Homework 1

1. Prove the following set theoretic identities:
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(b) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
2. Determine whether each subset of $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ is a Cartesian product of two subsets of \mathbb{R} :
(a) $\{(a, b) \mid a \in \mathbb{Z}\}$
(b) $\{(a, b) \mid a<b\}$
(c) $\{(a, b) \mid b>1\}$
(d) $\{(a, b) \mid a \notin \mathbb{Q}, b \in \mathbb{Q}\}$
(e) $\left\{(a, b) \mid a^{2}+b^{2}<1\right\}$
3. Let $f: A \rightarrow B$ be a map of sets, and $A_{0}, A_{1} \subset A, B_{0}, B_{1} \subset B$. Prove four of the following statements (and either prove the rest on your own, or make sure you understand them):
(a) $A_{0} \subset A_{1} \Rightarrow f\left(A_{0}\right) \subset f\left(A_{1}\right)$
(b) $A_{0} \subset f^{-1}\left(f\left(A_{0}\right)\right)$
(c) $f^{-1}\left(B_{0} \cup B_{1}\right)=f^{-1}\left(B_{0}\right) \cup f^{-1}\left(B_{1}\right)$
(d) $f\left(A_{0} \cup A_{1}\right)=f\left(A_{0}\right) \cup f\left(A_{1}\right)$
(e) $f^{-1}\left(B_{0} \cap B_{1}\right)=f^{-1}\left(B_{0}\right) \cap f^{-1}\left(B_{1}\right)$
(f) $f\left(A_{0} \cap A_{1}\right) \subset f\left(A_{0}\right) \cap f\left(A_{1}\right)$
(g) $f^{-1}\left(B_{0} \backslash B_{1}\right)=f^{-1}\left(B_{0}\right) \backslash f^{-1}\left(B_{1}\right)$
(h) $f\left(A_{0} \backslash A_{1}\right) \supset f\left(A_{0}\right) \backslash f\left(A_{1}\right)$

Furthermore, give examples where equality fails in 3 f and 3 h .
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove that if f and g are injective (resp. surjective), then so too is $g \circ f$. If $g \circ f$ is injective (resp. surjective), what can be said about the injectivity of f and g (resp. surjectivity)?
5. Prove that $f: A \rightarrow B$ is bijective if and only if there exists a function $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$ and $g \circ f=\operatorname{id}_{A}$.
6. Determine whether each of the following sets is countable or not, with justification.
(a) The set of all functions $\{0,1\} \rightarrow \mathbb{Z}_{+}$.
(b) The set of all functions $\mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$.
(c) The set of all functions $\mathbb{Z}_{+} \rightarrow\{0,1\}$.
(d) The set of irrational numbers.
(e) The set of possible passwords created using a standard keyboard.

Extra problems

These problems need not be submitted. They are extra practice, for your benefit!

1. Let $f: A \rightarrow B$ be a function. Suppose $g: B \rightarrow A$ is a function satisfying $f \circ g=\operatorname{id}_{B}$ and $g \circ f=\operatorname{id}_{A}$. If g^{\prime} is another such function satisfying these properties, show that $g=g^{\prime}$.
2. Suppose there is an injection $A \rightarrow B$, and $A \neq \varnothing$. Prove there is a surjection $B \rightarrow A$.
3. Let A be a set, and $\mathcal{P}(A)$ the set of all subsets of A. If A is finite with n elements, argue that $\mathcal{P}(A)$ has exactly 2^{n} elements.
4. Fix a set X. For $A, B \in \mathcal{P}(X)$, define $A \cdot B=A \cap B$ and $A+B=(A \cup B) \backslash(A \cap B)$. Show

$$
A \cdot(B+C)=A \cdot B+A \cdot C
$$

for any $A, B, C \in \mathcal{P}(X)$. If we define $1=X$ and $0=\varnothing$, then we also have $A \cdot 0=0$ and $A \cdot 1=A$. In fact, all of the usual arithmetic rules that one has for the integers now holds with this notation. There are some extra rules as well: $A \cdot A=A$ and $A+A=0$.
5. An algebraic number x is a real (or complex) number which is the root of a polynomial $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{i} \in \mathbb{Z}$. For example, $\sqrt{2}$ is algebraic. Show the set of algebraic numbers is countable.

