Homework 7

- 1. Let $A, B \subset X$ be subspaces of a topological space X. Show that if A and B are compact then so is the union $A \cup B$.
- 2. Prove/disprove whether the following spaces are compact:
 - (a) \mathbb{R}_{ℓ} (lower limit topology)
 - (b) \mathbb{R}_{fc} (finite complement topology)
 - (c) the graph of $y = x^{100}$ in \mathbb{R}^2
- 3. Let $A, B \subset X$ where X is a topological space. Suppose X is Hausdorff. Show that if A and B are compact then so is the intersection $A \cap B$.¹

This result requires X to be Hausdorff. See the extra problems on the next page for a counterexample to the general case.

- 4. Prove/disprove whether $[0,1] \times [0,1]$ is homeomorphic to $[0,1] \times [0,1)$.
- 5. Let X and Y be topological spaces, with Y compact. Consider the projection map $\pi : X \times Y \to X$, $\pi(x, y) = x$. In this exercise you will show that π is a *closed map*, i.e. it sends every closed set in the domain to a closed set in the codomain.
 - (a) Let $A \subset X \times Y$ be closed. Prove that $\pi(A) \subset X$ is closed if and only if $\forall x \in X$ such that $\{x\} \times Y$ is disjoint from A, \exists a neighborhood $U \subset X$ of x such that $U \times Y$ is disjoint from A.
 - (b) Let $x \in X$ be such that $\{x\} \times Y$ is disjoint from A. Argue the existence of a covering of $\{x\} \times Y$ by basis open sets in $X \times Y$, such that the cover is disjoint from A. Then use this cover and the compactness of Y to define U.² Conclude that π is a closed map.
 - (c) Show by example that if Y is not compact, then π may fail to be a closed map. (Hint: consider the graph of the real function 1/x.)
- 6. Theorem: Let $f : X \to Y$ be a map between spaces, where Y is compact Hausdorff. Then f is continuous if and only if the graph of f, defined by

$$\Gamma_f = \{ (x, f(x)) \mid x \in X \} \subset X \times Y,$$

is closed in $X \times Y$.

Prove the " \Leftarrow " direction. (Hint: if Γ_f is closed and $V \subset Y$ is a neighborhood of $f(x_0)$, then the intersection of Γ_f with $X \times (Y \setminus V)$ is closed. Apply the result of the previous exercise.)

¹While a direct argument is possible, you should try to use propositions we proved in lecture to prove this.

²This argument is similar to a step in our proof that the product of compact spaces is compact.

Extra problems

These problems need not be submitted. They are extra practice, for your benefit!

- 1. Let X be the line with two origins. Recall that as a set, $X = \mathbb{R} \setminus \{0\} \cup \{o_1, o_2\}$. Basis open sets are (a, b) where a < b < 0 or 0 < a < b, and also $(a, 0) \cup \{o_i\} \cup (0, b)$ where a < 0 < b, $i \in \{1, 2\}$.
 - (a) There are two natural injections $f_1, f_2 : \mathbb{R} \to X$. Define them and show they are continuous.
 - (b) Consider the image of [0, 1] under the two different maps f_1, f_2 . Show that these give compact subsets of X with a non-compact intersection.
- 2. Prove the " \Rightarrow " direction of exercise 6 above.
- 3. Let X be a non-empty set, and $x_0 \in X$ a fixed point. Define

 $\tau = \{ U \subset X \mid x_0 \notin U \text{ or } X \setminus A \text{ is finite } \}$

Show that τ is a topology on X. Verify that this topology is both Hausdorff and compact. This shows that every non-empty set has a topology which is compact and Hausdorff.

4. Parametrizing S^1 by the angle θ of its points, define a map $S^1 \to S^1 \times S^1$ by $\theta \mapsto (2\theta, 3\theta)$. Show that this map is a homeomorphism onto its image. Draw the image on $S^1 \times S^1$ viewed as (1) a square with sides identified in the appropriate manner; (2) the surface of a donut. Also: draw the graph of f!