley-Interscience; 1990.

29. Blumberg S, Enanoria WTA, Lloyd-Smith JO, Lietman TM, Porco TC. Identifying postelimination trends
for the introduction and transmissibility of measles in the United States. Am J Epidemiol. 2014 Jun 1;
179(11): 1375–82. doi: 10.1093/aje/kwu068 PMID: 24786800

30. Merler A, Ajelli M, Fumanelli L, Gomes MF, Piontti AP, Rossi L, et al. Spatio-temporal spread of the
Ebola 2014 outbreak in Liberia and the effectiveness of non-pharmaceutical interventions: a computa-
tional modelling analysis. Lancet Infect Dis. 2015; 15: 204–211. http://dx.doi.org/10.1016/S1473-3099
(14)71074-6. PMID: 25575618

31. Chowell G, Viboud C, Hyman JM, Simonsen L. TheWestern Africa ebola virus disease epidemic exhib-
its both global exponential and local polynomial growth rates. PLoS Curr. 2015 Jan 21; 7. doi: 10.1371/
currents.outbreaks.8b55f4bad99ac5c5db3663e916803261

32. Scarpino SV, Iamarino A, Wells C, Yamin D, Ndeffo-Mbah M,Wenzel NS, et al. Epidemiological and
viral genomic sequence analysis of the 2014 ebola outbreak reveals clustered transmission. Clin Infect
Dis. 2015 Apr 1; 60(7): 1079–82. doi: 10.1093/cid/ciu1131 PMID: 25516185

33. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, EdmundsWJ, Camacho A, et al. Efficacy and
effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from
the Guinea ring vaccination cluster-randomised trial. Lancet. 2015 Aug 29; 386(9996): 857–66. doi: 10.
1016/S0140-6736(15)61117-5 PMID: 26248676

Evaluating Subcriticality during the Ebola Epidemic in West Africa

PLOS ONE | DOI:10.1371/journal.pone.0140651 October 20, 2015 10 / 10

http://dx.doi.org/10.1371/currents.outbreaks.b4690859d91684da963dc40e00f3da81
http://dx.doi.org/10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6
http://dx.doi.org/10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6
http://dx.doi.org/10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2
http://dx.doi.org/10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2
http://dx.doi.org/10.1126/science.347.6219.219
http://www.ncbi.nlm.nih.gov/pubmed/25593164
http://dx.doi.org/10.1371/journal.pbio.1002056
http://dx.doi.org/10.1371/journal.pbio.1002056
http://www.ncbi.nlm.nih.gov/pubmed/25585384
http://dx.doi.org/10.1126/science.1260612
http://www.ncbi.nlm.nih.gov/pubmed/25414312
http://dx.doi.org/10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
http://dx.doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571
http://dx.doi.org/10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571
http://dx.doi.org/10.7326/M14-2255
http://dx.doi.org/10.7326/M14-2255
http://www.ncbi.nlm.nih.gov/pubmed/25347321
http://dx.doi.org/10.1371/currents.outbreaks.9e4c4294ec8ce1adad283172b16bc908
http://dx.doi.org/10.1371/currents.outbreaks.9e4c4294ec8ce1adad283172b16bc908
http://dx.doi.org/10.1093/aje/kwu068
http://www.ncbi.nlm.nih.gov/pubmed/24786800
http://dx.doi.org/10.1016/S1473-3099(14)71074-6
http://dx.doi.org/10.1016/S1473-3099(14)71074-6
http://www.ncbi.nlm.nih.gov/pubmed/25575618
http://dx.doi.org/10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
http://dx.doi.org/10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
http://dx.doi.org/10.1093/cid/ciu1131
http://www.ncbi.nlm.nih.gov/pubmed/25516185
http://dx.doi.org/10.1016/S0140-6736(15)61117-5
http://dx.doi.org/10.1016/S0140-6736(15)61117-5
http://www.ncbi.nlm.nih.gov/pubmed/26248676

