Exam 1

1. Let X, Y be topological spaces and $A \subset X, B \subset Y$. Prove that the closure of $A \times B$ in the product $X \times Y$ is equal to $\bar{A} \times \bar{B}$.

Let $(x, y) \in X \times Y$. Then $(x, y) \in \overline{A \times B}$ if and only if for every neighborhood U of (x, y) we have $U \cap(A \times B) \neq \varnothing$. It suffices in this statement to take $U=V \times W$ a basis open set of $X \times Y$ that contains (x, y). Then $U \cap(A \times B) \neq \varnothing$ becomes

$$
(V \times W) \cap(A \times B)=(V \cap A) \times(W \cap B) \neq \varnothing
$$

In other words $V \cap A \neq \varnothing$ and $W \cap B \neq \varnothing$. Thus $(x, y) \in \overline{A \times B}$ if and only if for every open neighborhoods $V \subseteq X$ of x and $W \subset Y$ of y we have $V \cap A \neq \varnothing$ and $W \cap B \neq \varnothing$; thus $(x, y) \in \overline{A \times B}$ if and only if $x \in \bar{A}$ and $y \in \bar{B}$. This proves $\overline{A \times B}=\bar{A} \times \bar{B}$.
2. Let \mathbb{R} be the real line with the standard topology and $\mathbb{R}_{f c}$ be the real line with the finite complement topology. Let L be a straight line in the plane, and describe the topology it inherits as a subspace of $\mathbb{R}_{f c} \times \mathbb{R}$. Do the same for $\mathbb{R}_{f c} \times \mathbb{R}_{f c}$.
$\mathbb{R}_{f_{c}} \times \mathbb{R}$: If L is vertical, of the form $\{a\} \times \mathbb{R}$, then it inherits the standard topology. Similarly, if it is horizontal, it inherits the $\mathbb{R}_{f c}$ topology. Other cases: write $L=\{(x, y) \mid y=c x+d\}$ where $c, d \in \mathbb{R}, c>0$. Note $U=L \cap(\mathbb{R} \times(a, b))$ is in bijection, via projection to the x-axis, with the standard open interval $((a-d) / c,(b-d) / c)$. As $\mathbb{R} \times(a, b)$ is open in $\mathbb{R}_{f c} \times \mathbb{R}, U \subset L$ is open. Thus standard open intervals are open in L. On the other hand, the topology on L is no finer than the standard topology, as $\mathbb{R}_{f c} \times \mathbb{R}$ is coarser than $\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$. Thus L has the standard topology. The case $c<0$ is similar.
$\mathbb{R}_{f c} \times \mathbb{R}_{f c}$: Let $U \times V$ be a standard basis subset of $\mathbb{R}_{f c} \times \mathbb{R}_{f c}$. Then $\mathbb{R}^{2} \backslash U \times V$ is a finite collection of horizontal and vertical lines L_{1}, \ldots, L_{n}. Then L intersects $\mathbb{R}^{2} \backslash U \times V$ in either a finite number of points (at most one point in each $L \cap L_{i}$), or L is one of the lines L_{i}. In the first case $(U \times V) \cap L$ is a set in L with finite complement, and in the second case it is empty. Thus L has the finite complement topology.
3. Consider the sequence $a_{n}=-1 / n, n \in \mathbb{Z}_{+}$. For each of the following topologies, determine whether this sequence converges, and if so, to which points.
(a) \mathbb{R}_{ℓ} (lower limit)
(b) \mathbb{R}_{K} (K-topology)
(c) \mathbb{R}_{L}

The last topology \mathbb{R}_{L} has basis the subsets $(-\infty, a)$ as a ranges over all real numbers.
(a) Let $A=\left\{-1 / n \mid n \in \mathbb{Z}_{+}\right\}$. If $a \in \mathbb{R}$ and $a \geqslant 0$ consider the neighborhood of a given by $U=[a, a+1)$. Then $A \cap U=\varnothing$ so the sequence cannot converge to a. If $a<0$, choose $\epsilon \in \mathbb{R}$ such that $a+\epsilon<0$. Then with $U=(a-\epsilon, a+\epsilon)$, if $-1 / n \in A \cap U$ then $-1 / n<a+\epsilon$, implying $n<|1 /(a+\epsilon)|$. Thus $A \cap U$ is finite. So the sequence does not converge to a again, and in summary converges to no points.
(b) If $a \in \mathbb{R}$ is non-zero, a neighborhood $U=(a-\epsilon, a+\epsilon)$ with ϵ small enough will have $U \cap A$ finite (as in (a)), and so the sequence does not converge to non-zero a. On the other hand, every basis neighborhood of 0 is of the form $U=(a, b)$ or $U=(a, b) \backslash K$, and both types have
$U \cap A=\{-1 / n|n>|a|\}$. Thus the sequence converges to 0 .
(c) For any $a \in \mathbb{R}$, the neighborhood $U=\{a\}$ intersects A in at most one point, so the sequence does not converge to any point.
(d) Any neighborhood of $a \in \mathbb{R}$ is of the form $U=(-\infty, b)$ where $b>a$, or $U=\mathbb{R}$. Thus if $a \geqslant 0$ then $U \cap A$ contains A. If $a<0$ choose $a<b<0$, and then $U \cap A$ is finite. Thus the sequence converges to all non-negative real numbers.
4. Let (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ be a metric spaces, and $f: X \rightarrow X^{\prime}$ is a map. Suppose there is some constant C such that $d^{\prime}(f(x), f(y)) \leqslant C d(x, y)$ for $x, y \in X$. Prove that f is continuous (where each of X and X^{\prime} are given the metric topologies).

