
MTH 531/631: Topology I, Fall 2022

Exam 1

1. Let X, Y be topological spaces and A Ă X, B Ă Y . Prove that the closure of A ˆ B in the
product X ˆ Y is equal to A ˆ B.

Let px, yq P X ˆ Y . Then px, yq P A ˆ B if and only if for every neighborhood U of px, yq we have
U X pA ˆ Bq ‰ H. It suffices in this statement to take U “ V ˆ W a basis open set of X ˆ Y that
contains px, yq. Then U X pA ˆ Bq ‰ H becomes

pV ˆ W q X pA ˆ Bq “ pV X Aq ˆ pW X Bq ‰ H,

In other words V X A ‰ H and W X B ‰ H. Thus px, yq P A ˆ B if and only if for every open
neighborhoods V Ă X of x andW Ă Y of y we have V XA ‰ H andW XB ‰ H; thus px, yq P A ˆ B
if and only if x P A and y P B. This proves A ˆ B “ A ˆ B.

2. Let R be the real line with the standard topology and Rfc be the real line with the finite com-
plement topology. Let L be a straight line in the plane, and describe the topology it inherits as a
subspace of Rfc ˆ R. Do the same for Rfc ˆ Rfc.

Rfc ˆ R: If L is vertical, of the form tau ˆ R, then it inherits the standard topology. Similarly, if
it is horizontal, it inherits the Rfc topology. Other cases: write L “ tpx, yq | y “ cx ` du where
c, d P R, c ą 0. Note U “ L X pR ˆ pa, bqq is in bijection, via projection to the x-axis, with the
standard open interval ppa´ dq{c, pb´ dq{cq. As Rˆ pa, bq is open in Rfc ˆR, U Ă L is open. Thus
standard open intervals are open in L. On the other hand, the topology on L is no finer than the
standard topology, as Rfc ˆR is coarser than RˆR “ R2. Thus L has the standard topology. The
case c ă 0 is similar.

Rfc ˆRfc: Let U ˆV be a standard basis subset of Rfc ˆRfc. Then R2zU ˆV is a finite collection
of horizontal and vertical lines L1, . . . , Ln. Then L intersects R2zU ˆV in either a finite number of
points (at most one point in each LXLi), or L is one of the lines Li. In the first case pU ˆ V q XL
is a set in L with finite complement, and in the second case it is empty. Thus L has the finite
complement topology.

3. Consider the sequence an “ ´1{n, n P Z`. For each of the following topologies, determine
whether this sequence converges, and if so, to which points.

(a) Rℓ (lower limit) (b) RK (K-topology) (c) RL

The last topology RL has basis the subsets p´8, aq as a ranges over all real numbers.

(a) Let A “ t´1{n | n P Z`u. If a P R and a ě 0 consider the neighborhood of a given by
U “ ra, a ` 1q. Then A X U “ H so the sequence cannot converge to a. If a ă 0, choose ϵ P R
such that a ` ϵ ă 0. Then with U “ pa ´ ϵ, a ` ϵq, if ´1{n P A X U then ´1{n ă a ` ϵ, implying
n ă |1{pa`ϵq|. Thus AXU is finite. So the sequence does not converge to a again, and in summary
converges to no points.

(b) If a P R is non-zero, a neighborhood U “ pa ´ ϵ, a ` ϵq with ϵ small enough will have U X A
finite (as in (a)), and so the sequence does not converge to non-zero a. On the other hand,
every basis neighborhood of 0 is of the form U “ pa, bq or U “ pa, bqzK, and both types have
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U X A “ t´1{n | n ą |a|u. Thus the sequence converges to 0.

(c) For any a P R, the neighborhood U “ tau intersects A in at most one point, so the sequence
does not converge to any point.

(d) Any neighborhood of a P R is of the form U “ p´8, bq where b ą a, or U “ R. Thus if a ě 0
then U X A contains A. If a ă 0 choose a ă b ă 0, and then U X A is finite. Thus the sequence
converges to all non-negative real numbers.

4. Let pX,dq and pX 1, d1q be a metric spaces, and f ∶ X Ñ X 1 is a map. Suppose there is some
constant C such that d1pfpxq, fpyqq ď Cdpx, yq for x, y P X. Prove that f is continuous (where each
of X and X 1 are given the metric topologies).

It suffices to show that for every x P X, and every basis neighborhood Bd1pfpxq, εq of fpxq P X 1,
there exists a basis neighborhood Bdpx, δq of x such that

f pBdpx, δqq Ă Bd1pfpxq, εq.

Let δ “ ε{C. Suppose y P Bdpx, δq. Then, using the assumption in the problem, we have:

d1
pfpxq, fpyqq ď Cdpx, yq ă Cδ “ Cp

ε

C
q “ ε.

Thus fpyq P Bd1pfpxq, εq. So with this choice of δ, the claim is proved.

5. Let X be a Hausdorff topological space.

(a) Show that every singleton set in X is closed.

(b) Show that ∆ “ tpx,xq ∣ x P Xu is closed in X ˆ X.

(c) Can X arise as a subspace X Ă Y of a non-Hausdorff space Y ?

(a) Let y P txu. Then every neighborhood V of y contains x. As X is Hausdorff, if y ‰ x, there
would exist open neighborhoods V of y and U of x such that U X V “ H, and in particular x R V .
So it must be that x “ y. We have shown txu “ txu, and thus txu is closed.

(b) We show the complement is open. Let px, yq P X ˆ Xz∆. This means that x ‰ y. As X is
Hausdorff, there exist open neighborhoods U of x and V of y such that U X V “ H. Moreover,
U X V “ H implies that U ˆ V X ∆ “ H. Thus U ˆ V is an open neighborhood of px, yq which is
contained in X ˆ Xz∆. This proves that X ˆ Xz∆ is open.

6. (Optional) Let Rω, the set of real-valued sequences, have the topology whose basis is given by
subsets of the form U1 ˆ U2 ˆ U3 ˆ⋯ where each Ui is an open subset of R.

1. Determine whether Rω is Hausdorff.

2. Determine whether the sequence a1 “ p1,0, . . .q, a2 “ p0,1{2,0 . . .q, a3 “ p0,0,1{3,0, . . .q, . . .
converges, and if so, to what point(s).
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(a) We show Rω is Hausdorff. Let s “ ps1, s2, . . .q and t “ pt1, t2, . . .q be two distinct elements.
Thus there is some i P Z` such that si ‰ ti. Using that R is Hausdorff, choose neighborhoods
Ui, Vi Ă R of si, ti such that Ui X Vi “ H. For j ‰ i set Uj “ Vj “ R. Then U “ U1 ˆ U2 ˆ⋯ and
V “ V1 ˆ V2 ˆ⋯ are neighborhoods in Rω of s and t respectively, and we have U X V “ H. Thus
Rω is Hausdorff as claimed.

(b) Suppose tanu8
n“1 converges to t “ pt1, t2, . . .q P Rω. Choose a neighborhood of t of the form

U “ U1 ˆ U2 ˆ⋯ where if ti ‰ 0 then Ui is an open interval disjoint from 0, and if ti “ 0 we set
Ui “ p´1{i,1{iq. As tanu8

n“1 converges to t, there is some N P Z` such that tan | n ě Nu Ă U .
Since aN “ p0, . . . ,0,1{N,0, . . . , q P U , we must have ti “ 0 for i ą N by our choice of Ui. For
i ą N , as ai P U , we must have 1{i P Ui “ p´1{i,1{iq, a contradiction. Thus the sequence converges
to no points.
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