Practice problems for Exam 2

To practice for the second exam, you should go over the homework problems, especially from Homeworks 5–8. Here are some additional practice problems.

- 1. Let A_1, A_2, \ldots be a sequence of subspaces of a topological space X. Suppose each A_i is connected and $A_i \cap A_{i+1} \neq \emptyset$ for all $i \in \mathbb{Z}_+$. Show that $\bigcup_{i \in \mathbb{Z}_+} A_i$ is connected.
- 2. Show that in the finite complement topology on \mathbb{R} , every subspace is compact.
- 3. Let $f: X \to Y$ be a continuous bijective function from a compact topological space X to a Hausdorff topological space Y. Prove that f is a homeomorphism.
- 4. Prove that every non-constant path in \mathbb{R}^2 (i.e. continuous function from closed interval to \mathbb{R}^2) must contain a point with at least one of whose coordinates is rational.
- 5. Let X be a topological space with an equivalence relation \sim . Show by example that even if X Hausdorff, the quotient space X/\sim need not be Hausdorff. Similarly, show that even if X/\sim is Hausdorff, X need not be.