Homework 4

- 1. Prove that for maps $f : \mathbb{R} \to \mathbb{R}$, the ε - δ definition of continuity implies the open set definition of continuity. (We showed the other direction in lecture.)
- 2. Let $f: A \to B$ and $g: C \to D$ be continuous. Define $f \times g: A \times C \to B \times D$ by $(f \times g)(a, c) = (f(a), g(c))$ for all $(a, c) \in A \times C$. Show that $f \times g$ is continuous.
- 3. Prove that each of the following is a topological property of spaces.
 - (a) The property of having a countable topology.
 - (b) The property of singleton sets $\{x\}$ being closed.
 - (c) The property of having a countable subset which is dense.
- 4. Prove/disprove whether each of the following is a topological property of subspaces $X \subset \mathbb{R}$.
 - (a) The property of X containing two points of distance d apart.
 - (b) The property of containing infinitely many rational numbers.
 - (c) The property of being bounded, in the sense that X is contained in some interval [a, b].

Consider the same problem but for subsets in \mathbb{R}_{fc} (finite complement topology).

5. Given a map $F: X \times Y \to Z$, we say that it is *continuous in each variable separately* if for each $y_0 \in Y$, the map $h: X \to Z$ defined by $h(x) = F(x, y_0)$ is continuous, and for each $x_0 \in X$, the map $g: Y \to Z$ defined by $g(y) = F(x_0, y)$ is continuous. Show that if F is continuous, then it is continuous in each variable separately.

Extra problems

These problems need not be submitted. They are extra practice, for your benefit!

- 1. Show that $X \cong Y$ is an equivalence relation on the collection of topological spaces.
- 2. Let $A \subset X$. Suppose $f : A \to Y$ is a continuous map, and Y is Hausdorff. Show that if f can be extended to a map $g : \overline{A} \to Y$, then g is uniquely determined by f.