Homework 7

1. Let $A, B \subset X$ be subspaces of a topological space X. Show that if A and B are compact then so is the union $A \cup B$.
2. Prove/disprove whether the following spaces are compact:
(a) \mathbb{R}_{ℓ} (lower limit topology)
(b) $\mathbb{R}_{f c}$ (finite complement topology)
(c) the graph of $y=x^{100}$ in \mathbb{R}^{2}
3. Let $A, B \subset X$ where X is a topological space. Suppose X is Hausdorff. Show that if A and B are compact then so is the intersection $A \cap B .{ }^{1}$

This result requires X to be Hausdorff. See the extra problems on the next page for a counterexample to the general case.
4. Prove/disprove whether $[0,1] \times[0,1]$ is homeomorphic to $[0,1] \times[0,1)$.
5. Let X and Y be topological spaces, with Y compact. Consider the projection map $\pi: X \times Y \rightarrow X$, $\pi(x, y)=x$. In this exercise you will show that π is a closed map, i.e. it sends every closed set in the domain to a closed set in the codomain.
(a) Let $A \subset X \times Y$ be closed. Prove that $\pi(A) \subset X$ is closed if and only if $\forall x \in X$ such that $\{x\} \times Y$ is disjoint from A, \exists a neighborhood $U \subset X$ of x such that $U \times Y$ is disjoint from A.
(b) Let $x \in X$ be such that $\{x\} \times Y$ is disjoint from A. Argue the existence of a covering of $\{x\} \times Y$ by basis open sets in $X \times Y$, such that the cover is disjoint from A. Then use this cover and the compactness of Y to define $U .{ }^{2}$ Conclude that π is a closed map.
(c) Show by example that if Y is not compact, then π may fail to be a closed map. (Hint: consider the graph of the real function $1 / x$.)
6. Theorem: Let $f: X \rightarrow Y$ be a map between spaces, where Y is compact Hausdorff. Then f is continuous if and only if the graph of f, defined by

$$
\Gamma_{f}=\{(x, f(x)) \mid x \in X\} \subset X \times Y
$$

is closed in $X \times Y$.

Prove the " \Leftarrow " direction. (Hint: if Γ_{f} is closed and $V \subset Y$ is a neighborhood of $f\left(x_{0}\right)$, then the intersection of Γ_{f} with $X \times(Y \backslash V)$ is closed. Apply the result of the previous exercise.)

[^0]
Extra problems

These problems need not be submitted. They are extra practice, for your benefit!

1. Let X be the line with two origins. Recall that as a set, $X=\mathbb{R} \backslash\{0\} \cup\left\{o_{1}, o_{2}\right\}$. Basis open sets are (a, b) where $a<b<0$ or $0<a<b$, and also $(a, 0) \cup\left\{o_{i}\right\} \cup(0, b)$ where $a<0<b, i \in\{1,2\}$.
(a) There are two natural injections $f_{1}, f_{2}: \mathbb{R} \rightarrow X$. Define them and show they are continuous.
(b) Consider the image of $[0,1]$ under the two different maps f_{1}, f_{2}. Show that these give compact subsets of X with a non-compact intersection.
2. Prove the " \Rightarrow " direction of exercise 6 above.
3. Let X be a non-empty set, and $x_{0} \in X$ a fixed point. Define

$$
\tau=\left\{U \subset X \mid x_{0} \notin U \text { or } X \backslash A \text { is finite }\right\}
$$

Show that τ is a topology on X. Verify that this topology is both Hausdorff and compact. This shows that every non-empty set has a topology which is compact and Hausdorff.
4. Parametrizing S^{1} by the angle θ of its points, define a map $S^{1} \rightarrow S^{1} \times S^{1}$ by $\theta \mapsto(2 \theta, 3 \theta)$. Show that this map is a homeomorphism onto its image. Draw the image on $S^{1} \times S^{1}$ viewed as (1) a square with sides identified in the appropriate manner; (2) the surface of a donut. Also: draw the graph of f !

[^0]: ${ }^{1}$ While a direct argument is possible, you should try to use propositions we proved in lecture to prove this.
 ${ }^{2}$ This argument is similar to a step in our proof that the product of compact spaces is compact.