It suffices to show that for every $x \in X$, and every basis neighborhood $B_{d^{\prime}}(f(x), \varepsilon)$ of $f(x) \in X^{\prime}$, there exists a basis neighborhood $B_{d}(x, \delta)$ of x such that

$$
f\left(B_{d}(x, \delta)\right) \subset B_{d^{\prime}}(f(x), \varepsilon)
$$

Let $\delta=\varepsilon / C$. Suppose $y \in B_{d}(x, \delta)$. Then, using the assumption in the problem, we have:

$$
d^{\prime}(f(x), f(y)) \leqslant C d(x, y)<C \delta=C\left(\frac{\varepsilon}{C}\right)=\varepsilon
$$

Thus $f(y) \in B_{d^{\prime}}(f(x), \varepsilon)$. So with this choice of δ, the claim is proved.
5. Let X be a Hausdorff topological space.
(a) Show that every singleton set in X is closed.
(b) Show that $\Delta=\{(x, x) \mid x \in X\}$ is closed in $X \times X$.
(c) Can X arise as a subspace $X \subset Y$ of a non-Hausdorff space Y ?
(a) Let $y \in \overline{\{x\}}$. Then every neighborhood V of y contains x. As X is Hausdorff, if $y \neq x$, there would exist open neighborhoods V of y and U of x such that $U \cap V=\varnothing$, and in particular $x \notin V$. So it must be that $x=y$. We have shown $\overline{\{x\}}=\{x\}$, and thus $\{x\}$ is closed.
(b) We show the complement is open. Let $(x, y) \in X \times X \backslash \Delta$. This means that $x \neq y$. As X is Hausdorff, there exist open neighborhoods U of x and V of y such that $U \cap V=\varnothing$. Moreover, $U \cap V=\varnothing$ implies that $U \times V \cap \Delta=\varnothing$. Thus $U \times V$ is an open neighborhood of (x, y) which is contained in $X \times X \backslash \Delta$. This proves that $X \times X \backslash \Delta$ is open.
6. (Optional) Let \mathbb{R}^{ω}, the set of real-valued sequences, have the topology whose basis is given by subsets of the form $U_{1} \times U_{2} \times U_{3} \times \cdots$ where each U_{i} is an open subset of \mathbb{R}.

1. Determine whether \mathbb{R}^{ω} is Hausdorff.

2. Determine whether the sequence $a_{1}=(1,0, \ldots), a_{2}=(0,1 / 2,0 \ldots), a_{3}=(0,0,1 / 3,0, \ldots), \ldots$ converges, and if so, to what point(s).
(a) We show \mathbb{R}^{ω} is Hausdorff. Let $s=\left(s_{1}, s_{2}, \ldots\right)$ and $t=\left(t_{1}, t_{2}, \ldots\right)$ be two distinct elements. Thus there is some $i \in \mathbb{Z}_{+}$such that $s_{i} \neq t_{i}$. Using that \mathbb{R} is Hausdorff, choose neighborhoods $U_{i}, V_{i} \subset \mathbb{R}$ of s_{i}, t_{i} such that $U_{i} \cap V_{i}=\varnothing$. For $j \neq i$ set $U_{j}=V_{j}=\mathbb{R}$. Then $U=U_{1} \times U_{2} \times \cdots$ and $V=V_{1} \times V_{2} \times \cdots$ are neighborhoods in \mathbb{R}^{ω} of s and t respectively, and we have $U \cap V=\varnothing$. Thus \mathbb{R}^{ω} is Hausdorff as claimed.
(b) Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $t=\left(t_{1}, t_{2}, \ldots\right) \in \mathbb{R}^{\omega}$. Choose a neighborhood of t of the form $U=U_{1} \times U_{2} \times \cdots$ where if $t_{i} \neq 0$ then U_{i} is an open interval disjoint from 0 , and if $t_{i}=0$ we set $U_{i}=(-1 / i, 1 / i)$. As $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to t, there is some $N \in \mathbb{Z}_{+}$such that $\left\{a_{n} \mid n \geqslant N\right\} \subset U$. Since $a_{N}=(0, \ldots, 0,1 / N, 0, \ldots,) \in U$, we must have $t_{i}=0$ for $i>N$ by our choice of U_{i}. For $i>N$, as $a_{i} \in U$, we must have $1 / i \in U_{i}=(-1 / i, 1 / i)$, a contradiction. Thus the sequence converges to no points.
