Homework 3

- 1. Show that if A is closed in Y and Y is closed in X, then A is closed in X.
- 2. Let A, B and A_i (where $i \in I$, for some index set I) be subsets of a topological space X. Prove:
 - (a) If $A \subset B$ then $\overline{A} \subset \overline{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) $\overline{\bigcup A_i} \supset \bigcup \overline{A_i}$. Give an example where equality fails here.
- 3. Same setup as the previous problem. Determine which of the following equations hold; if an equality fails, determine if \subset or \supset holds.
 - (a) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
 - (b) $\overline{\bigcap A_i} = \bigcap \overline{A_i}$.
 - (c) $\overline{A \setminus B} = \overline{A} \setminus \overline{B}$.
- 4. Show that X is Hausdorff if and only if the "diagonal" $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.
- 5. Prove/disprove whether each of the following spaces is Hausdorff:
 - (a) \mathbb{R}_{ℓ} (lower limit topology)
 - (b) \mathbb{R}_{fc} (finite complement topology)
 - (c) \mathbb{R} with topology generated by basis $(-\infty, a)$ where a runs over all reals
 - (d) Trivial topology on any given set.
 - (e) Every topology on a set with two elements.
 - (f) \mathbb{Z} with the topology whose basis consists of the sets $\{2k-1, 2k\}$ where k runs over all integers.

Extra problems

These problems need not be submitted. They are extra practice, for your benefit!

- 1. Let X be a topological space, and let $Y \subset X$ be given the subspace topology. Show that $A \subset Y$ is closed in Y if and only if A is the intersection of Y with a closed set in X.
- 2. Show that the product of two Hausdorff spaces is Hausdorff.
- 3. For a subset A in a topological space X, define

$$Bd(A) = \overline{A} \cap (\overline{X \setminus A})$$

We call Bd(A) the boundary of A.

- (a) Show that int(A) and Bd(A) are disjoint, and $\overline{A} = int(A) \cup Bd(A)$.
- (b) Show that $Bd(A) = \emptyset$ if and only if A is both open and closed.
- (c) Show that $U \subset X$ is open if and only if $Bd(U) = \overline{U} \setminus U$.
- (d) If U is open, is it true that $U = int(\overline{U})$?