Homework 6

- 1. The *n*-sphere S^n is the union of a northern hemisphere and a southern hemisphere which intersect along an equatorial sphere of one less dimension. Recall also that S^n is homeomorphic to the quotient an *n*-disk D^n by collapsing its boundary. Use these two different descriptions of S^n to give two different proofs that it is a connected topological space.¹
- 2. Let X be a topological space, and $C_X \subset X$ the subset of cut points, viewed as a topological space via the subspace topology. Show that the homeomorphism type of C_X is a topological property of X: that is, if $Y \cong X$ then $C_Y \cong C_X$. Consider the following two topological spaces (as subsets of \mathbb{R}^2):

Determine C_X for each of these space. Make a conclusion about the relationship between the spaces.

- 3. Construct (draw) a subspace of \mathbb{R}^2 that has exactly 5 distinct cut points. Similarly, construct a subspace of \mathbb{R}^2 having exactly 5 distinct non-cut points.
- 4. Let $f: X \to X$ be continuous, where X = [0, 1]. Show that there is some $x \in [0, 1]$ such that f(x) = x. (Such an x is called a *fixed point* of the function f.) Is the same true for X = (0, 1] or X = (0, 1)?
- 5. Using properties of connectedness, determine all continuous maps $f : \mathbb{R} \to \mathbb{R}_{\ell}$ where \mathbb{R}_{ℓ} has the lower limit topology.
- 6. Compute the connected components of each of the following spaces.
 - (a) \mathbb{Z} (with subspace topology inherited from \mathbb{R})
 - (b) \mathbb{Q} (with subspace topology inherited from \mathbb{R})
 - (c) \mathbb{R}_{fc} (finite complement topology)

¹Use propositions we proved in lecture. (Also found in Munkres.)

Extra problems

These problems need not be submitted. They are extra practice, for your benefit!

- 1. Show that a space X is connected if and only if every continuous map $f: X \to \{0, 1\}$ is constant. (Here $\{0, 1\}$ is given the discrete topology.)
- 2. Show that the 2-dimensional torus is connected in two ways: first by using the quotient map that defines the torus; and second, by writing the torus as a union of subspaces all of which are home-omorphic to a disk and which all intersect in a common point. (For the latter method, draw a picture.)
- 3. Let $q: X \to X/\sim$ be the map in the definition of a quotient topology. Show that if $q^{-1}(\{[x]\})$ is connected for all $[x] \in X/\sim$ and X/\sim is connected, then X is connected.