Homework 5

1. Recall that if $f: X \to Y$ is a continuous map, then $B \subset Y$ closed implies $f^{-1}(B) \subset X$ is closed. Use this to argue that the following are closed subsets of the topological spaces in which they live:

$$A = \{(x, y) \mid xy = 1\} \subset \mathbb{R}^2$$
$$S^n = \{\mathbf{x} \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\| = 1\} \subset \mathbb{R}^{n+1}$$
n-sphere
$$B^n = \{\mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x}\| \leq 1\} \subset \mathbb{R}^n$$
(closed) *n*-ball

2. Let X be a set with an equivalence relation ~ and denote by X/\sim the set of equivalence classes. Define $q: X \to X/\sim$ by $q(x) = [x] = \{y \mid y \sim x\}$. The quotient topology on X/\sim is defined by:

 $U \subset X/ \sim$ is open $\iff q^{-1}(U) \subset X$ is open

Prove that this definition actually defines a topology on X/\sim .

- 3. For X = [0, 1] with equivalence relation \sim , where the only non-trivial relation¹ is $0 \sim 1$, we drew X / \sim as a circle, having identified 0 and 1. In each case below, draw a picture of the quotient space X / \sim .
 - (i) $X = \{(x, y) \mid 1 \le x^2 + y^2 \le 2\} \subset \mathbb{R}^2$. Non-trivial relations: $(a, b) \sim (c, d)$ if $|a^2 + b^2 c^2 d^2| = 1$ and (a, b) = e(c, d) for some e > 0.
 - (ii) $X = \{(x,y) \mid x \ge 0, y \ge 0\} \subset \mathbb{R}^2$. Non-trivial relations: $(a,0) \sim (0,a)$ and $(0,a) \sim (a,0)$ for a > 0.
 - (iii) $X = \{(x,y) \mid xy = 0\} \subset \mathbb{R}^2$. Non-trivial relations: $(a,b), (c,d) \in X$ satisfy $(a,b) \sim (c,d)$ if $a, b, c, d \in \mathbb{Z}, a = d, b = c$.

¹Here "non-trivial relation" means any relation $x \sim y$ where $x \neq y$.

Extra problems

These problems need not be submitted. They are extra practice, for your benefit!

- 1. Define an equivalence relation on the plane $X = \mathbb{R}^2$ as follows: $(a, b) \sim (c, d)$ if and only if $a+b^2 = c+d^2$. Consider the topological space X/\sim (the quotient set with quotient topology).
 - (i) Describe the equivalence classes of \sim (these are subsets of $X = \mathbb{R}^2$).
 - (ii) X/\sim is homeomorphic to a familiar space. What is it? (Hint: to begin, argue that $g: \mathbb{R}^2 \to \mathbb{R}$ defined by $g(a,b) = a + b^2$ induces a well-defined map $X/\sim \to \mathbb{R}$.)
- 2. In lecture we discussed the following result. Let $r: S^{n-1} \to \mathbb{R}_+$ be a continuous map. Define

 $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = \mathbf{0} \text{ or } \|\mathbf{x}\| \leq r(\mathbf{x}/\|\mathbf{x}\|) \} \subset \mathbb{R}^n$

Then X is homeomorphic to the closed unit ball in \mathbb{R}^n .

(i) Given continuous maps $r: S^{n-1} \to \mathbb{R}_+$ and $R: S^{n-1} \to \mathbb{R}_+$ with $r(\mathbf{x}) < R(\mathbf{x})$ for all \mathbf{x} , prove

$$Y = \{ \mathbf{x} \in \mathbb{R}^n \mid r(\mathbf{x}/\|\mathbf{x}\|) \leq \|\mathbf{x}\| \leq R(\mathbf{x}/\|\mathbf{x}\|) \} \subset \mathbb{R}^n$$

is homemorphic to $S^{n-1} \times [0,1]$. Draw some interesting examples of Y in the case that n = 2.

- (ii) We gave an explicit formula for the choice of r which makes X a standard square in the plane. Find also a formula for a continuous map $r: S^1 \to \mathbb{R}$ so that $X \subset \mathbb{R}^2$ is an equilateral triangle.
- 3. Show $[0,1) \times [0,1]$ is homeomorphic to $[0,1) \times [0,1)$.